diff options
Diffstat (limited to 'drivers/gpu/nova-core/regs/macros.rs')
-rw-r--r-- | drivers/gpu/nova-core/regs/macros.rs | 762 |
1 files changed, 671 insertions, 91 deletions
diff --git a/drivers/gpu/nova-core/regs/macros.rs b/drivers/gpu/nova-core/regs/macros.rs index 7ecc70efb3cd..8058e1696df9 100644 --- a/drivers/gpu/nova-core/regs/macros.rs +++ b/drivers/gpu/nova-core/regs/macros.rs @@ -1,17 +1,27 @@ // SPDX-License-Identifier: GPL-2.0 -//! Macro to define register layout and accessors. +//! `register!` macro to define register layout and accessors. //! //! A single register typically includes several fields, which are accessed through a combination //! of bit-shift and mask operations that introduce a class of potential mistakes, notably because //! not all possible field values are necessarily valid. //! -//! The macro in this module allow to define, using an intruitive and readable syntax, a dedicated -//! type for each register with its own field accessors that can return an error is a field's value -//! is invalid. +//! The `register!` macro in this module provides an intuitive and readable syntax for defining a +//! dedicated type for each register. Each such type comes with its own field accessors that can +//! return an error if a field's value is invalid. -/// Defines a dedicated type for a register with an absolute offset, alongside with getter and -/// setter methods for its fields and methods to read and write it from an `Io` region. +/// Trait providing a base address to be added to the offset of a relative register to obtain +/// its actual offset. +/// +/// The `T` generic argument is used to distinguish which base to use, in case a type provides +/// several bases. It is given to the `register!` macro to restrict the use of the register to +/// implementors of this particular variant. +pub(crate) trait RegisterBase<T> { + const BASE: usize; +} + +/// Defines a dedicated type for a register with an absolute offset, including getter and setter +/// methods for its fields and methods to read and write it from an `Io` region. /// /// Example: /// @@ -24,7 +34,7 @@ /// ``` /// /// This defines a `BOOT_0` type which can be read or written from offset `0x100` of an `Io` -/// region. It is composed of 3 fields, for instance `minor_revision` is made of the 4 less +/// region. It is composed of 3 fields, for instance `minor_revision` is made of the 4 least /// significant bits of the register. Each field can be accessed and modified using accessor /// methods: /// @@ -33,88 +43,345 @@ /// let boot0 = BOOT_0::read(&bar); /// pr_info!("chip revision: {}.{}", boot0.major_revision(), boot0.minor_revision()); /// -/// // `Chipset::try_from` will be called with the value of the field and returns an error if the -/// // value is invalid. +/// // `Chipset::try_from` is called with the value of the `chipset` field and returns an +/// // error if it is invalid. /// let chipset = boot0.chipset()?; /// /// // Update some fields and write the value back. /// boot0.set_major_revision(3).set_minor_revision(10).write(&bar); /// -/// // Or just read and update the register in a single step: +/// // Or, just read and update the register in a single step: /// BOOT_0::alter(&bar, |r| r.set_major_revision(3).set_minor_revision(10)); /// ``` /// -/// Fields can be defined as follows: +/// Fields are defined as follows: /// -/// - `as <type>` simply returns the field value casted as the requested integer type, typically -/// `u32`, `u16`, `u8` or `bool`. Note that `bool` fields must have a range of 1 bit. +/// - `as <type>` simply returns the field value casted to <type>, typically `u32`, `u16`, `u8` or +/// `bool`. Note that `bool` fields must have a range of 1 bit. /// - `as <type> => <into_type>` calls `<into_type>`'s `From::<<type>>` implementation and returns /// the result. /// - `as <type> ?=> <try_into_type>` calls `<try_into_type>`'s `TryFrom::<<type>>` implementation -/// and returns the result. This is useful on fields for which not all values are value. +/// and returns the result. This is useful with fields for which not all values are valid. /// /// The documentation strings are optional. If present, they will be added to the type's /// definition, or the field getter and setter methods they are attached to. /// -/// Putting a `+` before the address of the register makes it relative to a base: the `read` and -/// `write` methods take a `base` argument that is added to the specified address before access, -/// and `try_read` and `try_write` methods are also created, allowing access with offsets unknown -/// at compile-time: +/// It is also possible to create a alias register by using the `=> ALIAS` syntax. This is useful +/// for cases where a register's interpretation depends on the context: +/// +/// ```no_run +/// register!(SCRATCH @ 0x00000200, "Scratch register" { +/// 31:0 value as u32, "Raw value"; +/// }); +/// +/// register!(SCRATCH_BOOT_STATUS => SCRATCH, "Boot status of the firmware" { +/// 0:0 completed as bool, "Whether the firmware has completed booting"; +/// }); +/// ``` +/// +/// In this example, `SCRATCH_0_BOOT_STATUS` uses the same I/O address as `SCRATCH`, while also +/// providing its own `completed` field. +/// +/// ## Relative registers +/// +/// A register can be defined as being accessible from a fixed offset of a provided base. For +/// instance, imagine the following I/O space: +/// +/// ```text +/// +-----------------------------+ +/// | ... | +/// | | +/// 0x100--->+------------CPU0-------------+ +/// | | +/// 0x110--->+-----------------------------+ +/// | CPU_CTL | +/// +-----------------------------+ +/// | ... | +/// | | +/// | | +/// 0x200--->+------------CPU1-------------+ +/// | | +/// 0x210--->+-----------------------------+ +/// | CPU_CTL | +/// +-----------------------------+ +/// | ... | +/// +-----------------------------+ +/// ``` +/// +/// `CPU0` and `CPU1` both have a `CPU_CTL` register that starts at offset `0x10` of their I/O +/// space segment. Since both instances of `CPU_CTL` share the same layout, we don't want to define +/// them twice and would prefer a way to select which one to use from a single definition +/// +/// This can be done using the `Base[Offset]` syntax when specifying the register's address. +/// +/// `Base` is an arbitrary type (typically a ZST) to be used as a generic parameter of the +/// [`RegisterBase`] trait to provide the base as a constant, i.e. each type providing a base for +/// this register needs to implement `RegisterBase<Base>`. Here is the above example translated +/// into code: +/// +/// ```no_run +/// // Type used to identify the base. +/// pub(crate) struct CpuCtlBase; +/// +/// // ZST describing `CPU0`. +/// struct Cpu0; +/// impl RegisterBase<CpuCtlBase> for Cpu0 { +/// const BASE: usize = 0x100; +/// } +/// // Singleton of `CPU0` used to identify it. +/// const CPU0: Cpu0 = Cpu0; +/// +/// // ZST describing `CPU1`. +/// struct Cpu1; +/// impl RegisterBase<CpuCtlBase> for Cpu1 { +/// const BASE: usize = 0x200; +/// } +/// // Singleton of `CPU1` used to identify it. +/// const CPU1: Cpu1 = Cpu1; +/// +/// // This makes `CPU_CTL` accessible from all implementors of `RegisterBase<CpuCtlBase>`. +/// register!(CPU_CTL @ CpuCtlBase[0x10], "CPU core control" { +/// 0:0 start as bool, "Start the CPU core"; +/// }); +/// +/// // The `read`, `write` and `alter` methods of relative registers take an extra `base` argument +/// // that is used to resolve its final address by adding its `BASE` to the offset of the +/// // register. +/// +/// // Start `CPU0`. +/// CPU_CTL::alter(bar, &CPU0, |r| r.set_start(true)); +/// +/// // Start `CPU1`. +/// CPU_CTL::alter(bar, &CPU1, |r| r.set_start(true)); +/// +/// // Aliases can also be defined for relative register. +/// register!(CPU_CTL_ALIAS => CpuCtlBase[CPU_CTL], "Alias to CPU core control" { +/// 1:1 alias_start as bool, "Start the aliased CPU core"; +/// }); +/// +/// // Start the aliased `CPU0`. +/// CPU_CTL_ALIAS::alter(bar, &CPU0, |r| r.set_alias_start(true)); +/// ``` +/// +/// ## Arrays of registers +/// +/// Some I/O areas contain consecutive values that can be interpreted in the same way. These areas +/// can be defined as an array of identical registers, allowing them to be accessed by index with +/// compile-time or runtime bound checking. Simply define their address as `Address[Size]`, and add +/// an `idx` parameter to their `read`, `write` and `alter` methods: /// /// ```no_run -/// register!(CPU_CTL @ +0x0000010, "CPU core control" { -/// 0:0 start as bool, "Start the CPU core"; +/// # fn no_run() -> Result<(), Error> { +/// # fn get_scratch_idx() -> usize { +/// # 0x15 +/// # } +/// // Array of 64 consecutive registers with the same layout starting at offset `0x80`. +/// register!(SCRATCH @ 0x00000080[64], "Scratch registers" { +/// 31:0 value as u32; /// }); /// -/// // Flip the `start` switch for the CPU core which base address is at `CPU_BASE`. -/// let cpuctl = CPU_CTL::read(&bar, CPU_BASE); -/// pr_info!("CPU CTL: {:#x}", cpuctl); -/// cpuctl.set_start(true).write(&bar, CPU_BASE); +/// // Read scratch register 0, i.e. I/O address `0x80`. +/// let scratch_0 = SCRATCH::read(bar, 0).value(); +/// // Read scratch register 15, i.e. I/O address `0x80 + (15 * 4)`. +/// let scratch_15 = SCRATCH::read(bar, 15).value(); +/// +/// // This is out of bounds and won't build. +/// // let scratch_128 = SCRATCH::read(bar, 128).value(); +/// +/// // Runtime-obtained array index. +/// let scratch_idx = get_scratch_idx(); +/// // Access on a runtime index returns an error if it is out-of-bounds. +/// let some_scratch = SCRATCH::try_read(bar, scratch_idx)?.value(); +/// +/// // Alias to a particular register in an array. +/// // Here `SCRATCH[8]` is used to convey the firmware exit code. +/// register!(FIRMWARE_STATUS => SCRATCH[8], "Firmware exit status code" { +/// 7:0 status as u8; +/// }); +/// +/// let status = FIRMWARE_STATUS::read(bar).status(); +/// +/// // Non-contiguous register arrays can be defined by adding a stride parameter. +/// // Here, each of the 16 registers of the array are separated by 8 bytes, meaning that the +/// // registers of the two declarations below are interleaved. +/// register!(SCRATCH_INTERLEAVED_0 @ 0x000000c0[16 ; 8], "Scratch registers bank 0" { +/// 31:0 value as u32; +/// }); +/// register!(SCRATCH_INTERLEAVED_1 @ 0x000000c4[16 ; 8], "Scratch registers bank 1" { +/// 31:0 value as u32; +/// }); +/// # Ok(()) +/// # } +/// ``` +/// +/// ## Relative arrays of registers +/// +/// Combining the two features described in the sections above, arrays of registers accessible from +/// a base can also be defined: +/// +/// ```no_run +/// # fn no_run() -> Result<(), Error> { +/// # fn get_scratch_idx() -> usize { +/// # 0x15 +/// # } +/// // Type used as parameter of `RegisterBase` to specify the base. +/// pub(crate) struct CpuCtlBase; +/// +/// // ZST describing `CPU0`. +/// struct Cpu0; +/// impl RegisterBase<CpuCtlBase> for Cpu0 { +/// const BASE: usize = 0x100; +/// } +/// // Singleton of `CPU0` used to identify it. +/// const CPU0: Cpu0 = Cpu0; +/// +/// // ZST describing `CPU1`. +/// struct Cpu1; +/// impl RegisterBase<CpuCtlBase> for Cpu1 { +/// const BASE: usize = 0x200; +/// } +/// // Singleton of `CPU1` used to identify it. +/// const CPU1: Cpu1 = Cpu1; +/// +/// // 64 per-cpu scratch registers, arranged as an contiguous array. +/// register!(CPU_SCRATCH @ CpuCtlBase[0x00000080[64]], "Per-CPU scratch registers" { +/// 31:0 value as u32; +/// }); +/// +/// let cpu0_scratch_0 = CPU_SCRATCH::read(bar, &Cpu0, 0).value(); +/// let cpu1_scratch_15 = CPU_SCRATCH::read(bar, &Cpu1, 15).value(); +/// +/// // This won't build. +/// // let cpu0_scratch_128 = CPU_SCRATCH::read(bar, &Cpu0, 128).value(); +/// +/// // Runtime-obtained array index. +/// let scratch_idx = get_scratch_idx(); +/// // Access on a runtime value returns an error if it is out-of-bounds. +/// let cpu0_some_scratch = CPU_SCRATCH::try_read(bar, &Cpu0, scratch_idx)?.value(); +/// +/// // `SCRATCH[8]` is used to convey the firmware exit code. +/// register!(CPU_FIRMWARE_STATUS => CpuCtlBase[CPU_SCRATCH[8]], +/// "Per-CPU firmware exit status code" { +/// 7:0 status as u8; +/// }); +/// +/// let cpu0_status = CPU_FIRMWARE_STATUS::read(bar, &Cpu0).status(); +/// +/// // Non-contiguous register arrays can be defined by adding a stride parameter. +/// // Here, each of the 16 registers of the array are separated by 8 bytes, meaning that the +/// // registers of the two declarations below are interleaved. +/// register!(CPU_SCRATCH_INTERLEAVED_0 @ CpuCtlBase[0x00000d00[16 ; 8]], +/// "Scratch registers bank 0" { +/// 31:0 value as u32; +/// }); +/// register!(CPU_SCRATCH_INTERLEAVED_1 @ CpuCtlBase[0x00000d04[16 ; 8]], +/// "Scratch registers bank 1" { +/// 31:0 value as u32; +/// }); +/// # Ok(()) +/// # } /// ``` macro_rules! register { // Creates a register at a fixed offset of the MMIO space. + ($name:ident @ $offset:literal $(, $comment:literal)? { $($fields:tt)* } ) => { + register!(@core $name $(, $comment)? { $($fields)* } ); + register!(@io_fixed $name @ $offset); + }; + + // Creates an alias register of fixed offset register `alias` with its own fields. + ($name:ident => $alias:ident $(, $comment:literal)? { $($fields:tt)* } ) => { + register!(@core $name $(, $comment)? { $($fields)* } ); + register!(@io_fixed $name @ $alias::OFFSET); + }; + + // Creates a register at a relative offset from a base address provider. + ($name:ident @ $base:ty [ $offset:literal ] $(, $comment:literal)? { $($fields:tt)* } ) => { + register!(@core $name $(, $comment)? { $($fields)* } ); + register!(@io_relative $name @ $base [ $offset ]); + }; + + // Creates an alias register of relative offset register `alias` with its own fields. + ($name:ident => $base:ty [ $alias:ident ] $(, $comment:literal)? { $($fields:tt)* }) => { + register!(@core $name $(, $comment)? { $($fields)* } ); + register!(@io_relative $name @ $base [ $alias::OFFSET ]); + }; + + // Creates an array of registers at a fixed offset of the MMIO space. ( - $name:ident @ $offset:literal $(, $comment:literal)? { + $name:ident @ $offset:literal [ $size:expr ; $stride:expr ] $(, $comment:literal)? { $($fields:tt)* } ) => { - register!(@common $name $(, $comment)?); - register!(@field_accessors $name { $($fields)* }); - register!(@io $name @ $offset); + static_assert!(::core::mem::size_of::<u32>() <= $stride); + register!(@core $name $(, $comment)? { $($fields)* } ); + register!(@io_array $name @ $offset [ $size ; $stride ]); }; - // Creates a register at a relative offset from a base address. + // Shortcut for contiguous array of registers (stride == size of element). ( - $name:ident @ + $offset:literal $(, $comment:literal)? { + $name:ident @ $offset:literal [ $size:expr ] $(, $comment:literal)? { $($fields:tt)* } ) => { - register!(@common $name $(, $comment)?); - register!(@field_accessors $name { $($fields)* }); - register!(@io$name @ + $offset); + register!($name @ $offset [ $size ; ::core::mem::size_of::<u32>() ] $(, $comment)? { + $($fields)* + } ); }; - // Defines the wrapper `$name` type, as well as its relevant implementations (`Debug`, `BitOr`, - // and conversion to regular `u32`). - (@common $name:ident $(, $comment:literal)?) => { + // Creates an array of registers at a relative offset from a base address provider. + ( + $name:ident @ $base:ty [ $offset:literal [ $size:expr ; $stride:expr ] ] + $(, $comment:literal)? { $($fields:tt)* } + ) => { + static_assert!(::core::mem::size_of::<u32>() <= $stride); + register!(@core $name $(, $comment)? { $($fields)* } ); + register!(@io_relative_array $name @ $base [ $offset [ $size ; $stride ] ]); + }; + + // Shortcut for contiguous array of relative registers (stride == size of element). + ( + $name:ident @ $base:ty [ $offset:literal [ $size:expr ] ] $(, $comment:literal)? { + $($fields:tt)* + } + ) => { + register!($name @ $base [ $offset [ $size ; ::core::mem::size_of::<u32>() ] ] + $(, $comment)? { $($fields)* } ); + }; + + // Creates an alias of register `idx` of relative array of registers `alias` with its own + // fields. + ( + $name:ident => $base:ty [ $alias:ident [ $idx:expr ] ] $(, $comment:literal)? { + $($fields:tt)* + } + ) => { + static_assert!($idx < $alias::SIZE); + register!(@core $name $(, $comment)? { $($fields)* } ); + register!(@io_relative $name @ $base [ $alias::OFFSET + $idx * $alias::STRIDE ] ); + }; + + // Creates an alias of register `idx` of array of registers `alias` with its own fields. + // This rule belongs to the (non-relative) register arrays set, but needs to be put last + // to avoid it being interpreted in place of the relative register array alias rule. + ($name:ident => $alias:ident [ $idx:expr ] $(, $comment:literal)? { $($fields:tt)* }) => { + static_assert!($idx < $alias::SIZE); + register!(@core $name $(, $comment)? { $($fields)* } ); + register!(@io_fixed $name @ $alias::OFFSET + $idx * $alias::STRIDE ); + }; + + // All rules below are helpers. + + // Defines the wrapper `$name` type, as well as its relevant implementations (`Debug`, + // `Default`, `BitOr`, and conversion to the value type) and field accessor methods. + (@core $name:ident $(, $comment:literal)? { $($fields:tt)* }) => { $( #[doc=$comment] )? #[repr(transparent)] - #[derive(Clone, Copy, Default)] + #[derive(Clone, Copy)] pub(crate) struct $name(u32); - // TODO: display the raw hex value, then the value of all the fields. This requires - // matching the fields, which will complexify the syntax considerably... - impl ::core::fmt::Debug for $name { - fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result { - f.debug_tuple(stringify!($name)) - .field(&format_args!("0x{0:x}", &self.0)) - .finish() - } - } - - impl core::ops::BitOr for $name { + impl ::core::ops::BitOr for $name { type Output = Self; fn bitor(self, rhs: Self) -> Self::Output { @@ -127,6 +394,34 @@ macro_rules! register { reg.0 } } + + register!(@fields_dispatcher $name { $($fields)* }); + }; + + // Captures the fields and passes them to all the implementers that require field information. + // + // Used to simplify the matching rules for implementers, so they don't need to match the entire + // complex fields rule even though they only make use of part of it. + (@fields_dispatcher $name:ident { + $($hi:tt:$lo:tt $field:ident as $type:tt + $(?=> $try_into_type:ty)? + $(=> $into_type:ty)? + $(, $comment:literal)? + ; + )* + } + ) => { + register!(@field_accessors $name { + $( + $hi:$lo $field as $type + $(?=> $try_into_type)? + $(=> $into_type)? + $(, $comment)? + ; + )* + }); + register!(@debug $name { $($field;)* }); + register!(@default $name { $($field;)* }); }; // Defines all the field getter/methods methods for `$name`. @@ -161,7 +456,7 @@ macro_rules! register { (@check_field_bounds $hi:tt:$lo:tt $field:ident as bool) => { #[allow(clippy::eq_op)] const _: () = { - kernel::build_assert!( + ::kernel::build_assert!( $hi == $lo, concat!("boolean field `", stringify!($field), "` covers more than one bit") ); @@ -172,7 +467,7 @@ macro_rules! register { (@check_field_bounds $hi:tt:$lo:tt $field:ident as $type:tt) => { #[allow(clippy::eq_op)] const _: () = { - kernel::build_assert!( + ::kernel::build_assert!( $hi >= $lo, concat!("field `", stringify!($field), "`'s MSB is smaller than its LSB") ); @@ -185,7 +480,7 @@ macro_rules! register { $(, $comment:literal)?; ) => { register!( - @leaf_accessor $name $hi:$lo $field as bool + @leaf_accessor $name $hi:$lo $field { |f| <$into_type>::from(if f != 0 { true } else { false }) } $into_type => $into_type $(, $comment)?; ); @@ -203,7 +498,7 @@ macro_rules! register { @field_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:tt ?=> $try_into_type:ty $(, $comment:literal)?; ) => { - register!(@leaf_accessor $name $hi:$lo $field as $type + register!(@leaf_accessor $name $hi:$lo $field { |f| <$try_into_type>::try_from(f as $type) } $try_into_type => ::core::result::Result< $try_into_type, @@ -217,11 +512,11 @@ macro_rules! register { @field_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:tt => $into_type:ty $(, $comment:literal)?; ) => { - register!(@leaf_accessor $name $hi:$lo $field as $type + register!(@leaf_accessor $name $hi:$lo $field { |f| <$into_type>::from(f as $type) } $into_type => $into_type $(, $comment)?;); }; - // Shortcut for fields defined as non-`bool` without the `=>` or `?=>` syntax. + // Shortcut for non-boolean fields defined without the `=>` or `?=>` syntax. ( @field_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:tt $(, $comment:literal)?; @@ -231,11 +526,11 @@ macro_rules! register { // Generates the accessor methods for a single field. ( - @leaf_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:ty + @leaf_accessor $name:ident $hi:tt:$lo:tt $field:ident { $process:expr } $to_type:ty => $res_type:ty $(, $comment:literal)?; ) => { - kernel::macros::paste!( - const [<$field:upper>]: ::core::ops::RangeInclusive<u8> = $lo..=$hi; + ::kernel::macros::paste!( + const [<$field:upper _RANGE>]: ::core::ops::RangeInclusive<u8> = $lo..=$hi; const [<$field:upper _MASK>]: u32 = ((((1 << $hi) - 1) << 1) + 1) - ((1 << $lo) - 1); const [<$field:upper _SHIFT>]: u32 = Self::[<$field:upper _MASK>].trailing_zeros(); ); @@ -244,9 +539,9 @@ macro_rules! register { #[doc="Returns the value of this field:"] #[doc=$comment] )? - #[inline] + #[inline(always)] pub(crate) fn $field(self) -> $res_type { - kernel::macros::paste!( + ::kernel::macros::paste!( const MASK: u32 = $name::[<$field:upper _MASK>]; const SHIFT: u32 = $name::[<$field:upper _SHIFT>]; ); @@ -255,16 +550,16 @@ macro_rules! register { $process(field) } - kernel::macros::paste!( + ::kernel::macros::paste!( $( #[doc="Sets the value of this field:"] #[doc=$comment] )? - #[inline] + #[inline(always)] pub(crate) fn [<set_ $field>](mut self, value: $to_type) -> Self { const MASK: u32 = $name::[<$field:upper _MASK>]; const SHIFT: u32 = $name::[<$field:upper _SHIFT>]; - let value = ((value as u32) << SHIFT) & MASK; + let value = (u32::from(value) << SHIFT) & MASK; self.0 = (self.0 & !MASK) | value; self @@ -272,25 +567,64 @@ macro_rules! register { ); }; - // Creates the IO accessors for a fixed offset register. - (@io $name:ident @ $offset:literal) => { + // Generates the `Debug` implementation for `$name`. + (@debug $name:ident { $($field:ident;)* }) => { + impl ::kernel::fmt::Debug for $name { + fn fmt(&self, f: &mut ::kernel::fmt::Formatter<'_>) -> ::kernel::fmt::Result { + f.debug_struct(stringify!($name)) + .field("<raw>", &::kernel::prelude::fmt!("{:#x}", &self.0)) + $( + .field(stringify!($field), &self.$field()) + )* + .finish() + } + } + }; + + // Generates the `Default` implementation for `$name`. + (@default $name:ident { $($field:ident;)* }) => { + /// Returns a value for the register where all fields are set to their default value. + impl ::core::default::Default for $name { + fn default() -> Self { + #[allow(unused_mut)] + let mut value = Self(Default::default()); + + ::kernel::macros::paste!( + $( + value.[<set_ $field>](Default::default()); + )* + ); + + value + } + } + }; + + // Generates the IO accessors for a fixed offset register. + (@io_fixed $name:ident @ $offset:expr) => { #[allow(dead_code)] impl $name { - #[inline] + pub(crate) const OFFSET: usize = $offset; + + /// Read the register from its address in `io`. + #[inline(always)] pub(crate) fn read<const SIZE: usize, T>(io: &T) -> Self where T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, { Self(io.read32($offset)) } - #[inline] + /// Write the value contained in `self` to the register address in `io`. + #[inline(always)] pub(crate) fn write<const SIZE: usize, T>(self, io: &T) where T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, { io.write32(self.0, $offset) } - #[inline] + /// Read the register from its address in `io` and run `f` on its value to obtain a new + /// value to write back. + #[inline(always)] pub(crate) fn alter<const SIZE: usize, T, F>( io: &T, f: F, @@ -304,76 +638,322 @@ macro_rules! register { } }; - // Create the IO accessors for a relative offset register. - (@io $name:ident @ + $offset:literal) => { + // Generates the IO accessors for a relative offset register. + (@io_relative $name:ident @ $base:ty [ $offset:expr ]) => { #[allow(dead_code)] impl $name { - #[inline] + pub(crate) const OFFSET: usize = $offset; + + /// Read the register from `io`, using the base address provided by `base` and adding + /// the register's offset to it. + #[inline(always)] + pub(crate) fn read<const SIZE: usize, T, B>( + io: &T, + #[allow(unused_variables)] + base: &B, + ) -> Self where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + B: crate::regs::macros::RegisterBase<$base>, + { + const OFFSET: usize = $name::OFFSET; + + let value = io.read32( + <B as crate::regs::macros::RegisterBase<$base>>::BASE + OFFSET + ); + + Self(value) + } + + /// Write the value contained in `self` to `io`, using the base address provided by + /// `base` and adding the register's offset to it. + #[inline(always)] + pub(crate) fn write<const SIZE: usize, T, B>( + self, + io: &T, + #[allow(unused_variables)] + base: &B, + ) where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + B: crate::regs::macros::RegisterBase<$base>, + { + const OFFSET: usize = $name::OFFSET; + + io.write32( + self.0, + <B as crate::regs::macros::RegisterBase<$base>>::BASE + OFFSET + ); + } + + /// Read the register from `io`, using the base address provided by `base` and adding + /// the register's offset to it, then run `f` on its value to obtain a new value to + /// write back. + #[inline(always)] + pub(crate) fn alter<const SIZE: usize, T, B, F>( + io: &T, + base: &B, + f: F, + ) where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + B: crate::regs::macros::RegisterBase<$base>, + F: ::core::ops::FnOnce(Self) -> Self, + { + let reg = f(Self::read(io, base)); + reg.write(io, base); + } + } + }; + + // Generates the IO accessors for an array of registers. + (@io_array $name:ident @ $offset:literal [ $size:expr ; $stride:expr ]) => { + #[allow(dead_code)] + impl $name { + pub(crate) const OFFSET: usize = $offset; + pub(crate) const SIZE: usize = $size; + pub(crate) const STRIDE: usize = $stride; + + /// Read the array register at index `idx` from its address in `io`. + #[inline(always)] pub(crate) fn read<const SIZE: usize, T>( io: &T, - base: usize, + idx: usize, ) -> Self where T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, { - Self(io.read32(base + $offset)) + build_assert!(idx < Self::SIZE); + + let offset = Self::OFFSET + (idx * Self::STRIDE); + let value = io.read32(offset); + + Self(value) } - #[inline] + /// Write the value contained in `self` to the array register with index `idx` in `io`. + #[inline(always)] pub(crate) fn write<const SIZE: usize, T>( self, io: &T, - base: usize, + idx: usize ) where T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, { - io.write32(self.0, base + $offset) + build_assert!(idx < Self::SIZE); + + let offset = Self::OFFSET + (idx * Self::STRIDE); + + io.write32(self.0, offset); } - #[inline] + /// Read the array register at index `idx` in `io` and run `f` on its value to obtain a + /// new value to write back. + #[inline(always)] pub(crate) fn alter<const SIZE: usize, T, F>( io: &T, - base: usize, + idx: usize, f: F, ) where T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, F: ::core::ops::FnOnce(Self) -> Self, { - let reg = f(Self::read(io, base)); - reg.write(io, base); + let reg = f(Self::read(io, idx)); + reg.write(io, idx); } - #[inline] + /// Read the array register at index `idx` from its address in `io`. + /// + /// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the + /// access was out-of-bounds. + #[inline(always)] pub(crate) fn try_read<const SIZE: usize, T>( io: &T, - base: usize, + idx: usize, ) -> ::kernel::error::Result<Self> where T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, { - io.try_read32(base + $offset).map(Self) + if idx < Self::SIZE { + Ok(Self::read(io, idx)) + } else { + Err(EINVAL) + } } - #[inline] + /// Write the value contained in `self` to the array register with index `idx` in `io`. + /// + /// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the + /// access was out-of-bounds. + #[inline(always)] pub(crate) fn try_write<const SIZE: usize, T>( self, io: &T, - base: usize, - ) -> ::kernel::error::Result<()> where + idx: usize, + ) -> ::kernel::error::Result where T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, { - io.try_write32(self.0, base + $offset) + if idx < Self::SIZE { + Ok(self.write(io, idx)) + } else { + Err(EINVAL) + } } - #[inline] + /// Read the array register at index `idx` in `io` and run `f` on its value to obtain a + /// new value to write back. + /// + /// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the + /// access was out-of-bounds. + #[inline(always)] pub(crate) fn try_alter<const SIZE: usize, T, F>( io: &T, - base: usize, + idx: usize, + f: F, + ) -> ::kernel::error::Result where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + F: ::core::ops::FnOnce(Self) -> Self, + { + if idx < Self::SIZE { + Ok(Self::alter(io, idx, f)) + } else { + Err(EINVAL) + } + } + } + }; + + // Generates the IO accessors for an array of relative registers. + ( + @io_relative_array $name:ident @ $base:ty + [ $offset:literal [ $size:expr ; $stride:expr ] ] + ) => { + #[allow(dead_code)] + impl $name { + pub(crate) const OFFSET: usize = $offset; + pub(crate) const SIZE: usize = $size; + pub(crate) const STRIDE: usize = $stride; + + /// Read the array register at index `idx` from `io`, using the base address provided + /// by `base` and adding the register's offset to it. + #[inline(always)] + pub(crate) fn read<const SIZE: usize, T, B>( + io: &T, + #[allow(unused_variables)] + base: &B, + idx: usize, + ) -> Self where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + B: crate::regs::macros::RegisterBase<$base>, + { + build_assert!(idx < Self::SIZE); + + let offset = <B as crate::regs::macros::RegisterBase<$base>>::BASE + + Self::OFFSET + (idx * Self::STRIDE); + let value = io.read32(offset); + + Self(value) + } + + /// Write the value contained in `self` to `io`, using the base address provided by + /// `base` and adding the offset of array register `idx` to it. + #[inline(always)] + pub(crate) fn write<const SIZE: usize, T, B>( + self, + io: &T, + #[allow(unused_variables)] + base: &B, + idx: usize + ) where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + B: crate::regs::macros::RegisterBase<$base>, + { + build_assert!(idx < Self::SIZE); + + let offset = <B as crate::regs::macros::RegisterBase<$base>>::BASE + + Self::OFFSET + (idx * Self::STRIDE); + + io.write32(self.0, offset); + } + + /// Read the array register at index `idx` from `io`, using the base address provided + /// by `base` and adding the register's offset to it, then run `f` on its value to + /// obtain a new value to write back. + #[inline(always)] + pub(crate) fn alter<const SIZE: usize, T, B, F>( + io: &T, + base: &B, + idx: usize, + f: F, + ) where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + B: crate::regs::macros::RegisterBase<$base>, + F: ::core::ops::FnOnce(Self) -> Self, + { + let reg = f(Self::read(io, base, idx)); + reg.write(io, base, idx); + } + + /// Read the array register at index `idx` from `io`, using the base address provided + /// by `base` and adding the register's offset to it. + /// + /// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the + /// access was out-of-bounds. + #[inline(always)] + pub(crate) fn try_read<const SIZE: usize, T, B>( + io: &T, + base: &B, + idx: usize, + ) -> ::kernel::error::Result<Self> where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + B: crate::regs::macros::RegisterBase<$base>, + { + if idx < Self::SIZE { + Ok(Self::read(io, base, idx)) + } else { + Err(EINVAL) + } + } + + /// Write the value contained in `self` to `io`, using the base address provided by + /// `base` and adding the offset of array register `idx` to it. + /// + /// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the + /// access was out-of-bounds. + #[inline(always)] + pub(crate) fn try_write<const SIZE: usize, T, B>( + self, + io: &T, + base: &B, + idx: usize, + ) -> ::kernel::error::Result where + T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + B: crate::regs::macros::RegisterBase<$base>, + { + if idx < Self::SIZE { + Ok(self.write(io, base, idx)) + } else { + Err(EINVAL) + } + } + + /// Read the array register at index `idx` from `io`, using the base address provided + /// by `base` and adding the register's offset to it, then run `f` on its value to + /// obtain a new value to write back. + /// + /// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the + /// access was out-of-bounds. + #[inline(always)] + pub(crate) fn try_alter<const SIZE: usize, T, B, F>( + io: &T, + base: &B, + idx: usize, f: F, - ) -> ::kernel::error::Result<()> where + ) -> ::kernel::error::Result where T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>, + B: crate::regs::macros::RegisterBase<$base>, F: ::core::ops::FnOnce(Self) -> Self, { - let reg = f(Self::try_read(io, base)?); - reg.try_write(io, base) + if idx < Self::SIZE { + Ok(Self::alter(io, base, idx, f)) + } else { + Err(EINVAL) + } } } }; |