1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
|
// SPDX-License-Identifier: GPL-2.0
//! Macro to define register layout and accessors.
//!
//! A single register typically includes several fields, which are accessed through a combination
//! of bit-shift and mask operations that introduce a class of potential mistakes, notably because
//! not all possible field values are necessarily valid.
//!
//! The macro in this module allow to define, using an intruitive and readable syntax, a dedicated
//! type for each register with its own field accessors that can return an error is a field's value
//! is invalid.
/// Defines a dedicated type for a register with an absolute offset, alongside with getter and
/// setter methods for its fields and methods to read and write it from an `Io` region.
///
/// Example:
///
/// ```no_run
/// register!(BOOT_0 @ 0x00000100, "Basic revision information about the GPU" {
/// 3:0 minor_revision as u8, "Minor revision of the chip";
/// 7:4 major_revision as u8, "Major revision of the chip";
/// 28:20 chipset as u32 ?=> Chipset, "Chipset model";
/// });
/// ```
///
/// This defines a `BOOT_0` type which can be read or written from offset `0x100` of an `Io`
/// region. It is composed of 3 fields, for instance `minor_revision` is made of the 4 less
/// significant bits of the register. Each field can be accessed and modified using accessor
/// methods:
///
/// ```no_run
/// // Read from the register's defined offset (0x100).
/// let boot0 = BOOT_0::read(&bar);
/// pr_info!("chip revision: {}.{}", boot0.major_revision(), boot0.minor_revision());
///
/// // `Chipset::try_from` will be called with the value of the field and returns an error if the
/// // value is invalid.
/// let chipset = boot0.chipset()?;
///
/// // Update some fields and write the value back.
/// boot0.set_major_revision(3).set_minor_revision(10).write(&bar);
///
/// // Or just read and update the register in a single step:
/// BOOT_0::alter(&bar, |r| r.set_major_revision(3).set_minor_revision(10));
/// ```
///
/// Fields can be defined as follows:
///
/// - `as <type>` simply returns the field value casted as the requested integer type, typically
/// `u32`, `u16`, `u8` or `bool`. Note that `bool` fields must have a range of 1 bit.
/// - `as <type> => <into_type>` calls `<into_type>`'s `From::<<type>>` implementation and returns
/// the result.
/// - `as <type> ?=> <try_into_type>` calls `<try_into_type>`'s `TryFrom::<<type>>` implementation
/// and returns the result. This is useful on fields for which not all values are value.
///
/// The documentation strings are optional. If present, they will be added to the type's
/// definition, or the field getter and setter methods they are attached to.
///
/// Putting a `+` before the address of the register makes it relative to a base: the `read` and
/// `write` methods take a `base` argument that is added to the specified address before access,
/// and `try_read` and `try_write` methods are also created, allowing access with offsets unknown
/// at compile-time:
///
/// ```no_run
/// register!(CPU_CTL @ +0x0000010, "CPU core control" {
/// 0:0 start as bool, "Start the CPU core";
/// });
///
/// // Flip the `start` switch for the CPU core which base address is at `CPU_BASE`.
/// let cpuctl = CPU_CTL::read(&bar, CPU_BASE);
/// pr_info!("CPU CTL: {:#x}", cpuctl);
/// cpuctl.set_start(true).write(&bar, CPU_BASE);
/// ```
macro_rules! register {
// Creates a register at a fixed offset of the MMIO space.
(
$name:ident @ $offset:literal $(, $comment:literal)? {
$($fields:tt)*
}
) => {
register!(@common $name $(, $comment)?);
register!(@field_accessors $name { $($fields)* });
register!(@io $name @ $offset);
};
// Creates a register at a relative offset from a base address.
(
$name:ident @ + $offset:literal $(, $comment:literal)? {
$($fields:tt)*
}
) => {
register!(@common $name $(, $comment)?);
register!(@field_accessors $name { $($fields)* });
register!(@io$name @ + $offset);
};
// Defines the wrapper `$name` type, as well as its relevant implementations (`Debug`, `BitOr`,
// and conversion to regular `u32`).
(@common $name:ident $(, $comment:literal)?) => {
$(
#[doc=$comment]
)?
#[repr(transparent)]
#[derive(Clone, Copy, Default)]
pub(crate) struct $name(u32);
// TODO: display the raw hex value, then the value of all the fields. This requires
// matching the fields, which will complexify the syntax considerably...
impl ::core::fmt::Debug for $name {
fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
f.debug_tuple(stringify!($name))
.field(&format_args!("0x{0:x}", &self.0))
.finish()
}
}
impl core::ops::BitOr for $name {
type Output = Self;
fn bitor(self, rhs: Self) -> Self::Output {
Self(self.0 | rhs.0)
}
}
impl ::core::convert::From<$name> for u32 {
fn from(reg: $name) -> u32 {
reg.0
}
}
};
// Defines all the field getter/methods methods for `$name`.
(
@field_accessors $name:ident {
$($hi:tt:$lo:tt $field:ident as $type:tt
$(?=> $try_into_type:ty)?
$(=> $into_type:ty)?
$(, $comment:literal)?
;
)*
}
) => {
$(
register!(@check_field_bounds $hi:$lo $field as $type);
)*
#[allow(dead_code)]
impl $name {
$(
register!(@field_accessor $name $hi:$lo $field as $type
$(?=> $try_into_type)?
$(=> $into_type)?
$(, $comment)?
;
);
)*
}
};
// Boolean fields must have `$hi == $lo`.
(@check_field_bounds $hi:tt:$lo:tt $field:ident as bool) => {
#[allow(clippy::eq_op)]
const _: () = {
kernel::build_assert!(
$hi == $lo,
concat!("boolean field `", stringify!($field), "` covers more than one bit")
);
};
};
// Non-boolean fields must have `$hi >= $lo`.
(@check_field_bounds $hi:tt:$lo:tt $field:ident as $type:tt) => {
#[allow(clippy::eq_op)]
const _: () = {
kernel::build_assert!(
$hi >= $lo,
concat!("field `", stringify!($field), "`'s MSB is smaller than its LSB")
);
};
};
// Catches fields defined as `bool` and convert them into a boolean value.
(
@field_accessor $name:ident $hi:tt:$lo:tt $field:ident as bool => $into_type:ty
$(, $comment:literal)?;
) => {
register!(
@leaf_accessor $name $hi:$lo $field as bool
{ |f| <$into_type>::from(if f != 0 { true } else { false }) }
$into_type => $into_type $(, $comment)?;
);
};
// Shortcut for fields defined as `bool` without the `=>` syntax.
(
@field_accessor $name:ident $hi:tt:$lo:tt $field:ident as bool $(, $comment:literal)?;
) => {
register!(@field_accessor $name $hi:$lo $field as bool => bool $(, $comment)?;);
};
// Catches the `?=>` syntax for non-boolean fields.
(
@field_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:tt ?=> $try_into_type:ty
$(, $comment:literal)?;
) => {
register!(@leaf_accessor $name $hi:$lo $field as $type
{ |f| <$try_into_type>::try_from(f as $type) } $try_into_type =>
::core::result::Result<
$try_into_type,
<$try_into_type as ::core::convert::TryFrom<$type>>::Error
>
$(, $comment)?;);
};
// Catches the `=>` syntax for non-boolean fields.
(
@field_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:tt => $into_type:ty
$(, $comment:literal)?;
) => {
register!(@leaf_accessor $name $hi:$lo $field as $type
{ |f| <$into_type>::from(f as $type) } $into_type => $into_type $(, $comment)?;);
};
// Shortcut for fields defined as non-`bool` without the `=>` or `?=>` syntax.
(
@field_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:tt
$(, $comment:literal)?;
) => {
register!(@field_accessor $name $hi:$lo $field as $type => $type $(, $comment)?;);
};
// Generates the accessor methods for a single field.
(
@leaf_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:ty
{ $process:expr } $to_type:ty => $res_type:ty $(, $comment:literal)?;
) => {
kernel::macros::paste!(
const [<$field:upper>]: ::core::ops::RangeInclusive<u8> = $lo..=$hi;
const [<$field:upper _MASK>]: u32 = ((((1 << $hi) - 1) << 1) + 1) - ((1 << $lo) - 1);
const [<$field:upper _SHIFT>]: u32 = Self::[<$field:upper _MASK>].trailing_zeros();
);
$(
#[doc="Returns the value of this field:"]
#[doc=$comment]
)?
#[inline]
pub(crate) fn $field(self) -> $res_type {
kernel::macros::paste!(
const MASK: u32 = $name::[<$field:upper _MASK>];
const SHIFT: u32 = $name::[<$field:upper _SHIFT>];
);
let field = ((self.0 & MASK) >> SHIFT);
$process(field)
}
kernel::macros::paste!(
$(
#[doc="Sets the value of this field:"]
#[doc=$comment]
)?
#[inline]
pub(crate) fn [<set_ $field>](mut self, value: $to_type) -> Self {
const MASK: u32 = $name::[<$field:upper _MASK>];
const SHIFT: u32 = $name::[<$field:upper _SHIFT>];
let value = ((value as u32) << SHIFT) & MASK;
self.0 = (self.0 & !MASK) | value;
self
}
);
};
// Creates the IO accessors for a fixed offset register.
(@io $name:ident @ $offset:literal) => {
#[allow(dead_code)]
impl $name {
#[inline]
pub(crate) fn read<const SIZE: usize, T>(io: &T) -> Self where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
Self(io.read32($offset))
}
#[inline]
pub(crate) fn write<const SIZE: usize, T>(self, io: &T) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
io.write32(self.0, $offset)
}
#[inline]
pub(crate) fn alter<const SIZE: usize, T, F>(
io: &T,
f: F,
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
F: ::core::ops::FnOnce(Self) -> Self,
{
let reg = f(Self::read(io));
reg.write(io);
}
}
};
// Create the IO accessors for a relative offset register.
(@io $name:ident @ + $offset:literal) => {
#[allow(dead_code)]
impl $name {
#[inline]
pub(crate) fn read<const SIZE: usize, T>(
io: &T,
base: usize,
) -> Self where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
Self(io.read32(base + $offset))
}
#[inline]
pub(crate) fn write<const SIZE: usize, T>(
self,
io: &T,
base: usize,
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
io.write32(self.0, base + $offset)
}
#[inline]
pub(crate) fn alter<const SIZE: usize, T, F>(
io: &T,
base: usize,
f: F,
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
F: ::core::ops::FnOnce(Self) -> Self,
{
let reg = f(Self::read(io, base));
reg.write(io, base);
}
#[inline]
pub(crate) fn try_read<const SIZE: usize, T>(
io: &T,
base: usize,
) -> ::kernel::error::Result<Self> where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
io.try_read32(base + $offset).map(Self)
}
#[inline]
pub(crate) fn try_write<const SIZE: usize, T>(
self,
io: &T,
base: usize,
) -> ::kernel::error::Result<()> where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
io.try_write32(self.0, base + $offset)
}
#[inline]
pub(crate) fn try_alter<const SIZE: usize, T, F>(
io: &T,
base: usize,
f: F,
) -> ::kernel::error::Result<()> where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
F: ::core::ops::FnOnce(Self) -> Self,
{
let reg = f(Self::try_read(io, base)?);
reg.try_write(io, base)
}
}
};
}
|