summaryrefslogtreecommitdiff
path: root/drivers/clk/renesas/rcar-cpg-lib.c
blob: 7e7e5d1341d5e80c6b02af145d129f9ff8eed3b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
// SPDX-License-Identifier: GPL-2.0
/*
 * R-Car Gen3 Clock Pulse Generator Library
 *
 * Copyright (C) 2015-2018 Glider bvba
 * Copyright (C) 2019 Renesas Electronics Corp.
 *
 * Based on clk-rcar-gen3.c
 *
 * Copyright (C) 2015 Renesas Electronics Corp.
 */

#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/pm.h>
#include <linux/slab.h>
#include <linux/sys_soc.h>

#include "rcar-cpg-lib.h"

spinlock_t cpg_lock;

void cpg_reg_modify(void __iomem *reg, u32 clear, u32 set)
{
	unsigned long flags;
	u32 val;

	spin_lock_irqsave(&cpg_lock, flags);
	val = readl(reg);
	val &= ~clear;
	val |= set;
	writel(val, reg);
	spin_unlock_irqrestore(&cpg_lock, flags);
};

static int cpg_simple_notifier_call(struct notifier_block *nb,
				    unsigned long action, void *data)
{
	struct cpg_simple_notifier *csn =
		container_of(nb, struct cpg_simple_notifier, nb);

	switch (action) {
	case PM_EVENT_SUSPEND:
		csn->saved = readl(csn->reg);
		return NOTIFY_OK;

	case PM_EVENT_RESUME:
		writel(csn->saved, csn->reg);
		return NOTIFY_OK;
	}
	return NOTIFY_DONE;
}

void cpg_simple_notifier_register(struct raw_notifier_head *notifiers,
				  struct cpg_simple_notifier *csn)
{
	csn->nb.notifier_call = cpg_simple_notifier_call;
	raw_notifier_chain_register(notifiers, &csn->nb);
}

/*
 * SDn Clock
 */
#define CPG_SD_STP_HCK		BIT(9)
#define CPG_SD_STP_CK		BIT(8)

#define CPG_SD_STP_MASK		(CPG_SD_STP_HCK | CPG_SD_STP_CK)
#define CPG_SD_FC_MASK		(0x7 << 2 | 0x3 << 0)

#define CPG_SD_DIV_TABLE_DATA(stp_hck, sd_srcfc, sd_fc, sd_div) \
{ \
	.val = ((stp_hck) ? CPG_SD_STP_HCK : 0) | \
	       ((sd_srcfc) << 2) | \
	       ((sd_fc) << 0), \
	.div = (sd_div), \
}

struct sd_div_table {
	u32 val;
	unsigned int div;
};

struct sd_clock {
	struct clk_hw hw;
	const struct sd_div_table *div_table;
	struct cpg_simple_notifier csn;
	unsigned int div_num;
	unsigned int cur_div_idx;
};

/* SDn divider
 *           sd_srcfc   sd_fc   div
 * stp_hck   (div)      (div)     = sd_srcfc x sd_fc
 *---------------------------------------------------------
 *  0         0 (1)      1 (4)      4 : SDR104 / HS200 / HS400 (8 TAP)
 *  0         1 (2)      1 (4)      8 : SDR50
 *  1         2 (4)      1 (4)     16 : HS / SDR25
 *  1         3 (8)      1 (4)     32 : NS / SDR12
 *  1         4 (16)     1 (4)     64
 *  0         0 (1)      0 (2)      2
 *  0         1 (2)      0 (2)      4 : SDR104 / HS200 / HS400 (4 TAP)
 *  1         2 (4)      0 (2)      8
 *  1         3 (8)      0 (2)     16
 *  1         4 (16)     0 (2)     32
 *
 *  NOTE: There is a quirk option to ignore the first row of the dividers
 *  table when searching for suitable settings. This is because HS400 on
 *  early ES versions of H3 and M3-W requires a specific setting to work.
 */
static const struct sd_div_table cpg_sd_div_table[] = {
/*	CPG_SD_DIV_TABLE_DATA(stp_hck,  sd_srcfc,   sd_fc,  sd_div) */
	CPG_SD_DIV_TABLE_DATA(0,        0,          1,        4),
	CPG_SD_DIV_TABLE_DATA(0,        1,          1,        8),
	CPG_SD_DIV_TABLE_DATA(1,        2,          1,       16),
	CPG_SD_DIV_TABLE_DATA(1,        3,          1,       32),
	CPG_SD_DIV_TABLE_DATA(1,        4,          1,       64),
	CPG_SD_DIV_TABLE_DATA(0,        0,          0,        2),
	CPG_SD_DIV_TABLE_DATA(0,        1,          0,        4),
	CPG_SD_DIV_TABLE_DATA(1,        2,          0,        8),
	CPG_SD_DIV_TABLE_DATA(1,        3,          0,       16),
	CPG_SD_DIV_TABLE_DATA(1,        4,          0,       32),
};

#define to_sd_clock(_hw) container_of(_hw, struct sd_clock, hw)

static int cpg_sd_clock_enable(struct clk_hw *hw)
{
	struct sd_clock *clock = to_sd_clock(hw);

	cpg_reg_modify(clock->csn.reg, CPG_SD_STP_MASK,
		       clock->div_table[clock->cur_div_idx].val &
		       CPG_SD_STP_MASK);

	return 0;
}

static void cpg_sd_clock_disable(struct clk_hw *hw)
{
	struct sd_clock *clock = to_sd_clock(hw);

	cpg_reg_modify(clock->csn.reg, 0, CPG_SD_STP_MASK);
}

static int cpg_sd_clock_is_enabled(struct clk_hw *hw)
{
	struct sd_clock *clock = to_sd_clock(hw);

	return !(readl(clock->csn.reg) & CPG_SD_STP_MASK);
}

static unsigned long cpg_sd_clock_recalc_rate(struct clk_hw *hw,
						unsigned long parent_rate)
{
	struct sd_clock *clock = to_sd_clock(hw);

	return DIV_ROUND_CLOSEST(parent_rate,
				 clock->div_table[clock->cur_div_idx].div);
}

static int cpg_sd_clock_determine_rate(struct clk_hw *hw,
				       struct clk_rate_request *req)
{
	unsigned long best_rate = ULONG_MAX, diff_min = ULONG_MAX;
	struct sd_clock *clock = to_sd_clock(hw);
	unsigned long calc_rate, diff;
	unsigned int i;

	for (i = 0; i < clock->div_num; i++) {
		calc_rate = DIV_ROUND_CLOSEST(req->best_parent_rate,
					      clock->div_table[i].div);
		if (calc_rate < req->min_rate || calc_rate > req->max_rate)
			continue;

		diff = calc_rate > req->rate ? calc_rate - req->rate
					     : req->rate - calc_rate;
		if (diff < diff_min) {
			best_rate = calc_rate;
			diff_min = diff;
		}
	}

	if (best_rate == ULONG_MAX)
		return -EINVAL;

	req->rate = best_rate;
	return 0;
}

static int cpg_sd_clock_set_rate(struct clk_hw *hw, unsigned long rate,
				 unsigned long parent_rate)
{
	struct sd_clock *clock = to_sd_clock(hw);
	unsigned int i;

	for (i = 0; i < clock->div_num; i++)
		if (rate == DIV_ROUND_CLOSEST(parent_rate,
					      clock->div_table[i].div))
			break;

	if (i >= clock->div_num)
		return -EINVAL;

	clock->cur_div_idx = i;

	cpg_reg_modify(clock->csn.reg, CPG_SD_STP_MASK | CPG_SD_FC_MASK,
		       clock->div_table[i].val &
		       (CPG_SD_STP_MASK | CPG_SD_FC_MASK));

	return 0;
}

static const struct clk_ops cpg_sd_clock_ops = {
	.enable = cpg_sd_clock_enable,
	.disable = cpg_sd_clock_disable,
	.is_enabled = cpg_sd_clock_is_enabled,
	.recalc_rate = cpg_sd_clock_recalc_rate,
	.determine_rate = cpg_sd_clock_determine_rate,
	.set_rate = cpg_sd_clock_set_rate,
};

struct clk * __init cpg_sd_clk_register(const char *name,
	void __iomem *base, unsigned int offset, const char *parent_name,
	struct raw_notifier_head *notifiers, bool skip_first)
{
	struct clk_init_data init;
	struct sd_clock *clock;
	struct clk *clk;
	u32 val;

	clock = kzalloc(sizeof(*clock), GFP_KERNEL);
	if (!clock)
		return ERR_PTR(-ENOMEM);

	init.name = name;
	init.ops = &cpg_sd_clock_ops;
	init.flags = CLK_SET_RATE_PARENT;
	init.parent_names = &parent_name;
	init.num_parents = 1;

	clock->csn.reg = base + offset;
	clock->hw.init = &init;
	clock->div_table = cpg_sd_div_table;
	clock->div_num = ARRAY_SIZE(cpg_sd_div_table);

	if (skip_first) {
		clock->div_table++;
		clock->div_num--;
	}

	val = readl(clock->csn.reg) & ~CPG_SD_FC_MASK;
	val |= CPG_SD_STP_MASK | (clock->div_table[0].val & CPG_SD_FC_MASK);
	writel(val, clock->csn.reg);

	clk = clk_register(NULL, &clock->hw);
	if (IS_ERR(clk))
		goto free_clock;

	cpg_simple_notifier_register(notifiers, &clock->csn);
	return clk;

free_clock:
	kfree(clock);
	return clk;
}