/* SPDX-License-Identifier: MIT * * Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. */ #include "priv.h" #include #include #include #include #include #include #include #include int gh100_gsp_fini(struct nvkm_gsp *gsp, bool suspend) { struct nvkm_falcon *falcon = &gsp->falcon; int ret, time = 4000; /* Shutdown RM. */ ret = r535_gsp_fini(gsp, suspend); if (ret && suspend) return ret; /* Wait for RISC-V to halt. */ do { u32 data = nvkm_falcon_rd32(falcon, falcon->addr2 + NV_PRISCV_RISCV_CPUCTL); if (NVVAL_GET(data, NV_PRISCV, RISCV_CPUCTL, HALTED)) return 0; usleep_range(1000, 2000); } while(time--); return -ETIMEDOUT; } static bool gh100_gsp_lockdown_released(struct nvkm_gsp *gsp, u32 *mbox0) { u32 data; /* Wait for GSP access via BAR0 to be allowed. */ *mbox0 = nvkm_falcon_rd32(&gsp->falcon, NV_PFALCON_FALCON_MAILBOX0); if (*mbox0 && (*mbox0 & 0xffffff00) == 0xbadf4100) return false; /* Check if an error code has been reported. */ if (*mbox0) { u32 mbox1 = nvkm_falcon_rd32(&gsp->falcon, NV_PFALCON_FALCON_MAILBOX1); /* Any value that's not GSP_FMC_BOOT_PARAMS addr is an error. */ if ((((u64)mbox1 << 32) | *mbox0) != gsp->fmc.args.addr) return true; } /* Check if lockdown has been released. */ data = nvkm_falcon_rd32(&gsp->falcon, NV_PFALCON_FALCON_HWCFG2); return !NVVAL_GET(data, NV_PFALCON, FALCON_HWCFG2, RISCV_BR_PRIV_LOCKDOWN); } int gh100_gsp_init(struct nvkm_gsp *gsp) { struct nvkm_subdev *subdev = &gsp->subdev; struct nvkm_device *device = subdev->device; const bool resume = gsp->sr.meta.data != NULL; struct nvkm_gsp_mem *meta; GSP_FMC_BOOT_PARAMS *args; int ret, time = 4000; u32 rsvd_size; u32 mbox0; if (!resume) { ret = nvkm_gsp_mem_ctor(gsp, sizeof(*args), &gsp->fmc.args); if (ret) return ret; meta = &gsp->wpr_meta; } else { gsp->rm->api->gsp->set_rmargs(gsp, true); meta = &gsp->sr.meta; } args = gsp->fmc.args.data; args->bootGspRmParams.gspRmDescOffset = meta->addr; args->bootGspRmParams.gspRmDescSize = meta->size; args->bootGspRmParams.target = GSP_DMA_TARGET_COHERENT_SYSTEM; args->bootGspRmParams.bIsGspRmBoot = 1; args->gspRmParams.target = GSP_DMA_TARGET_NONCOHERENT_SYSTEM; args->gspRmParams.bootArgsOffset = gsp->libos.addr; rsvd_size = gsp->fb.heap.size; if (gsp->rm->wpr->rsvd_size_pmu) rsvd_size = ALIGN(rsvd_size + gsp->rm->wpr->rsvd_size_pmu, 0x200000); ret = nvkm_fsp_boot_gsp_fmc(device->fsp, gsp->fmc.args.addr, rsvd_size, resume, gsp->fmc.fw.addr, gsp->fmc.hash, gsp->fmc.pkey, gsp->fmc.sig); if (ret) return ret; do { if (gh100_gsp_lockdown_released(gsp, &mbox0)) break; usleep_range(1000, 2000); } while(time--); if (time < 0) { nvkm_error(subdev, "GSP-FMC boot timed out\n"); return -ETIMEDOUT; } if (mbox0) { nvkm_error(subdev, "GSP-FMC boot failed (mbox: 0x%08x)\n", mbox0); return -EIO; } return r535_gsp_init(gsp); } static int gh100_gsp_wpr_meta_init(struct nvkm_gsp *gsp) { GspFwWprMeta *meta; int ret; ret = nvkm_gsp_mem_ctor(gsp, sizeof(*meta), &gsp->wpr_meta); if (ret) return ret; gsp->fb.size = nvkm_fb_vidmem_size(gsp->subdev.device); gsp->fb.bios.vga_workspace.size = 128 * 1024; gsp->fb.heap.size = gsp->rm->wpr->heap_size_non_wpr; meta = gsp->wpr_meta.data; meta->magic = GSP_FW_WPR_META_MAGIC; meta->revision = GSP_FW_WPR_META_REVISION; meta->sizeOfRadix3Elf = gsp->fw.len; meta->sysmemAddrOfRadix3Elf = gsp->radix3.lvl0.addr; meta->sizeOfBootloader = gsp->boot.fw.size; meta->sysmemAddrOfBootloader = gsp->boot.fw.addr; meta->bootloaderCodeOffset = gsp->boot.code_offset; meta->bootloaderDataOffset = gsp->boot.data_offset; meta->bootloaderManifestOffset = gsp->boot.manifest_offset; meta->sysmemAddrOfSignature = gsp->sig.addr; meta->sizeOfSignature = gsp->sig.size; meta->nonWprHeapSize = gsp->fb.heap.size; meta->gspFwHeapSize = tu102_gsp_wpr_heap_size(gsp); meta->frtsSize = 0x100000; meta->vgaWorkspaceSize = gsp->fb.bios.vga_workspace.size; meta->pmuReservedSize = gsp->rm->wpr->rsvd_size_pmu; return 0; } /* The sh_flags value for the binary blobs in the ELF image */ #define FMC_SHF_FLAGS (SHF_MASKPROC | SHF_MASKOS | SHF_OS_NONCONFORMING | SHF_ALLOC) #define ELF_HDR_SIZE ((u8)sizeof(struct elf32_hdr)) #define ELF_SHDR_SIZE ((u8)sizeof(struct elf32_shdr)) /* The FMC ELF header must be exactly this */ static const u8 elf_header[] = { 0x7f, 'E', 'L', 'F', 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, /* e_type, e_machine, e_version */ 0, 0, 0, 0, 0, 0, 0, 0, /* e_entry, e_phoff */ ELF_HDR_SIZE, 0, 0, 0, 0, 0, 0, 0, /* e_shoff, e_flags */ ELF_HDR_SIZE, 0, 0, 0, /* e_ehsize, e_phentsize */ 0, 0, ELF_SHDR_SIZE, 0, /* e_phnum, e_shentsize */ 6, 0, 1, 0, /* e_shnum, e_shstrndx */ }; /** * elf_validate_sections - validate each section in the FMC ELF image * @elf: ELF image * @length: size of the entire ELF image */ static bool elf_validate_sections(const void *elf, size_t length) { const struct elf32_hdr *ehdr = elf; const struct elf32_shdr *shdr = elf + ehdr->e_shoff; /* The offset of the first section */ Elf32_Off section_begin = ehdr->e_shoff + ehdr->e_shnum * ehdr->e_shentsize; if (section_begin > length) return false; /* The first section header is the null section, so skip it */ for (unsigned int i = 1; i < ehdr->e_shnum; i++) { if (i == ehdr->e_shstrndx) { if (shdr[i].sh_type != SHT_STRTAB) return false; if (shdr[i].sh_flags != SHF_STRINGS) return false; } else { if (shdr[i].sh_type != SHT_PROGBITS) return false; if (shdr[i].sh_flags != FMC_SHF_FLAGS) return false; } /* Ensure that each section is inside the image */ if (shdr[i].sh_offset < section_begin || (u64)shdr[i].sh_offset + shdr[i].sh_size > length) return false; /* Non-zero sh_info is a CRC */ if (shdr[i].sh_info) { /* The kernel's CRC32 needs a pre- and post-xor to match standard CRCs */ u32 crc32 = crc32_le(~0, elf + shdr[i].sh_offset, shdr[i].sh_size) ^ ~0; if (shdr[i].sh_info != crc32) return false; } } return true; } /** * elf_section - return a pointer to the data for a given section * @elf: ELF image * @name: section name to search for * @len: pointer to returned length of found section */ static const void * elf_section(const void *elf, const char *name, unsigned int *len) { const struct elf32_hdr *ehdr = elf; const struct elf32_shdr *shdr = elf + ehdr->e_shoff; const char *names = elf + shdr[ehdr->e_shstrndx].sh_offset; for (unsigned int i = 1; i < ehdr->e_shnum; i++) { if (!strcmp(&names[shdr[i].sh_name], name)) { *len = shdr[i].sh_size; return elf + shdr[i].sh_offset; } } return NULL; } int gh100_gsp_oneinit(struct nvkm_gsp *gsp) { struct nvkm_subdev *subdev = &gsp->subdev; struct nvkm_device *device = subdev->device; struct nvkm_fsp *fsp = device->fsp; const void *fw = gsp->fws.fmc->data; const void *hash, *sig, *pkey, *img; unsigned int img_len = 0, hash_len = 0, pkey_len = 0, sig_len = 0; int ret; if (gsp->fws.fmc->size < ELF_HDR_SIZE || memcmp(fw, elf_header, sizeof(elf_header)) || !elf_validate_sections(fw, gsp->fws.fmc->size)) { nvkm_error(subdev, "fmc firmware image is invalid\n"); return -ENODATA; } hash = elf_section(fw, "hash", &hash_len); sig = elf_section(fw, "signature", &sig_len); pkey = elf_section(fw, "publickey", &pkey_len); img = elf_section(fw, "image", &img_len); if (!hash || !sig || !pkey || !img) { nvkm_error(subdev, "fmc firmware image is invalid\n"); return -ENODATA; } if (!nvkm_fsp_verify_gsp_fmc(fsp, hash_len, pkey_len, sig_len)) return -EINVAL; /* Load GSP-FMC FW into memory. */ ret = nvkm_gsp_mem_ctor(gsp, img_len, &gsp->fmc.fw); if (ret) return ret; memcpy(gsp->fmc.fw.data, img, img_len); gsp->fmc.hash = kmemdup(hash, hash_len, GFP_KERNEL); gsp->fmc.pkey = kmemdup(pkey, pkey_len, GFP_KERNEL); gsp->fmc.sig = kmemdup(sig, sig_len, GFP_KERNEL); if (!gsp->fmc.hash || !gsp->fmc.pkey || !gsp->fmc.sig) return -ENOMEM; ret = r535_gsp_oneinit(gsp); if (ret) return ret; return gh100_gsp_wpr_meta_init(gsp); } static const struct nvkm_gsp_func gh100_gsp = { .flcn = &ga102_gsp_flcn, .sig_section = ".fwsignature_gh100", .dtor = r535_gsp_dtor, .oneinit = gh100_gsp_oneinit, .init = gh100_gsp_init, .fini = gh100_gsp_fini, .rm.gpu = &gh100_gpu, }; int gh100_gsp_load(struct nvkm_gsp *gsp, int ver, const struct nvkm_gsp_fwif *fwif) { int ret; ret = tu102_gsp_load_rm(gsp, fwif); if (ret) goto done; ret = nvkm_gsp_load_fw(gsp, "fmc", fwif->ver, &gsp->fws.fmc); done: if (ret) nvkm_gsp_dtor_fws(gsp); return ret; } static struct nvkm_gsp_fwif gh100_gsps[] = { { 0, gh100_gsp_load, &gh100_gsp, &r570_rm_gh100, "570.144", true }, {} }; int gh100_gsp_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst, struct nvkm_gsp **pgsp) { return nvkm_gsp_new_(gh100_gsps, device, type, inst, pgsp); } NVKM_GSP_FIRMWARE_FMC(gh100, 570.144);