1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
|
/* SPDX-License-Identifier: MIT
*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*/
#include "priv.h"
#include <linux/elf.h>
#include <linux/crc32.h>
#include <subdev/fb.h>
#include <subdev/fsp.h>
#include <rm/r570/nvrm/gsp.h>
#include <nvhw/drf.h>
#include <nvhw/ref/gh100/dev_falcon_v4.h>
#include <nvhw/ref/gh100/dev_riscv_pri.h>
int
gh100_gsp_fini(struct nvkm_gsp *gsp, bool suspend)
{
struct nvkm_falcon *falcon = &gsp->falcon;
int ret, time = 4000;
/* Shutdown RM. */
ret = r535_gsp_fini(gsp, suspend);
if (ret && suspend)
return ret;
/* Wait for RISC-V to halt. */
do {
u32 data = nvkm_falcon_rd32(falcon, falcon->addr2 + NV_PRISCV_RISCV_CPUCTL);
if (NVVAL_GET(data, NV_PRISCV, RISCV_CPUCTL, HALTED))
return 0;
usleep_range(1000, 2000);
} while(time--);
return -ETIMEDOUT;
}
static bool
gh100_gsp_lockdown_released(struct nvkm_gsp *gsp, u32 *mbox0)
{
u32 data;
/* Wait for GSP access via BAR0 to be allowed. */
*mbox0 = nvkm_falcon_rd32(&gsp->falcon, NV_PFALCON_FALCON_MAILBOX0);
if (*mbox0 && (*mbox0 & 0xffffff00) == 0xbadf4100)
return false;
/* Check if an error code has been reported. */
if (*mbox0) {
u32 mbox1 = nvkm_falcon_rd32(&gsp->falcon, NV_PFALCON_FALCON_MAILBOX1);
/* Any value that's not GSP_FMC_BOOT_PARAMS addr is an error. */
if ((((u64)mbox1 << 32) | *mbox0) != gsp->fmc.args.addr)
return true;
}
/* Check if lockdown has been released. */
data = nvkm_falcon_rd32(&gsp->falcon, NV_PFALCON_FALCON_HWCFG2);
return !NVVAL_GET(data, NV_PFALCON, FALCON_HWCFG2, RISCV_BR_PRIV_LOCKDOWN);
}
int
gh100_gsp_init(struct nvkm_gsp *gsp)
{
struct nvkm_subdev *subdev = &gsp->subdev;
struct nvkm_device *device = subdev->device;
const bool resume = gsp->sr.meta.data != NULL;
struct nvkm_gsp_mem *meta;
GSP_FMC_BOOT_PARAMS *args;
int ret, time = 4000;
u32 rsvd_size;
u32 mbox0;
if (!resume) {
ret = nvkm_gsp_mem_ctor(gsp, sizeof(*args), &gsp->fmc.args);
if (ret)
return ret;
meta = &gsp->wpr_meta;
} else {
gsp->rm->api->gsp->set_rmargs(gsp, true);
meta = &gsp->sr.meta;
}
args = gsp->fmc.args.data;
args->bootGspRmParams.gspRmDescOffset = meta->addr;
args->bootGspRmParams.gspRmDescSize = meta->size;
args->bootGspRmParams.target = GSP_DMA_TARGET_COHERENT_SYSTEM;
args->bootGspRmParams.bIsGspRmBoot = 1;
args->gspRmParams.target = GSP_DMA_TARGET_NONCOHERENT_SYSTEM;
args->gspRmParams.bootArgsOffset = gsp->libos.addr;
rsvd_size = gsp->fb.heap.size;
if (gsp->rm->wpr->rsvd_size_pmu)
rsvd_size = ALIGN(rsvd_size + gsp->rm->wpr->rsvd_size_pmu, 0x200000);
ret = nvkm_fsp_boot_gsp_fmc(device->fsp, gsp->fmc.args.addr, rsvd_size, resume,
gsp->fmc.fw.addr, gsp->fmc.hash, gsp->fmc.pkey, gsp->fmc.sig);
if (ret)
return ret;
do {
if (gh100_gsp_lockdown_released(gsp, &mbox0))
break;
usleep_range(1000, 2000);
} while(time--);
if (time < 0) {
nvkm_error(subdev, "GSP-FMC boot timed out\n");
return -ETIMEDOUT;
}
if (mbox0) {
nvkm_error(subdev, "GSP-FMC boot failed (mbox: 0x%08x)\n", mbox0);
return -EIO;
}
return r535_gsp_init(gsp);
}
static int
gh100_gsp_wpr_meta_init(struct nvkm_gsp *gsp)
{
GspFwWprMeta *meta;
int ret;
ret = nvkm_gsp_mem_ctor(gsp, sizeof(*meta), &gsp->wpr_meta);
if (ret)
return ret;
gsp->fb.size = nvkm_fb_vidmem_size(gsp->subdev.device);
gsp->fb.bios.vga_workspace.size = 128 * 1024;
gsp->fb.heap.size = gsp->rm->wpr->heap_size_non_wpr;
meta = gsp->wpr_meta.data;
meta->magic = GSP_FW_WPR_META_MAGIC;
meta->revision = GSP_FW_WPR_META_REVISION;
meta->sizeOfRadix3Elf = gsp->fw.len;
meta->sysmemAddrOfRadix3Elf = gsp->radix3.lvl0.addr;
meta->sizeOfBootloader = gsp->boot.fw.size;
meta->sysmemAddrOfBootloader = gsp->boot.fw.addr;
meta->bootloaderCodeOffset = gsp->boot.code_offset;
meta->bootloaderDataOffset = gsp->boot.data_offset;
meta->bootloaderManifestOffset = gsp->boot.manifest_offset;
meta->sysmemAddrOfSignature = gsp->sig.addr;
meta->sizeOfSignature = gsp->sig.size;
meta->nonWprHeapSize = gsp->fb.heap.size;
meta->gspFwHeapSize = tu102_gsp_wpr_heap_size(gsp);
meta->frtsSize = 0x100000;
meta->vgaWorkspaceSize = gsp->fb.bios.vga_workspace.size;
meta->pmuReservedSize = gsp->rm->wpr->rsvd_size_pmu;
return 0;
}
/* The sh_flags value for the binary blobs in the ELF image */
#define FMC_SHF_FLAGS (SHF_MASKPROC | SHF_MASKOS | SHF_OS_NONCONFORMING | SHF_ALLOC)
#define ELF_HDR_SIZE ((u8)sizeof(struct elf32_hdr))
#define ELF_SHDR_SIZE ((u8)sizeof(struct elf32_shdr))
/* The FMC ELF header must be exactly this */
static const u8 elf_header[] = {
0x7f, 'E', 'L', 'F', 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, /* e_type, e_machine, e_version */
0, 0, 0, 0, 0, 0, 0, 0, /* e_entry, e_phoff */
ELF_HDR_SIZE, 0, 0, 0, 0, 0, 0, 0, /* e_shoff, e_flags */
ELF_HDR_SIZE, 0, 0, 0, /* e_ehsize, e_phentsize */
0, 0, ELF_SHDR_SIZE, 0, /* e_phnum, e_shentsize */
6, 0, 1, 0, /* e_shnum, e_shstrndx */
};
/**
* elf_validate_sections - validate each section in the FMC ELF image
* @elf: ELF image
* @length: size of the entire ELF image
*/
static bool
elf_validate_sections(const void *elf, size_t length)
{
const struct elf32_hdr *ehdr = elf;
const struct elf32_shdr *shdr = elf + ehdr->e_shoff;
/* The offset of the first section */
Elf32_Off section_begin = ehdr->e_shoff + ehdr->e_shnum * ehdr->e_shentsize;
if (section_begin > length)
return false;
/* The first section header is the null section, so skip it */
for (unsigned int i = 1; i < ehdr->e_shnum; i++) {
if (i == ehdr->e_shstrndx) {
if (shdr[i].sh_type != SHT_STRTAB)
return false;
if (shdr[i].sh_flags != SHF_STRINGS)
return false;
} else {
if (shdr[i].sh_type != SHT_PROGBITS)
return false;
if (shdr[i].sh_flags != FMC_SHF_FLAGS)
return false;
}
/* Ensure that each section is inside the image */
if (shdr[i].sh_offset < section_begin ||
(u64)shdr[i].sh_offset + shdr[i].sh_size > length)
return false;
/* Non-zero sh_info is a CRC */
if (shdr[i].sh_info) {
/* The kernel's CRC32 needs a pre- and post-xor to match standard CRCs */
u32 crc32 = crc32_le(~0, elf + shdr[i].sh_offset, shdr[i].sh_size) ^ ~0;
if (shdr[i].sh_info != crc32)
return false;
}
}
return true;
}
/**
* elf_section - return a pointer to the data for a given section
* @elf: ELF image
* @name: section name to search for
* @len: pointer to returned length of found section
*/
static const void *
elf_section(const void *elf, const char *name, unsigned int *len)
{
const struct elf32_hdr *ehdr = elf;
const struct elf32_shdr *shdr = elf + ehdr->e_shoff;
const char *names = elf + shdr[ehdr->e_shstrndx].sh_offset;
for (unsigned int i = 1; i < ehdr->e_shnum; i++) {
if (!strcmp(&names[shdr[i].sh_name], name)) {
*len = shdr[i].sh_size;
return elf + shdr[i].sh_offset;
}
}
return NULL;
}
int
gh100_gsp_oneinit(struct nvkm_gsp *gsp)
{
struct nvkm_subdev *subdev = &gsp->subdev;
struct nvkm_device *device = subdev->device;
struct nvkm_fsp *fsp = device->fsp;
const void *fw = gsp->fws.fmc->data;
const void *hash, *sig, *pkey, *img;
unsigned int img_len = 0, hash_len = 0, pkey_len = 0, sig_len = 0;
int ret;
if (gsp->fws.fmc->size < ELF_HDR_SIZE ||
memcmp(fw, elf_header, sizeof(elf_header)) ||
!elf_validate_sections(fw, gsp->fws.fmc->size)) {
nvkm_error(subdev, "fmc firmware image is invalid\n");
return -ENODATA;
}
hash = elf_section(fw, "hash", &hash_len);
sig = elf_section(fw, "signature", &sig_len);
pkey = elf_section(fw, "publickey", &pkey_len);
img = elf_section(fw, "image", &img_len);
if (!hash || !sig || !pkey || !img) {
nvkm_error(subdev, "fmc firmware image is invalid\n");
return -ENODATA;
}
if (!nvkm_fsp_verify_gsp_fmc(fsp, hash_len, pkey_len, sig_len))
return -EINVAL;
/* Load GSP-FMC FW into memory. */
ret = nvkm_gsp_mem_ctor(gsp, img_len, &gsp->fmc.fw);
if (ret)
return ret;
memcpy(gsp->fmc.fw.data, img, img_len);
gsp->fmc.hash = kmemdup(hash, hash_len, GFP_KERNEL);
gsp->fmc.pkey = kmemdup(pkey, pkey_len, GFP_KERNEL);
gsp->fmc.sig = kmemdup(sig, sig_len, GFP_KERNEL);
if (!gsp->fmc.hash || !gsp->fmc.pkey || !gsp->fmc.sig)
return -ENOMEM;
ret = r535_gsp_oneinit(gsp);
if (ret)
return ret;
return gh100_gsp_wpr_meta_init(gsp);
}
static const struct nvkm_gsp_func
gh100_gsp = {
.flcn = &ga102_gsp_flcn,
.sig_section = ".fwsignature_gh100",
.dtor = r535_gsp_dtor,
.oneinit = gh100_gsp_oneinit,
.init = gh100_gsp_init,
.fini = gh100_gsp_fini,
.rm.gpu = &gh100_gpu,
};
int
gh100_gsp_load(struct nvkm_gsp *gsp, int ver, const struct nvkm_gsp_fwif *fwif)
{
int ret;
ret = tu102_gsp_load_rm(gsp, fwif);
if (ret)
goto done;
ret = nvkm_gsp_load_fw(gsp, "fmc", fwif->ver, &gsp->fws.fmc);
done:
if (ret)
nvkm_gsp_dtor_fws(gsp);
return ret;
}
static struct nvkm_gsp_fwif
gh100_gsps[] = {
{ 0, gh100_gsp_load, &gh100_gsp, &r570_rm_gh100, "570.144", true },
{}
};
int
gh100_gsp_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
struct nvkm_gsp **pgsp)
{
return nvkm_gsp_new_(gh100_gsps, device, type, inst, pgsp);
}
NVKM_GSP_FIRMWARE_FMC(gh100, 570.144);
|