1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2019 Intel Corporation
*
*/
#include "i915_drv.h"
#include "i915_irq.h"
#include "intel_crtc.h"
#include "intel_de.h"
#include "intel_display_types.h"
#include "intel_dsb.h"
#include "intel_dsb_buffer.h"
#include "intel_dsb_regs.h"
#include "intel_vblank.h"
#include "intel_vrr.h"
#include "skl_watermark.h"
#define CACHELINE_BYTES 64
enum dsb_id {
INVALID_DSB = -1,
DSB1,
DSB2,
DSB3,
MAX_DSB_PER_PIPE
};
struct intel_dsb {
enum dsb_id id;
struct intel_dsb_buffer dsb_buf;
struct intel_crtc *crtc;
/*
* maximum number of dwords the buffer will hold.
*/
unsigned int size;
/*
* free_pos will point the first free dword and
* help in calculating tail of command buffer.
*/
unsigned int free_pos;
/*
* ins_start_offset will help to store start dword of the dsb
* instuction and help in identifying the batch of auto-increment
* register.
*/
unsigned int ins_start_offset;
int dewake_scanline;
};
/**
* DOC: DSB
*
* A DSB (Display State Buffer) is a queue of MMIO instructions in the memory
* which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA
* engine that can be programmed to download the DSB from memory.
* It allows driver to batch submit display HW programming. This helps to
* reduce loading time and CPU activity, thereby making the context switch
* faster. DSB Support added from Gen12 Intel graphics based platform.
*
* DSB's can access only the pipe, plane, and transcoder Data Island Packet
* registers.
*
* DSB HW can support only register writes (both indexed and direct MMIO
* writes). There are no registers reads possible with DSB HW engine.
*/
/* DSB opcodes. */
#define DSB_OPCODE_SHIFT 24
#define DSB_OPCODE_NOOP 0x0
#define DSB_OPCODE_MMIO_WRITE 0x1
#define DSB_BYTE_EN 0xf
#define DSB_BYTE_EN_SHIFT 20
#define DSB_REG_VALUE_MASK 0xfffff
#define DSB_OPCODE_WAIT_USEC 0x2
#define DSB_OPCODE_WAIT_SCANLINE 0x3
#define DSB_OPCODE_WAIT_VBLANKS 0x4
#define DSB_OPCODE_WAIT_DSL_IN 0x5
#define DSB_OPCODE_WAIT_DSL_OUT 0x6
#define DSB_SCANLINE_UPPER_SHIFT 20
#define DSB_SCANLINE_LOWER_SHIFT 0
#define DSB_OPCODE_INTERRUPT 0x7
#define DSB_OPCODE_INDEXED_WRITE 0x9
/* see DSB_REG_VALUE_MASK */
#define DSB_OPCODE_POLL 0xA
/* see DSB_REG_VALUE_MASK */
static bool assert_dsb_has_room(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
/* each instruction is 2 dwords */
return !drm_WARN(&i915->drm, dsb->free_pos > dsb->size - 2,
"[CRTC:%d:%s] DSB %d buffer overflow\n",
crtc->base.base.id, crtc->base.name, dsb->id);
}
static void intel_dsb_dump(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
int i;
drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] DSB %d commands {\n",
crtc->base.base.id, crtc->base.name, dsb->id);
for (i = 0; i < ALIGN(dsb->free_pos, 64 / 4); i += 4)
drm_dbg_kms(&i915->drm,
" 0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", i * 4,
intel_dsb_buffer_read(&dsb->dsb_buf, i),
intel_dsb_buffer_read(&dsb->dsb_buf, i + 1),
intel_dsb_buffer_read(&dsb->dsb_buf, i + 2),
intel_dsb_buffer_read(&dsb->dsb_buf, i + 3));
drm_dbg_kms(&i915->drm, "}\n");
}
static bool is_dsb_busy(struct drm_i915_private *i915, enum pipe pipe,
enum dsb_id id)
{
return intel_de_read_fw(i915, DSB_CTRL(pipe, id)) & DSB_STATUS_BUSY;
}
static void intel_dsb_emit(struct intel_dsb *dsb, u32 ldw, u32 udw)
{
if (!assert_dsb_has_room(dsb))
return;
/* Every instruction should be 8 byte aligned. */
dsb->free_pos = ALIGN(dsb->free_pos, 2);
dsb->ins_start_offset = dsb->free_pos;
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, ldw);
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, udw);
}
static bool intel_dsb_prev_ins_is_write(struct intel_dsb *dsb,
u32 opcode, i915_reg_t reg)
{
u32 prev_opcode, prev_reg;
/*
* Nothing emitted yet? Must check before looking
* at the actual data since i915_gem_object_create_internal()
* does *not* give you zeroed memory!
*/
if (dsb->free_pos == 0)
return false;
prev_opcode = intel_dsb_buffer_read(&dsb->dsb_buf,
dsb->ins_start_offset + 1) & ~DSB_REG_VALUE_MASK;
prev_reg = intel_dsb_buffer_read(&dsb->dsb_buf,
dsb->ins_start_offset + 1) & DSB_REG_VALUE_MASK;
return prev_opcode == opcode && prev_reg == i915_mmio_reg_offset(reg);
}
static bool intel_dsb_prev_ins_is_mmio_write(struct intel_dsb *dsb, i915_reg_t reg)
{
/* only full byte-enables can be converted to indexed writes */
return intel_dsb_prev_ins_is_write(dsb,
DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT |
DSB_BYTE_EN << DSB_BYTE_EN_SHIFT,
reg);
}
static bool intel_dsb_prev_ins_is_indexed_write(struct intel_dsb *dsb, i915_reg_t reg)
{
return intel_dsb_prev_ins_is_write(dsb,
DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT,
reg);
}
/**
* intel_dsb_reg_write() - Emit register wriite to the DSB context
* @dsb: DSB context
* @reg: register address.
* @val: value.
*
* This function is used for writing register-value pair in command
* buffer of DSB.
*/
void intel_dsb_reg_write(struct intel_dsb *dsb,
i915_reg_t reg, u32 val)
{
u32 old_val;
/*
* For example the buffer will look like below for 3 dwords for auto
* increment register:
* +--------------------------------------------------------+
* | size = 3 | offset &| value1 | value2 | value3 | zero |
* | | opcode | | | | |
* +--------------------------------------------------------+
* + + + + + + +
* 0 4 8 12 16 20 24
* Byte
*
* As every instruction is 8 byte aligned the index of dsb instruction
* will start always from even number while dealing with u32 array. If
* we are writing odd no of dwords, Zeros will be added in the end for
* padding.
*/
if (!intel_dsb_prev_ins_is_mmio_write(dsb, reg) &&
!intel_dsb_prev_ins_is_indexed_write(dsb, reg)) {
intel_dsb_emit(dsb, val,
(DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) |
(DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) |
i915_mmio_reg_offset(reg));
} else {
if (!assert_dsb_has_room(dsb))
return;
/* convert to indexed write? */
if (intel_dsb_prev_ins_is_mmio_write(dsb, reg)) {
u32 prev_val = intel_dsb_buffer_read(&dsb->dsb_buf,
dsb->ins_start_offset + 0);
intel_dsb_buffer_write(&dsb->dsb_buf,
dsb->ins_start_offset + 0, 1); /* count */
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 1,
(DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT) |
i915_mmio_reg_offset(reg));
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 2, prev_val);
dsb->free_pos++;
}
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, val);
/* Update the count */
old_val = intel_dsb_buffer_read(&dsb->dsb_buf, dsb->ins_start_offset);
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset, old_val + 1);
/* if number of data words is odd, then the last dword should be 0.*/
if (dsb->free_pos & 0x1)
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos, 0);
}
}
static u32 intel_dsb_mask_to_byte_en(u32 mask)
{
return (!!(mask & 0xff000000) << 3 |
!!(mask & 0x00ff0000) << 2 |
!!(mask & 0x0000ff00) << 1 |
!!(mask & 0x000000ff) << 0);
}
/* Note: mask implemented via byte enables! */
void intel_dsb_reg_write_masked(struct intel_dsb *dsb,
i915_reg_t reg, u32 mask, u32 val)
{
intel_dsb_emit(dsb, val,
(DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) |
(intel_dsb_mask_to_byte_en(mask) << DSB_BYTE_EN_SHIFT) |
i915_mmio_reg_offset(reg));
}
void intel_dsb_noop(struct intel_dsb *dsb, int count)
{
int i;
for (i = 0; i < count; i++)
intel_dsb_emit(dsb, 0,
DSB_OPCODE_NOOP << DSB_OPCODE_SHIFT);
}
void intel_dsb_nonpost_start(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
enum pipe pipe = crtc->pipe;
intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id),
DSB_NON_POSTED, DSB_NON_POSTED);
intel_dsb_noop(dsb, 4);
}
void intel_dsb_nonpost_end(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
enum pipe pipe = crtc->pipe;
intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id),
DSB_NON_POSTED, 0);
intel_dsb_noop(dsb, 4);
}
static void intel_dsb_align_tail(struct intel_dsb *dsb)
{
u32 aligned_tail, tail;
tail = dsb->free_pos * 4;
aligned_tail = ALIGN(tail, CACHELINE_BYTES);
if (aligned_tail > tail)
intel_dsb_buffer_memset(&dsb->dsb_buf, dsb->free_pos, 0,
aligned_tail - tail);
dsb->free_pos = aligned_tail / 4;
}
void intel_dsb_finish(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
/*
* DSB_FORCE_DEWAKE remains active even after DSB is
* disabled, so make sure to clear it (if set during
* intel_dsb_commit()).
*/
intel_dsb_reg_write_masked(dsb, DSB_PMCTRL_2(crtc->pipe, dsb->id),
DSB_FORCE_DEWAKE, 0);
intel_dsb_align_tail(dsb);
intel_dsb_buffer_flush_map(&dsb->dsb_buf);
}
static int intel_dsb_dewake_scanline(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
unsigned int latency = skl_watermark_max_latency(i915, 0);
int vblank_start;
if (crtc_state->vrr.enable)
vblank_start = intel_vrr_vmin_vblank_start(crtc_state);
else
vblank_start = intel_mode_vblank_start(adjusted_mode);
return max(0, vblank_start - intel_usecs_to_scanlines(adjusted_mode, latency));
}
static u32 dsb_chicken(struct intel_crtc *crtc)
{
if (crtc->mode_flags & I915_MODE_FLAG_VRR)
return DSB_SKIP_WAITS_EN |
DSB_CTRL_WAIT_SAFE_WINDOW |
DSB_CTRL_NO_WAIT_VBLANK |
DSB_INST_WAIT_SAFE_WINDOW |
DSB_INST_NO_WAIT_VBLANK;
else
return DSB_SKIP_WAITS_EN;
}
static void _intel_dsb_commit(struct intel_dsb *dsb, u32 ctrl,
int dewake_scanline)
{
struct intel_crtc *crtc = dsb->crtc;
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
u32 tail;
tail = dsb->free_pos * 4;
if (drm_WARN_ON(&dev_priv->drm, !IS_ALIGNED(tail, CACHELINE_BYTES)))
return;
if (is_dsb_busy(dev_priv, pipe, dsb->id)) {
drm_err(&dev_priv->drm, "[CRTC:%d:%s] DSB %d is busy\n",
crtc->base.base.id, crtc->base.name, dsb->id);
return;
}
intel_de_write_fw(dev_priv, DSB_CTRL(pipe, dsb->id),
ctrl | DSB_ENABLE);
intel_de_write_fw(dev_priv, DSB_CHICKEN(pipe, dsb->id),
dsb_chicken(crtc));
intel_de_write_fw(dev_priv, DSB_HEAD(pipe, dsb->id),
intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf));
if (dewake_scanline >= 0) {
int diff, hw_dewake_scanline;
hw_dewake_scanline = intel_crtc_scanline_to_hw(crtc, dewake_scanline);
intel_de_write_fw(dev_priv, DSB_PMCTRL(pipe, dsb->id),
DSB_ENABLE_DEWAKE |
DSB_SCANLINE_FOR_DEWAKE(hw_dewake_scanline));
/*
* Force DEwake immediately if we're already past
* or close to racing past the target scanline.
*/
diff = dewake_scanline - intel_get_crtc_scanline(crtc);
intel_de_write_fw(dev_priv, DSB_PMCTRL_2(pipe, dsb->id),
(diff >= 0 && diff < 5 ? DSB_FORCE_DEWAKE : 0) |
DSB_BLOCK_DEWAKE_EXTENSION);
}
intel_de_write_fw(dev_priv, DSB_TAIL(pipe, dsb->id),
intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf) + tail);
}
/**
* intel_dsb_commit() - Trigger workload execution of DSB.
* @dsb: DSB context
* @wait_for_vblank: wait for vblank before executing
*
* This function is used to do actual write to hardware using DSB.
*/
void intel_dsb_commit(struct intel_dsb *dsb,
bool wait_for_vblank)
{
_intel_dsb_commit(dsb,
wait_for_vblank ? DSB_WAIT_FOR_VBLANK : 0,
wait_for_vblank ? dsb->dewake_scanline : -1);
}
void intel_dsb_wait(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
if (wait_for(!is_dsb_busy(dev_priv, pipe, dsb->id), 1)) {
u32 offset = intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf);
intel_de_write_fw(dev_priv, DSB_CTRL(pipe, dsb->id),
DSB_ENABLE | DSB_HALT);
drm_err(&dev_priv->drm,
"[CRTC:%d:%s] DSB %d timed out waiting for idle (current head=0x%x, head=0x%x, tail=0x%x)\n",
crtc->base.base.id, crtc->base.name, dsb->id,
intel_de_read_fw(dev_priv, DSB_CURRENT_HEAD(pipe, dsb->id)) - offset,
intel_de_read_fw(dev_priv, DSB_HEAD(pipe, dsb->id)) - offset,
intel_de_read_fw(dev_priv, DSB_TAIL(pipe, dsb->id)) - offset);
intel_dsb_dump(dsb);
}
/* Attempt to reset it */
dsb->free_pos = 0;
dsb->ins_start_offset = 0;
intel_de_write_fw(dev_priv, DSB_CTRL(pipe, dsb->id), 0);
}
/**
* intel_dsb_prepare() - Allocate, pin and map the DSB command buffer.
* @crtc_state: the CRTC state
* @max_cmds: number of commands we need to fit into command buffer
*
* This function prepare the command buffer which is used to store dsb
* instructions with data.
*
* Returns:
* DSB context, NULL on failure
*/
struct intel_dsb *intel_dsb_prepare(const struct intel_crtc_state *crtc_state,
unsigned int max_cmds)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
intel_wakeref_t wakeref;
struct intel_dsb *dsb;
unsigned int size;
if (!HAS_DSB(i915))
return NULL;
/* TODO: DSB is broken in Xe KMD, so disabling it until fixed */
if (!IS_ENABLED(I915))
return NULL;
dsb = kzalloc(sizeof(*dsb), GFP_KERNEL);
if (!dsb)
goto out;
wakeref = intel_runtime_pm_get(&i915->runtime_pm);
/* ~1 qword per instruction, full cachelines */
size = ALIGN(max_cmds * 8, CACHELINE_BYTES);
if (!intel_dsb_buffer_create(crtc, &dsb->dsb_buf, size))
goto out_put_rpm;
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
dsb->id = DSB1;
dsb->crtc = crtc;
dsb->size = size / 4; /* in dwords */
dsb->free_pos = 0;
dsb->ins_start_offset = 0;
dsb->dewake_scanline = intel_dsb_dewake_scanline(crtc_state);
return dsb;
out_put_rpm:
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
kfree(dsb);
out:
drm_info_once(&i915->drm,
"[CRTC:%d:%s] DSB %d queue setup failed, will fallback to MMIO for display HW programming\n",
crtc->base.base.id, crtc->base.name, DSB1);
return NULL;
}
/**
* intel_dsb_cleanup() - To cleanup DSB context.
* @dsb: DSB context
*
* This function cleanup the DSB context by unpinning and releasing
* the VMA object associated with it.
*/
void intel_dsb_cleanup(struct intel_dsb *dsb)
{
intel_dsb_buffer_cleanup(&dsb->dsb_buf);
kfree(dsb);
}
|