summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/svm
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kvm/svm')
-rw-r--r--arch/x86/kvm/svm/avic.c687
-rw-r--r--arch/x86/kvm/svm/nested.c198
-rw-r--r--arch/x86/kvm/svm/pmu.c8
-rw-r--r--arch/x86/kvm/svm/sev.c851
-rw-r--r--arch/x86/kvm/svm/svm.c954
-rw-r--r--arch/x86/kvm/svm/svm.h215
-rw-r--r--arch/x86/kvm/svm/vmenter.S16
7 files changed, 1613 insertions, 1316 deletions
diff --git a/arch/x86/kvm/svm/avic.c b/arch/x86/kvm/svm/avic.c
index 65fd245a9953..a34c5c3b164e 100644
--- a/arch/x86/kvm/svm/avic.c
+++ b/arch/x86/kvm/svm/avic.c
@@ -18,8 +18,10 @@
#include <linux/hashtable.h>
#include <linux/amd-iommu.h>
#include <linux/kvm_host.h>
+#include <linux/kvm_irqfd.h>
#include <asm/irq_remapping.h>
+#include <asm/msr.h>
#include "trace.h"
#include "lapic.h"
@@ -28,36 +30,39 @@
#include "svm.h"
/*
- * Encode the arbitrary VM ID and the vCPU's default APIC ID, i.e the vCPU ID,
- * into the GATag so that KVM can retrieve the correct vCPU from a GALog entry
- * if an interrupt can't be delivered, e.g. because the vCPU isn't running.
+ * Encode the arbitrary VM ID and the vCPU's _index_ into the GATag so that
+ * KVM can retrieve the correct vCPU from a GALog entry if an interrupt can't
+ * be delivered, e.g. because the vCPU isn't running. Use the vCPU's index
+ * instead of its ID (a.k.a. its default APIC ID), as KVM is guaranteed a fast
+ * lookup on the index, where as vCPUs whose index doesn't match their ID need
+ * to walk the entire xarray of vCPUs in the worst case scenario.
*
- * For the vCPU ID, use however many bits are currently allowed for the max
+ * For the vCPU index, use however many bits are currently allowed for the max
* guest physical APIC ID (limited by the size of the physical ID table), and
* use whatever bits remain to assign arbitrary AVIC IDs to VMs. Note, the
* size of the GATag is defined by hardware (32 bits), but is an opaque value
* as far as hardware is concerned.
*/
-#define AVIC_VCPU_ID_MASK AVIC_PHYSICAL_MAX_INDEX_MASK
+#define AVIC_VCPU_IDX_MASK AVIC_PHYSICAL_MAX_INDEX_MASK
#define AVIC_VM_ID_SHIFT HWEIGHT32(AVIC_PHYSICAL_MAX_INDEX_MASK)
#define AVIC_VM_ID_MASK (GENMASK(31, AVIC_VM_ID_SHIFT) >> AVIC_VM_ID_SHIFT)
#define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VM_ID_SHIFT) & AVIC_VM_ID_MASK)
-#define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
+#define AVIC_GATAG_TO_VCPUIDX(x) (x & AVIC_VCPU_IDX_MASK)
-#define __AVIC_GATAG(vm_id, vcpu_id) ((((vm_id) & AVIC_VM_ID_MASK) << AVIC_VM_ID_SHIFT) | \
- ((vcpu_id) & AVIC_VCPU_ID_MASK))
-#define AVIC_GATAG(vm_id, vcpu_id) \
+#define __AVIC_GATAG(vm_id, vcpu_idx) ((((vm_id) & AVIC_VM_ID_MASK) << AVIC_VM_ID_SHIFT) | \
+ ((vcpu_idx) & AVIC_VCPU_IDX_MASK))
+#define AVIC_GATAG(vm_id, vcpu_idx) \
({ \
- u32 ga_tag = __AVIC_GATAG(vm_id, vcpu_id); \
+ u32 ga_tag = __AVIC_GATAG(vm_id, vcpu_idx); \
\
- WARN_ON_ONCE(AVIC_GATAG_TO_VCPUID(ga_tag) != (vcpu_id)); \
+ WARN_ON_ONCE(AVIC_GATAG_TO_VCPUIDX(ga_tag) != (vcpu_idx)); \
WARN_ON_ONCE(AVIC_GATAG_TO_VMID(ga_tag) != (vm_id)); \
ga_tag; \
})
-static_assert(__AVIC_GATAG(AVIC_VM_ID_MASK, AVIC_VCPU_ID_MASK) == -1u);
+static_assert(__AVIC_GATAG(AVIC_VM_ID_MASK, AVIC_VCPU_IDX_MASK) == -1u);
static bool force_avic;
module_param_unsafe(force_avic, bool, 0444);
@@ -74,14 +79,6 @@ static bool next_vm_id_wrapped = 0;
static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
bool x2avic_enabled;
-/*
- * This is a wrapper of struct amd_iommu_ir_data.
- */
-struct amd_svm_iommu_ir {
- struct list_head node; /* Used by SVM for per-vcpu ir_list */
- void *data; /* Storing pointer to struct amd_ir_data */
-};
-
static void avic_activate_vmcb(struct vcpu_svm *svm)
{
struct vmcb *vmcb = svm->vmcb01.ptr;
@@ -146,16 +143,16 @@ int avic_ga_log_notifier(u32 ga_tag)
struct kvm_svm *kvm_svm;
struct kvm_vcpu *vcpu = NULL;
u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
- u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
+ u32 vcpu_idx = AVIC_GATAG_TO_VCPUIDX(ga_tag);
- pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
- trace_kvm_avic_ga_log(vm_id, vcpu_id);
+ pr_debug("SVM: %s: vm_id=%#x, vcpu_idx=%#x\n", __func__, vm_id, vcpu_idx);
+ trace_kvm_avic_ga_log(vm_id, vcpu_idx);
spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
if (kvm_svm->avic_vm_id != vm_id)
continue;
- vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
+ vcpu = kvm_get_vcpu(&kvm_svm->kvm, vcpu_idx);
break;
}
spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
@@ -179,10 +176,8 @@ void avic_vm_destroy(struct kvm *kvm)
if (!enable_apicv)
return;
- if (kvm_svm->avic_logical_id_table_page)
- __free_page(kvm_svm->avic_logical_id_table_page);
- if (kvm_svm->avic_physical_id_table_page)
- __free_page(kvm_svm->avic_physical_id_table_page);
+ free_page((unsigned long)kvm_svm->avic_logical_id_table);
+ free_page((unsigned long)kvm_svm->avic_physical_id_table);
spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
hash_del(&kvm_svm->hnode);
@@ -195,27 +190,19 @@ int avic_vm_init(struct kvm *kvm)
int err = -ENOMEM;
struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
struct kvm_svm *k2;
- struct page *p_page;
- struct page *l_page;
u32 vm_id;
if (!enable_apicv)
return 0;
- /* Allocating physical APIC ID table (4KB) */
- p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
- if (!p_page)
+ kvm_svm->avic_physical_id_table = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
+ if (!kvm_svm->avic_physical_id_table)
goto free_avic;
- kvm_svm->avic_physical_id_table_page = p_page;
-
- /* Allocating logical APIC ID table (4KB) */
- l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
- if (!l_page)
+ kvm_svm->avic_logical_id_table = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
+ if (!kvm_svm->avic_logical_id_table)
goto free_avic;
- kvm_svm->avic_logical_id_table_page = l_page;
-
spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
again:
vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
@@ -241,17 +228,19 @@ free_avic:
return err;
}
+static phys_addr_t avic_get_backing_page_address(struct vcpu_svm *svm)
+{
+ return __sme_set(__pa(svm->vcpu.arch.apic->regs));
+}
+
void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb)
{
struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
- phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
- phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
- phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
- vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
- vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
- vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
- vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK;
+ vmcb->control.avic_backing_page = avic_get_backing_page_address(svm);
+ vmcb->control.avic_logical_id = __sme_set(__pa(kvm_svm->avic_logical_id_table));
+ vmcb->control.avic_physical_id = __sme_set(__pa(kvm_svm->avic_physical_id_table));
+ vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE;
if (kvm_apicv_activated(svm->vcpu.kvm))
avic_activate_vmcb(svm);
@@ -259,32 +248,31 @@ void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb)
avic_deactivate_vmcb(svm);
}
-static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
- unsigned int index)
-{
- u64 *avic_physical_id_table;
- struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
-
- if ((!x2avic_enabled && index > AVIC_MAX_PHYSICAL_ID) ||
- (index > X2AVIC_MAX_PHYSICAL_ID))
- return NULL;
-
- avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
-
- return &avic_physical_id_table[index];
-}
-
static int avic_init_backing_page(struct kvm_vcpu *vcpu)
{
- u64 *entry, new_entry;
- int id = vcpu->vcpu_id;
+ struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
struct vcpu_svm *svm = to_svm(vcpu);
+ u32 id = vcpu->vcpu_id;
+ u64 new_entry;
+ /*
+ * Inhibit AVIC if the vCPU ID is bigger than what is supported by AVIC
+ * hardware. Immediately clear apicv_active, i.e. don't wait until the
+ * KVM_REQ_APICV_UPDATE request is processed on the first KVM_RUN, as
+ * avic_vcpu_load() expects to be called if and only if the vCPU has
+ * fully initialized AVIC.
+ */
if ((!x2avic_enabled && id > AVIC_MAX_PHYSICAL_ID) ||
- (id > X2AVIC_MAX_PHYSICAL_ID))
- return -EINVAL;
+ (id > X2AVIC_MAX_PHYSICAL_ID)) {
+ kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_TOO_BIG);
+ vcpu->arch.apic->apicv_active = false;
+ return 0;
+ }
- if (!vcpu->arch.apic->regs)
+ BUILD_BUG_ON((AVIC_MAX_PHYSICAL_ID + 1) * sizeof(new_entry) > PAGE_SIZE ||
+ (X2AVIC_MAX_PHYSICAL_ID + 1) * sizeof(new_entry) > PAGE_SIZE);
+
+ if (WARN_ON_ONCE(!vcpu->arch.apic->regs))
return -EINVAL;
if (kvm_apicv_activated(vcpu->kvm)) {
@@ -301,19 +289,21 @@ static int avic_init_backing_page(struct kvm_vcpu *vcpu)
return ret;
}
- svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs);
+ /* Note, fls64() returns the bit position, +1. */
+ BUILD_BUG_ON(__PHYSICAL_MASK_SHIFT >
+ fls64(AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK));
/* Setting AVIC backing page address in the phy APIC ID table */
- entry = avic_get_physical_id_entry(vcpu, id);
- if (!entry)
- return -EINVAL;
-
- new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
- AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
- AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
- WRITE_ONCE(*entry, new_entry);
+ new_entry = avic_get_backing_page_address(svm) |
+ AVIC_PHYSICAL_ID_ENTRY_VALID_MASK;
+ svm->avic_physical_id_entry = new_entry;
- svm->avic_physical_id_cache = entry;
+ /*
+ * Initialize the real table, as vCPUs must have a valid entry in order
+ * for broadcast IPIs to function correctly (broadcast IPIs ignore
+ * invalid entries, i.e. aren't guaranteed to generate a VM-Exit).
+ */
+ WRITE_ONCE(kvm_svm->avic_physical_id_table[id], new_entry);
return 0;
}
@@ -330,7 +320,7 @@ void avic_ring_doorbell(struct kvm_vcpu *vcpu)
int cpu = READ_ONCE(vcpu->cpu);
if (cpu != get_cpu()) {
- wrmsrl(MSR_AMD64_SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpu));
+ wrmsrq(MSR_AMD64_SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpu));
trace_kvm_avic_doorbell(vcpu->vcpu_id, kvm_cpu_get_apicid(cpu));
}
put_cpu();
@@ -447,7 +437,7 @@ static int avic_kick_target_vcpus_fast(struct kvm *kvm, struct kvm_lapic *source
if (apic_x2apic_mode(source))
avic_logical_id_table = NULL;
else
- avic_logical_id_table = page_address(kvm_svm->avic_logical_id_table_page);
+ avic_logical_id_table = kvm_svm->avic_logical_id_table;
/*
* AVIC is inhibited if vCPUs aren't mapped 1:1 with logical
@@ -549,7 +539,6 @@ unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu)
static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
{
struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
- u32 *logical_apic_id_table;
u32 cluster, index;
ldr = GET_APIC_LOGICAL_ID(ldr);
@@ -570,9 +559,7 @@ static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
return NULL;
index += (cluster << 2);
- logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
-
- return &logical_apic_id_table[index];
+ return &kvm_svm->avic_logical_id_table[index];
}
static void avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
@@ -721,6 +708,9 @@ int avic_init_vcpu(struct vcpu_svm *svm)
int ret;
struct kvm_vcpu *vcpu = &svm->vcpu;
+ INIT_LIST_HEAD(&svm->ir_list);
+ spin_lock_init(&svm->ir_list_lock);
+
if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm))
return 0;
@@ -728,8 +718,6 @@ int avic_init_vcpu(struct vcpu_svm *svm)
if (ret)
return ret;
- INIT_LIST_HEAD(&svm->ir_list);
- spin_lock_init(&svm->ir_list_lock);
svm->dfr_reg = APIC_DFR_FLAT;
return ret;
@@ -741,310 +729,161 @@ void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu)
avic_handle_ldr_update(vcpu);
}
-static int avic_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
+static void svm_ir_list_del(struct kvm_kernel_irqfd *irqfd)
{
- int ret = 0;
+ struct kvm_vcpu *vcpu = irqfd->irq_bypass_vcpu;
unsigned long flags;
- struct amd_svm_iommu_ir *ir;
- struct vcpu_svm *svm = to_svm(vcpu);
-
- if (!kvm_arch_has_assigned_device(vcpu->kvm))
- return 0;
-
- /*
- * Here, we go through the per-vcpu ir_list to update all existing
- * interrupt remapping table entry targeting this vcpu.
- */
- spin_lock_irqsave(&svm->ir_list_lock, flags);
-
- if (list_empty(&svm->ir_list))
- goto out;
-
- list_for_each_entry(ir, &svm->ir_list, node) {
- if (activate)
- ret = amd_iommu_activate_guest_mode(ir->data);
- else
- ret = amd_iommu_deactivate_guest_mode(ir->data);
- if (ret)
- break;
- }
-out:
- spin_unlock_irqrestore(&svm->ir_list_lock, flags);
- return ret;
-}
-static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
-{
- unsigned long flags;
- struct amd_svm_iommu_ir *cur;
+ if (!vcpu)
+ return;
- spin_lock_irqsave(&svm->ir_list_lock, flags);
- list_for_each_entry(cur, &svm->ir_list, node) {
- if (cur->data != pi->ir_data)
- continue;
- list_del(&cur->node);
- kfree(cur);
- break;
- }
- spin_unlock_irqrestore(&svm->ir_list_lock, flags);
+ spin_lock_irqsave(&to_svm(vcpu)->ir_list_lock, flags);
+ list_del(&irqfd->vcpu_list);
+ spin_unlock_irqrestore(&to_svm(vcpu)->ir_list_lock, flags);
}
-static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
+int avic_pi_update_irte(struct kvm_kernel_irqfd *irqfd, struct kvm *kvm,
+ unsigned int host_irq, uint32_t guest_irq,
+ struct kvm_vcpu *vcpu, u32 vector)
{
- int ret = 0;
- unsigned long flags;
- struct amd_svm_iommu_ir *ir;
- u64 entry;
-
- /**
- * In some cases, the existing irte is updated and re-set,
- * so we need to check here if it's already been * added
- * to the ir_list.
- */
- if (pi->ir_data && (pi->prev_ga_tag != 0)) {
- struct kvm *kvm = svm->vcpu.kvm;
- u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
- struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
- struct vcpu_svm *prev_svm;
-
- if (!prev_vcpu) {
- ret = -EINVAL;
- goto out;
- }
-
- prev_svm = to_svm(prev_vcpu);
- svm_ir_list_del(prev_svm, pi);
- }
-
- /**
- * Allocating new amd_iommu_pi_data, which will get
- * add to the per-vcpu ir_list.
- */
- ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
- if (!ir) {
- ret = -ENOMEM;
- goto out;
- }
- ir->data = pi->ir_data;
-
- spin_lock_irqsave(&svm->ir_list_lock, flags);
-
/*
- * Update the target pCPU for IOMMU doorbells if the vCPU is running.
- * If the vCPU is NOT running, i.e. is blocking or scheduled out, KVM
- * will update the pCPU info when the vCPU awkened and/or scheduled in.
- * See also avic_vcpu_load().
+ * If the IRQ was affined to a different vCPU, remove the IRTE metadata
+ * from the *previous* vCPU's list.
*/
- entry = READ_ONCE(*(svm->avic_physical_id_cache));
- if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
- amd_iommu_update_ga(entry & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK,
- true, pi->ir_data);
+ svm_ir_list_del(irqfd);
- list_add(&ir->node, &svm->ir_list);
- spin_unlock_irqrestore(&svm->ir_list_lock, flags);
-out:
- return ret;
-}
-
-/*
- * Note:
- * The HW cannot support posting multicast/broadcast
- * interrupts to a vCPU. So, we still use legacy interrupt
- * remapping for these kind of interrupts.
- *
- * For lowest-priority interrupts, we only support
- * those with single CPU as the destination, e.g. user
- * configures the interrupts via /proc/irq or uses
- * irqbalance to make the interrupts single-CPU.
- */
-static int
-get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
- struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
-{
- struct kvm_lapic_irq irq;
- struct kvm_vcpu *vcpu = NULL;
-
- kvm_set_msi_irq(kvm, e, &irq);
-
- if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
- !kvm_irq_is_postable(&irq)) {
- pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
- __func__, irq.vector);
- return -1;
- }
-
- pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
- irq.vector);
- *svm = to_svm(vcpu);
- vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
- vcpu_info->vector = irq.vector;
-
- return 0;
-}
-
-/*
- * avic_pi_update_irte - set IRTE for Posted-Interrupts
- *
- * @kvm: kvm
- * @host_irq: host irq of the interrupt
- * @guest_irq: gsi of the interrupt
- * @set: set or unset PI
- * returns 0 on success, < 0 on failure
- */
-int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq,
- uint32_t guest_irq, bool set)
-{
- struct kvm_kernel_irq_routing_entry *e;
- struct kvm_irq_routing_table *irq_rt;
- int idx, ret = 0;
-
- if (!kvm_arch_has_assigned_device(kvm) ||
- !irq_remapping_cap(IRQ_POSTING_CAP))
- return 0;
-
- pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
- __func__, host_irq, guest_irq, set);
-
- idx = srcu_read_lock(&kvm->irq_srcu);
- irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
-
- if (guest_irq >= irq_rt->nr_rt_entries ||
- hlist_empty(&irq_rt->map[guest_irq])) {
- pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
- guest_irq, irq_rt->nr_rt_entries);
- goto out;
- }
-
- hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
- struct vcpu_data vcpu_info;
- struct vcpu_svm *svm = NULL;
+ if (vcpu) {
+ /*
+ * Try to enable guest_mode in IRTE, unless AVIC is inhibited,
+ * in which case configure the IRTE for legacy mode, but track
+ * the IRTE metadata so that it can be converted to guest mode
+ * if AVIC is enabled/uninhibited in the future.
+ */
+ struct amd_iommu_pi_data pi_data = {
+ .ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
+ vcpu->vcpu_idx),
+ .is_guest_mode = kvm_vcpu_apicv_active(vcpu),
+ .vapic_addr = avic_get_backing_page_address(to_svm(vcpu)),
+ .vector = vector,
+ };
+ struct vcpu_svm *svm = to_svm(vcpu);
+ u64 entry;
+ int ret;
- if (e->type != KVM_IRQ_ROUTING_MSI)
- continue;
+ /*
+ * Prevent the vCPU from being scheduled out or migrated until
+ * the IRTE is updated and its metadata has been added to the
+ * list of IRQs being posted to the vCPU, to ensure the IRTE
+ * isn't programmed with stale pCPU/IsRunning information.
+ */
+ guard(spinlock_irqsave)(&svm->ir_list_lock);
- /**
- * Here, we setup with legacy mode in the following cases:
- * 1. When cannot target interrupt to a specific vcpu.
- * 2. Unsetting posted interrupt.
- * 3. APIC virtualization is disabled for the vcpu.
- * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
+ /*
+ * Update the target pCPU for IOMMU doorbells if the vCPU is
+ * running. If the vCPU is NOT running, i.e. is blocking or
+ * scheduled out, KVM will update the pCPU info when the vCPU
+ * is awakened and/or scheduled in. See also avic_vcpu_load().
*/
- if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
- kvm_vcpu_apicv_active(&svm->vcpu)) {
- struct amd_iommu_pi_data pi;
-
- /* Try to enable guest_mode in IRTE */
- pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
- AVIC_HPA_MASK);
- pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
- svm->vcpu.vcpu_id);
- pi.is_guest_mode = true;
- pi.vcpu_data = &vcpu_info;
- ret = irq_set_vcpu_affinity(host_irq, &pi);
-
- /**
- * Here, we successfully setting up vcpu affinity in
- * IOMMU guest mode. Now, we need to store the posted
- * interrupt information in a per-vcpu ir_list so that
- * we can reference to them directly when we update vcpu
- * scheduling information in IOMMU irte.
- */
- if (!ret && pi.is_guest_mode)
- svm_ir_list_add(svm, &pi);
+ entry = svm->avic_physical_id_entry;
+ if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK) {
+ pi_data.cpu = entry & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
} else {
- /* Use legacy mode in IRTE */
- struct amd_iommu_pi_data pi;
-
- /**
- * Here, pi is used to:
- * - Tell IOMMU to use legacy mode for this interrupt.
- * - Retrieve ga_tag of prior interrupt remapping data.
- */
- pi.prev_ga_tag = 0;
- pi.is_guest_mode = false;
- ret = irq_set_vcpu_affinity(host_irq, &pi);
-
- /**
- * Check if the posted interrupt was previously
- * setup with the guest_mode by checking if the ga_tag
- * was cached. If so, we need to clean up the per-vcpu
- * ir_list.
- */
- if (!ret && pi.prev_ga_tag) {
- int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
- struct kvm_vcpu *vcpu;
-
- vcpu = kvm_get_vcpu_by_id(kvm, id);
- if (vcpu)
- svm_ir_list_del(to_svm(vcpu), &pi);
- }
+ pi_data.cpu = -1;
+ pi_data.ga_log_intr = entry & AVIC_PHYSICAL_ID_ENTRY_GA_LOG_INTR;
}
- if (!ret && svm) {
- trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
- e->gsi, vcpu_info.vector,
- vcpu_info.pi_desc_addr, set);
- }
+ ret = irq_set_vcpu_affinity(host_irq, &pi_data);
+ if (ret)
+ return ret;
- if (ret < 0) {
- pr_err("%s: failed to update PI IRTE\n", __func__);
- goto out;
+ /*
+ * Revert to legacy mode if the IOMMU didn't provide metadata
+ * for the IRTE, which KVM needs to keep the IRTE up-to-date,
+ * e.g. if the vCPU is migrated or AVIC is disabled.
+ */
+ if (WARN_ON_ONCE(!pi_data.ir_data)) {
+ irq_set_vcpu_affinity(host_irq, NULL);
+ return -EIO;
}
- }
- ret = 0;
-out:
- srcu_read_unlock(&kvm->irq_srcu, idx);
- return ret;
+ irqfd->irq_bypass_data = pi_data.ir_data;
+ list_add(&irqfd->vcpu_list, &svm->ir_list);
+ return 0;
+ }
+ return irq_set_vcpu_affinity(host_irq, NULL);
}
-static inline int
-avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
+enum avic_vcpu_action {
+ /*
+ * There is no need to differentiate between activate and deactivate,
+ * as KVM only refreshes AVIC state when the vCPU is scheduled in and
+ * isn't blocking, i.e. the pCPU must always be (in)valid when AVIC is
+ * being (de)activated.
+ */
+ AVIC_TOGGLE_ON_OFF = BIT(0),
+ AVIC_ACTIVATE = AVIC_TOGGLE_ON_OFF,
+ AVIC_DEACTIVATE = AVIC_TOGGLE_ON_OFF,
+
+ /*
+ * No unique action is required to deal with a vCPU that stops/starts
+ * running. A vCPU that starts running by definition stops blocking as
+ * well, and a vCPU that stops running can't have been blocking, i.e.
+ * doesn't need to toggle GALogIntr.
+ */
+ AVIC_START_RUNNING = 0,
+ AVIC_STOP_RUNNING = 0,
+
+ /*
+ * When a vCPU starts blocking, KVM needs to set the GALogIntr flag
+ * int all associated IRTEs so that KVM can wake the vCPU if an IRQ is
+ * sent to the vCPU.
+ */
+ AVIC_START_BLOCKING = BIT(1),
+};
+
+static void avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu,
+ enum avic_vcpu_action action)
{
- int ret = 0;
- struct amd_svm_iommu_ir *ir;
+ bool ga_log_intr = (action & AVIC_START_BLOCKING);
struct vcpu_svm *svm = to_svm(vcpu);
+ struct kvm_kernel_irqfd *irqfd;
lockdep_assert_held(&svm->ir_list_lock);
- if (!kvm_arch_has_assigned_device(vcpu->kvm))
- return 0;
-
/*
* Here, we go through the per-vcpu ir_list to update all existing
* interrupt remapping table entry targeting this vcpu.
*/
if (list_empty(&svm->ir_list))
- return 0;
+ return;
- list_for_each_entry(ir, &svm->ir_list, node) {
- ret = amd_iommu_update_ga(cpu, r, ir->data);
- if (ret)
- return ret;
+ list_for_each_entry(irqfd, &svm->ir_list, vcpu_list) {
+ void *data = irqfd->irq_bypass_data;
+
+ if (!(action & AVIC_TOGGLE_ON_OFF))
+ WARN_ON_ONCE(amd_iommu_update_ga(data, cpu, ga_log_intr));
+ else if (cpu >= 0)
+ WARN_ON_ONCE(amd_iommu_activate_guest_mode(data, cpu, ga_log_intr));
+ else
+ WARN_ON_ONCE(amd_iommu_deactivate_guest_mode(data));
}
- return 0;
}
-void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+static void __avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu,
+ enum avic_vcpu_action action)
{
- u64 entry;
+ struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
int h_physical_id = kvm_cpu_get_apicid(cpu);
struct vcpu_svm *svm = to_svm(vcpu);
unsigned long flags;
+ u64 entry;
lockdep_assert_preemption_disabled();
if (WARN_ON(h_physical_id & ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
return;
- /*
- * No need to update anything if the vCPU is blocking, i.e. if the vCPU
- * is being scheduled in after being preempted. The CPU entries in the
- * Physical APIC table and IRTE are consumed iff IsRun{ning} is '1'.
- * If the vCPU was migrated, its new CPU value will be stuffed when the
- * vCPU unblocks.
- */
- if (kvm_vcpu_is_blocking(vcpu))
+ if (WARN_ON_ONCE(vcpu->vcpu_id * sizeof(entry) >= PAGE_SIZE))
return;
/*
@@ -1056,38 +895,57 @@ void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
*/
spin_lock_irqsave(&svm->ir_list_lock, flags);
- entry = READ_ONCE(*(svm->avic_physical_id_cache));
+ entry = svm->avic_physical_id_entry;
WARN_ON_ONCE(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
- entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
+ entry &= ~(AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK |
+ AVIC_PHYSICAL_ID_ENTRY_GA_LOG_INTR);
entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
- WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
- avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, true);
+ svm->avic_physical_id_entry = entry;
+
+ /*
+ * If IPI virtualization is disabled, clear IsRunning when updating the
+ * actual Physical ID table, so that the CPU never sees IsRunning=1.
+ * Keep the APIC ID up-to-date in the entry to minimize the chances of
+ * things going sideways if hardware peeks at the ID.
+ */
+ if (!enable_ipiv)
+ entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
+
+ WRITE_ONCE(kvm_svm->avic_physical_id_table[vcpu->vcpu_id], entry);
+
+ avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, action);
spin_unlock_irqrestore(&svm->ir_list_lock, flags);
}
-void avic_vcpu_put(struct kvm_vcpu *vcpu)
+void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
- u64 entry;
+ /*
+ * No need to update anything if the vCPU is blocking, i.e. if the vCPU
+ * is being scheduled in after being preempted. The CPU entries in the
+ * Physical APIC table and IRTE are consumed iff IsRun{ning} is '1'.
+ * If the vCPU was migrated, its new CPU value will be stuffed when the
+ * vCPU unblocks.
+ */
+ if (kvm_vcpu_is_blocking(vcpu))
+ return;
+
+ __avic_vcpu_load(vcpu, cpu, AVIC_START_RUNNING);
+}
+
+static void __avic_vcpu_put(struct kvm_vcpu *vcpu, enum avic_vcpu_action action)
+{
+ struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
struct vcpu_svm *svm = to_svm(vcpu);
unsigned long flags;
+ u64 entry = svm->avic_physical_id_entry;
lockdep_assert_preemption_disabled();
- /*
- * Note, reading the Physical ID entry outside of ir_list_lock is safe
- * as only the pCPU that has loaded (or is loading) the vCPU is allowed
- * to modify the entry, and preemption is disabled. I.e. the vCPU
- * can't be scheduled out and thus avic_vcpu_{put,load}() can't run
- * recursively.
- */
- entry = READ_ONCE(*(svm->avic_physical_id_cache));
-
- /* Nothing to do if IsRunning == '0' due to vCPU blocking. */
- if (!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK))
+ if (WARN_ON_ONCE(vcpu->vcpu_id * sizeof(entry) >= PAGE_SIZE))
return;
/*
@@ -1100,13 +958,62 @@ void avic_vcpu_put(struct kvm_vcpu *vcpu)
*/
spin_lock_irqsave(&svm->ir_list_lock, flags);
- avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
+ avic_update_iommu_vcpu_affinity(vcpu, -1, action);
+
+ WARN_ON_ONCE(entry & AVIC_PHYSICAL_ID_ENTRY_GA_LOG_INTR);
+ /*
+ * Keep the previous APIC ID in the entry so that a rogue doorbell from
+ * hardware is at least restricted to a CPU associated with the vCPU.
+ */
entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
- WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
+
+ if (enable_ipiv)
+ WRITE_ONCE(kvm_svm->avic_physical_id_table[vcpu->vcpu_id], entry);
+
+ /*
+ * Note! Don't set AVIC_PHYSICAL_ID_ENTRY_GA_LOG_INTR in the table as
+ * it's a synthetic flag that usurps an unused should-be-zero bit.
+ */
+ if (action & AVIC_START_BLOCKING)
+ entry |= AVIC_PHYSICAL_ID_ENTRY_GA_LOG_INTR;
+
+ svm->avic_physical_id_entry = entry;
spin_unlock_irqrestore(&svm->ir_list_lock, flags);
+}
+void avic_vcpu_put(struct kvm_vcpu *vcpu)
+{
+ /*
+ * Note, reading the Physical ID entry outside of ir_list_lock is safe
+ * as only the pCPU that has loaded (or is loading) the vCPU is allowed
+ * to modify the entry, and preemption is disabled. I.e. the vCPU
+ * can't be scheduled out and thus avic_vcpu_{put,load}() can't run
+ * recursively.
+ */
+ u64 entry = to_svm(vcpu)->avic_physical_id_entry;
+
+ /*
+ * Nothing to do if IsRunning == '0' due to vCPU blocking, i.e. if the
+ * vCPU is preempted while its in the process of blocking. WARN if the
+ * vCPU wasn't running and isn't blocking, KVM shouldn't attempt to put
+ * the AVIC if it wasn't previously loaded.
+ */
+ if (!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)) {
+ if (WARN_ON_ONCE(!kvm_vcpu_is_blocking(vcpu)))
+ return;
+
+ /*
+ * The vCPU was preempted while blocking, ensure its IRTEs are
+ * configured to generate GA Log Interrupts.
+ */
+ if (!(WARN_ON_ONCE(!(entry & AVIC_PHYSICAL_ID_ENTRY_GA_LOG_INTR))))
+ return;
+ }
+
+ __avic_vcpu_put(vcpu, kvm_vcpu_is_blocking(vcpu) ? AVIC_START_BLOCKING :
+ AVIC_STOP_RUNNING);
}
void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu)
@@ -1135,19 +1042,18 @@ void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu)
void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
{
- bool activated = kvm_vcpu_apicv_active(vcpu);
-
if (!enable_apicv)
return;
+ /* APICv should only be toggled on/off while the vCPU is running. */
+ WARN_ON_ONCE(kvm_vcpu_is_blocking(vcpu));
+
avic_refresh_virtual_apic_mode(vcpu);
- if (activated)
- avic_vcpu_load(vcpu, vcpu->cpu);
+ if (kvm_vcpu_apicv_active(vcpu))
+ __avic_vcpu_load(vcpu, vcpu->cpu, AVIC_ACTIVATE);
else
- avic_vcpu_put(vcpu);
-
- avic_set_pi_irte_mode(vcpu, activated);
+ __avic_vcpu_put(vcpu, AVIC_DEACTIVATE);
}
void avic_vcpu_blocking(struct kvm_vcpu *vcpu)
@@ -1155,20 +1061,25 @@ void avic_vcpu_blocking(struct kvm_vcpu *vcpu)
if (!kvm_vcpu_apicv_active(vcpu))
return;
- /*
- * Unload the AVIC when the vCPU is about to block, _before_
- * the vCPU actually blocks.
- *
- * Any IRQs that arrive before IsRunning=0 will not cause an
- * incomplete IPI vmexit on the source, therefore vIRR will also
- * be checked by kvm_vcpu_check_block() before blocking. The
- * memory barrier implicit in set_current_state orders writing
- * IsRunning=0 before reading the vIRR. The processor needs a
- * matching memory barrier on interrupt delivery between writing
- * IRR and reading IsRunning; the lack of this barrier might be
- * the cause of errata #1235).
- */
- avic_vcpu_put(vcpu);
+ /*
+ * Unload the AVIC when the vCPU is about to block, _before_ the vCPU
+ * actually blocks.
+ *
+ * Note, any IRQs that arrive before IsRunning=0 will not cause an
+ * incomplete IPI vmexit on the source; kvm_vcpu_check_block() handles
+ * this by checking vIRR one last time before blocking. The memory
+ * barrier implicit in set_current_state orders writing IsRunning=0
+ * before reading the vIRR. The processor needs a matching memory
+ * barrier on interrupt delivery between writing IRR and reading
+ * IsRunning; the lack of this barrier might be the cause of errata #1235).
+ *
+ * Clear IsRunning=0 even if guest IRQs are disabled, i.e. even if KVM
+ * doesn't need to detect events for scheduling purposes. The doorbell
+ * used to signal running vCPUs cannot be blocked, i.e. will perturb the
+ * CPU and cause noisy neighbor problems if the VM is sending interrupts
+ * to the vCPU while it's scheduled out.
+ */
+ __avic_vcpu_put(vcpu, AVIC_START_BLOCKING);
}
void avic_vcpu_unblocking(struct kvm_vcpu *vcpu)
@@ -1221,6 +1132,14 @@ bool avic_hardware_setup(void)
if (x2avic_enabled)
pr_info("x2AVIC enabled\n");
+ /*
+ * Disable IPI virtualization for AMD Family 17h CPUs (Zen1 and Zen2)
+ * due to erratum 1235, which results in missed VM-Exits on the sender
+ * and thus missed wake events for blocking vCPUs due to the CPU
+ * failing to see a software update to clear IsRunning.
+ */
+ enable_ipiv = enable_ipiv && boot_cpu_data.x86 != 0x17;
+
amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
return true;
diff --git a/arch/x86/kvm/svm/nested.c b/arch/x86/kvm/svm/nested.c
index b708bdf7eaff..b7fd2e869998 100644
--- a/arch/x86/kvm/svm/nested.c
+++ b/arch/x86/kvm/svm/nested.c
@@ -111,7 +111,7 @@ static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
static bool nested_vmcb_needs_vls_intercept(struct vcpu_svm *svm)
{
- if (!guest_can_use(&svm->vcpu, X86_FEATURE_V_VMSAVE_VMLOAD))
+ if (!guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_V_VMSAVE_VMLOAD))
return true;
if (!nested_npt_enabled(svm))
@@ -185,12 +185,87 @@ void recalc_intercepts(struct vcpu_svm *svm)
}
/*
+ * This array (and its actual size) holds the set of offsets (indexing by chunk
+ * size) to process when merging vmcb12's MSRPM with vmcb01's MSRPM. Note, the
+ * set of MSRs for which interception is disabled in vmcb01 is per-vCPU, e.g.
+ * based on CPUID features. This array only tracks MSRs that *might* be passed
+ * through to the guest.
+ *
+ * Hardcode the capacity of the array based on the maximum number of _offsets_.
+ * MSRs are batched together, so there are fewer offsets than MSRs.
+ */
+static int nested_svm_msrpm_merge_offsets[7] __ro_after_init;
+static int nested_svm_nr_msrpm_merge_offsets __ro_after_init;
+typedef unsigned long nsvm_msrpm_merge_t;
+
+int __init nested_svm_init_msrpm_merge_offsets(void)
+{
+ static const u32 merge_msrs[] __initconst = {
+ MSR_STAR,
+ MSR_IA32_SYSENTER_CS,
+ MSR_IA32_SYSENTER_EIP,
+ MSR_IA32_SYSENTER_ESP,
+ #ifdef CONFIG_X86_64
+ MSR_GS_BASE,
+ MSR_FS_BASE,
+ MSR_KERNEL_GS_BASE,
+ MSR_LSTAR,
+ MSR_CSTAR,
+ MSR_SYSCALL_MASK,
+ #endif
+ MSR_IA32_SPEC_CTRL,
+ MSR_IA32_PRED_CMD,
+ MSR_IA32_FLUSH_CMD,
+ MSR_IA32_APERF,
+ MSR_IA32_MPERF,
+ MSR_IA32_LASTBRANCHFROMIP,
+ MSR_IA32_LASTBRANCHTOIP,
+ MSR_IA32_LASTINTFROMIP,
+ MSR_IA32_LASTINTTOIP,
+ };
+ int i, j;
+
+ for (i = 0; i < ARRAY_SIZE(merge_msrs); i++) {
+ int bit_nr = svm_msrpm_bit_nr(merge_msrs[i]);
+ u32 offset;
+
+ if (WARN_ON(bit_nr < 0))
+ return -EIO;
+
+ /*
+ * Merging is done in chunks to reduce the number of accesses
+ * to L1's bitmap.
+ */
+ offset = bit_nr / BITS_PER_BYTE / sizeof(nsvm_msrpm_merge_t);
+
+ for (j = 0; j < nested_svm_nr_msrpm_merge_offsets; j++) {
+ if (nested_svm_msrpm_merge_offsets[j] == offset)
+ break;
+ }
+
+ if (j < nested_svm_nr_msrpm_merge_offsets)
+ continue;
+
+ if (WARN_ON(j >= ARRAY_SIZE(nested_svm_msrpm_merge_offsets)))
+ return -EIO;
+
+ nested_svm_msrpm_merge_offsets[j] = offset;
+ nested_svm_nr_msrpm_merge_offsets++;
+ }
+
+ return 0;
+}
+
+/*
* Merge L0's (KVM) and L1's (Nested VMCB) MSR permission bitmaps. The function
* is optimized in that it only merges the parts where KVM MSR permission bitmap
* may contain zero bits.
*/
-static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
+static bool nested_svm_merge_msrpm(struct kvm_vcpu *vcpu)
{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ nsvm_msrpm_merge_t *msrpm02 = svm->nested.msrpm;
+ nsvm_msrpm_merge_t *msrpm01 = svm->msrpm;
int i;
/*
@@ -205,7 +280,7 @@ static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
if (!svm->nested.force_msr_bitmap_recalc) {
struct hv_vmcb_enlightenments *hve = &svm->nested.ctl.hv_enlightenments;
- if (kvm_hv_hypercall_enabled(&svm->vcpu) &&
+ if (kvm_hv_hypercall_enabled(vcpu) &&
hve->hv_enlightenments_control.msr_bitmap &&
(svm->nested.ctl.clean & BIT(HV_VMCB_NESTED_ENLIGHTENMENTS)))
goto set_msrpm_base_pa;
@@ -215,25 +290,17 @@ static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT)))
return true;
- for (i = 0; i < MSRPM_OFFSETS; i++) {
- u32 value, p;
- u64 offset;
-
- if (msrpm_offsets[i] == 0xffffffff)
- break;
-
- p = msrpm_offsets[i];
+ for (i = 0; i < nested_svm_nr_msrpm_merge_offsets; i++) {
+ const int p = nested_svm_msrpm_merge_offsets[i];
+ nsvm_msrpm_merge_t l1_val;
+ gpa_t gpa;
- /* x2apic msrs are intercepted always for the nested guest */
- if (is_x2apic_msrpm_offset(p))
- continue;
-
- offset = svm->nested.ctl.msrpm_base_pa + (p * 4);
+ gpa = svm->nested.ctl.msrpm_base_pa + (p * sizeof(l1_val));
- if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
+ if (kvm_vcpu_read_guest(vcpu, gpa, &l1_val, sizeof(l1_val)))
return false;
- svm->nested.msrpm[p] = svm->msrpm[p] | value;
+ msrpm02[p] = msrpm01[p] | l1_val;
}
svm->nested.force_msr_bitmap_recalc = false;
@@ -594,7 +661,7 @@ static void nested_vmcb02_prepare_save(struct vcpu_svm *svm, struct vmcb *vmcb12
vmcb_mark_dirty(vmcb02, VMCB_DR);
}
- if (unlikely(guest_can_use(vcpu, X86_FEATURE_LBRV) &&
+ if (unlikely(guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))) {
/*
* Reserved bits of DEBUGCTL are ignored. Be consistent with
@@ -646,12 +713,17 @@ static void nested_vmcb02_prepare_control(struct vcpu_svm *svm,
u32 pause_count12;
u32 pause_thresh12;
+ nested_svm_transition_tlb_flush(vcpu);
+
+ /* Enter Guest-Mode */
+ enter_guest_mode(vcpu);
+
/*
* Filled at exit: exit_code, exit_code_hi, exit_info_1, exit_info_2,
* exit_int_info, exit_int_info_err, next_rip, insn_len, insn_bytes.
*/
- if (guest_can_use(vcpu, X86_FEATURE_VGIF) &&
+ if (guest_cpu_cap_has(vcpu, X86_FEATURE_VGIF) &&
(svm->nested.ctl.int_ctl & V_GIF_ENABLE_MASK))
int_ctl_vmcb12_bits |= (V_GIF_MASK | V_GIF_ENABLE_MASK);
else
@@ -673,6 +745,33 @@ static void nested_vmcb02_prepare_control(struct vcpu_svm *svm,
vmcb02->control.iopm_base_pa = vmcb01->control.iopm_base_pa;
vmcb02->control.msrpm_base_pa = vmcb01->control.msrpm_base_pa;
+ /*
+ * Stash vmcb02's counter if the guest hasn't moved past the guilty
+ * instruction; otherwise, reset the counter to '0'.
+ *
+ * In order to detect if L2 has made forward progress or not, track the
+ * RIP at which a bus lock has occurred on a per-vmcb12 basis. If RIP
+ * is changed, guest has clearly made forward progress, bus_lock_counter
+ * still remained '1', so reset bus_lock_counter to '0'. Eg. In the
+ * scenario, where a buslock happened in L1 before VMRUN, the bus lock
+ * firmly happened on an instruction in the past. Even if vmcb01's
+ * counter is still '1', (because the guilty instruction got patched),
+ * the vCPU has clearly made forward progress and so KVM should reset
+ * vmcb02's counter to '0'.
+ *
+ * If the RIP hasn't changed, stash the bus lock counter at nested VMRUN
+ * to prevent the same guilty instruction from triggering a VM-Exit. Eg.
+ * if userspace rate-limits the vCPU, then it's entirely possible that
+ * L1's tick interrupt is pending by the time userspace re-runs the
+ * vCPU. If KVM unconditionally clears the counter on VMRUN, then when
+ * L1 re-enters L2, the same instruction will trigger a VM-Exit and the
+ * entire cycle start over.
+ */
+ if (vmcb02->save.rip && (svm->nested.ctl.bus_lock_rip == vmcb02->save.rip))
+ vmcb02->control.bus_lock_counter = 1;
+ else
+ vmcb02->control.bus_lock_counter = 0;
+
/* Done at vmrun: asid. */
/* Also overwritten later if necessary. */
@@ -689,7 +788,7 @@ static void nested_vmcb02_prepare_control(struct vcpu_svm *svm,
vmcb02->control.tsc_offset = vcpu->arch.tsc_offset;
- if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) &&
+ if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) &&
svm->tsc_ratio_msr != kvm_caps.default_tsc_scaling_ratio)
nested_svm_update_tsc_ratio_msr(vcpu);
@@ -710,7 +809,7 @@ static void nested_vmcb02_prepare_control(struct vcpu_svm *svm,
* what a nrips=0 CPU would do (L1 is responsible for advancing RIP
* prior to injecting the event).
*/
- if (guest_can_use(vcpu, X86_FEATURE_NRIPS))
+ if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS))
vmcb02->control.next_rip = svm->nested.ctl.next_rip;
else if (boot_cpu_has(X86_FEATURE_NRIPS))
vmcb02->control.next_rip = vmcb12_rip;
@@ -720,7 +819,7 @@ static void nested_vmcb02_prepare_control(struct vcpu_svm *svm,
svm->soft_int_injected = true;
svm->soft_int_csbase = vmcb12_csbase;
svm->soft_int_old_rip = vmcb12_rip;
- if (guest_can_use(vcpu, X86_FEATURE_NRIPS))
+ if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS))
svm->soft_int_next_rip = svm->nested.ctl.next_rip;
else
svm->soft_int_next_rip = vmcb12_rip;
@@ -728,18 +827,18 @@ static void nested_vmcb02_prepare_control(struct vcpu_svm *svm,
vmcb02->control.virt_ext = vmcb01->control.virt_ext &
LBR_CTL_ENABLE_MASK;
- if (guest_can_use(vcpu, X86_FEATURE_LBRV))
+ if (guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV))
vmcb02->control.virt_ext |=
(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK);
if (!nested_vmcb_needs_vls_intercept(svm))
vmcb02->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
- if (guest_can_use(vcpu, X86_FEATURE_PAUSEFILTER))
+ if (guest_cpu_cap_has(vcpu, X86_FEATURE_PAUSEFILTER))
pause_count12 = svm->nested.ctl.pause_filter_count;
else
pause_count12 = 0;
- if (guest_can_use(vcpu, X86_FEATURE_PFTHRESHOLD))
+ if (guest_cpu_cap_has(vcpu, X86_FEATURE_PFTHRESHOLD))
pause_thresh12 = svm->nested.ctl.pause_filter_thresh;
else
pause_thresh12 = 0;
@@ -762,11 +861,6 @@ static void nested_vmcb02_prepare_control(struct vcpu_svm *svm,
}
}
- nested_svm_transition_tlb_flush(vcpu);
-
- /* Enter Guest-Mode */
- enter_guest_mode(vcpu);
-
/*
* Merge guest and host intercepts - must be called with vcpu in
* guest-mode to take effect.
@@ -910,7 +1004,7 @@ int nested_svm_vmrun(struct kvm_vcpu *vcpu)
if (enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, true))
goto out_exit_err;
- if (nested_svm_vmrun_msrpm(svm))
+ if (nested_svm_merge_msrpm(vcpu))
goto out;
out_exit_err:
@@ -994,7 +1088,7 @@ int nested_svm_vmexit(struct vcpu_svm *svm)
kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
/* in case we halted in L2 */
- svm->vcpu.arch.mp_state = KVM_MP_STATE_RUNNABLE;
+ kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
/* Give the current vmcb to the guest */
@@ -1026,7 +1120,7 @@ int nested_svm_vmexit(struct vcpu_svm *svm)
if (vmcb12->control.exit_code != SVM_EXIT_ERR)
nested_save_pending_event_to_vmcb12(svm, vmcb12);
- if (guest_can_use(vcpu, X86_FEATURE_NRIPS))
+ if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS))
vmcb12->control.next_rip = vmcb02->control.next_rip;
vmcb12->control.int_ctl = svm->nested.ctl.int_ctl;
@@ -1039,8 +1133,17 @@ int nested_svm_vmexit(struct vcpu_svm *svm)
}
+ /*
+ * Invalidate bus_lock_rip unless KVM is still waiting for the guest
+ * to make forward progress before re-enabling bus lock detection.
+ */
+ if (!vmcb02->control.bus_lock_counter)
+ svm->nested.ctl.bus_lock_rip = INVALID_GPA;
+
nested_svm_copy_common_state(svm->nested.vmcb02.ptr, svm->vmcb01.ptr);
+ kvm_nested_vmexit_handle_ibrs(vcpu);
+
svm_switch_vmcb(svm, &svm->vmcb01);
/*
@@ -1065,7 +1168,7 @@ int nested_svm_vmexit(struct vcpu_svm *svm)
if (!nested_exit_on_intr(svm))
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
- if (unlikely(guest_can_use(vcpu, X86_FEATURE_LBRV) &&
+ if (unlikely(guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))) {
svm_copy_lbrs(vmcb12, vmcb02);
svm_update_lbrv(vcpu);
@@ -1194,7 +1297,6 @@ int svm_allocate_nested(struct vcpu_svm *svm)
svm->nested.msrpm = svm_vcpu_alloc_msrpm();
if (!svm->nested.msrpm)
goto err_free_vmcb02;
- svm_vcpu_init_msrpm(&svm->vcpu, svm->nested.msrpm);
svm->nested.initialized = true;
return 0;
@@ -1254,26 +1356,26 @@ void svm_leave_nested(struct kvm_vcpu *vcpu)
static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
{
- u32 offset, msr, value;
- int write, mask;
+ gpa_t base = svm->nested.ctl.msrpm_base_pa;
+ int write, bit_nr;
+ u8 value, mask;
+ u32 msr;
if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT)))
return NESTED_EXIT_HOST;
msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
- offset = svm_msrpm_offset(msr);
+ bit_nr = svm_msrpm_bit_nr(msr);
write = svm->vmcb->control.exit_info_1 & 1;
- mask = 1 << ((2 * (msr & 0xf)) + write);
- if (offset == MSR_INVALID)
+ if (bit_nr < 0)
return NESTED_EXIT_DONE;
- /* Offset is in 32 bit units but need in 8 bit units */
- offset *= 4;
-
- if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.ctl.msrpm_base_pa + offset, &value, 4))
+ if (kvm_vcpu_read_guest(&svm->vcpu, base + bit_nr / BITS_PER_BYTE,
+ &value, sizeof(value)))
return NESTED_EXIT_DONE;
+ mask = BIT(write) << (bit_nr & (BITS_PER_BYTE - 1));
return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
}
@@ -1783,13 +1885,11 @@ out_free:
static bool svm_get_nested_state_pages(struct kvm_vcpu *vcpu)
{
- struct vcpu_svm *svm = to_svm(vcpu);
-
if (WARN_ON(!is_guest_mode(vcpu)))
return true;
if (!vcpu->arch.pdptrs_from_userspace &&
- !nested_npt_enabled(svm) && is_pae_paging(vcpu))
+ !nested_npt_enabled(to_svm(vcpu)) && is_pae_paging(vcpu))
/*
* Reload the guest's PDPTRs since after a migration
* the guest CR3 might be restored prior to setting the nested
@@ -1798,7 +1898,7 @@ static bool svm_get_nested_state_pages(struct kvm_vcpu *vcpu)
if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
return false;
- if (!nested_svm_vmrun_msrpm(svm)) {
+ if (!nested_svm_merge_msrpm(vcpu)) {
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror =
KVM_INTERNAL_ERROR_EMULATION;
diff --git a/arch/x86/kvm/svm/pmu.c b/arch/x86/kvm/svm/pmu.c
index 22d5a65b410c..288f7f2a46f2 100644
--- a/arch/x86/kvm/svm/pmu.c
+++ b/arch/x86/kvm/svm/pmu.c
@@ -46,7 +46,7 @@ static inline struct kvm_pmc *get_gp_pmc_amd(struct kvm_pmu *pmu, u32 msr,
switch (msr) {
case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
- if (!guest_cpuid_has(vcpu, X86_FEATURE_PERFCTR_CORE))
+ if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PERFCTR_CORE))
return NULL;
/*
* Each PMU counter has a pair of CTL and CTR MSRs. CTLn
@@ -109,7 +109,7 @@ static bool amd_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
case MSR_K7_EVNTSEL0 ... MSR_K7_PERFCTR3:
return pmu->version > 0;
case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
- return guest_cpuid_has(vcpu, X86_FEATURE_PERFCTR_CORE);
+ return guest_cpu_cap_has(vcpu, X86_FEATURE_PERFCTR_CORE);
case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
@@ -179,7 +179,7 @@ static void amd_pmu_refresh(struct kvm_vcpu *vcpu)
union cpuid_0x80000022_ebx ebx;
pmu->version = 1;
- if (guest_cpuid_has(vcpu, X86_FEATURE_PERFMON_V2)) {
+ if (guest_cpu_cap_has(vcpu, X86_FEATURE_PERFMON_V2)) {
pmu->version = 2;
/*
* Note, PERFMON_V2 is also in 0x80000022.0x0, i.e. the guest
@@ -189,7 +189,7 @@ static void amd_pmu_refresh(struct kvm_vcpu *vcpu)
x86_feature_cpuid(X86_FEATURE_PERFMON_V2).index);
ebx.full = kvm_find_cpuid_entry_index(vcpu, 0x80000022, 0)->ebx;
pmu->nr_arch_gp_counters = ebx.split.num_core_pmc;
- } else if (guest_cpuid_has(vcpu, X86_FEATURE_PERFCTR_CORE)) {
+ } else if (guest_cpu_cap_has(vcpu, X86_FEATURE_PERFCTR_CORE)) {
pmu->nr_arch_gp_counters = AMD64_NUM_COUNTERS_CORE;
} else {
pmu->nr_arch_gp_counters = AMD64_NUM_COUNTERS;
diff --git a/arch/x86/kvm/svm/sev.c b/arch/x86/kvm/svm/sev.c
index 943bd074a5d3..2fbdebf79fbb 100644
--- a/arch/x86/kvm/svm/sev.c
+++ b/arch/x86/kvm/svm/sev.c
@@ -26,6 +26,7 @@
#include <asm/fpu/xcr.h>
#include <asm/fpu/xstate.h>
#include <asm/debugreg.h>
+#include <asm/msr.h>
#include <asm/sev.h>
#include "mmu.h"
@@ -116,6 +117,7 @@ static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid)
*/
down_write(&sev_deactivate_lock);
+ /* SNP firmware requires use of WBINVD for ASID recycling. */
wbinvd_on_all_cpus();
if (sev_snp_enabled)
@@ -140,7 +142,7 @@ static inline bool is_mirroring_enc_context(struct kvm *kvm)
static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm)
{
struct kvm_vcpu *vcpu = &svm->vcpu;
- struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP;
}
@@ -226,9 +228,7 @@ e_uncharge:
static unsigned int sev_get_asid(struct kvm *kvm)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
-
- return sev->asid;
+ return to_kvm_sev_info(kvm)->asid;
}
static void sev_asid_free(struct kvm_sev_info *sev)
@@ -403,7 +403,7 @@ static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp,
struct kvm_sev_init *data,
unsigned long vm_type)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
struct sev_platform_init_args init_args = {0};
bool es_active = vm_type != KVM_X86_SEV_VM;
u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0;
@@ -447,7 +447,12 @@ static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp,
init_args.probe = false;
ret = sev_platform_init(&init_args);
if (ret)
- goto e_free;
+ goto e_free_asid;
+
+ if (!zalloc_cpumask_var(&sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) {
+ ret = -ENOMEM;
+ goto e_free_asid;
+ }
/* This needs to happen after SEV/SNP firmware initialization. */
if (vm_type == KVM_X86_SNP_VM) {
@@ -465,6 +470,8 @@ static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp,
return 0;
e_free:
+ free_cpumask_var(sev->have_run_cpus);
+e_free_asid:
argp->error = init_args.error;
sev_asid_free(sev);
sev->asid = 0;
@@ -500,10 +507,9 @@ static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct kvm_sev_init data;
- if (!sev->need_init)
+ if (!to_kvm_sev_info(kvm)->need_init)
return -EINVAL;
if (kvm->arch.vm_type != KVM_X86_SEV_VM &&
@@ -543,14 +549,14 @@ static int __sev_issue_cmd(int fd, int id, void *data, int *error)
static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
return __sev_issue_cmd(sev->fd, id, data, error);
}
static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
struct sev_data_launch_start start;
struct kvm_sev_launch_start params;
void *dh_blob, *session_blob;
@@ -563,6 +569,8 @@ static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
return -EFAULT;
+ sev->policy = params.policy;
+
memset(&start, 0, sizeof(start));
dh_blob = NULL;
@@ -622,9 +630,9 @@ e_free_dh:
static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
unsigned long ulen, unsigned long *n,
- int write)
+ unsigned int flags)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
unsigned long npages, size;
int npinned;
unsigned long locked, lock_limit;
@@ -663,7 +671,7 @@ static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
return ERR_PTR(-ENOMEM);
/* Pin the user virtual address. */
- npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
+ npinned = pin_user_pages_fast(uaddr, npages, flags, pages);
if (npinned != npages) {
pr_err("SEV: Failure locking %lu pages.\n", npages);
ret = -ENOMEM;
@@ -686,11 +694,9 @@ err:
static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
unsigned long npages)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
-
unpin_user_pages(pages, npages);
kvfree(pages);
- sev->pages_locked -= npages;
+ to_kvm_sev_info(kvm)->pages_locked -= npages;
}
static void sev_clflush_pages(struct page *pages[], unsigned long npages)
@@ -710,6 +716,33 @@ static void sev_clflush_pages(struct page *pages[], unsigned long npages)
}
}
+static void sev_writeback_caches(struct kvm *kvm)
+{
+ /*
+ * Note, the caller is responsible for ensuring correctness if the mask
+ * can be modified, e.g. if a CPU could be doing VMRUN.
+ */
+ if (cpumask_empty(to_kvm_sev_info(kvm)->have_run_cpus))
+ return;
+
+ /*
+ * Ensure that all dirty guest tagged cache entries are written back
+ * before releasing the pages back to the system for use. CLFLUSH will
+ * not do this without SME_COHERENT, and flushing many cache lines
+ * individually is slower than blasting WBINVD for large VMs, so issue
+ * WBNOINVD (or WBINVD if the "no invalidate" variant is unsupported)
+ * on CPUs that have done VMRUN, i.e. may have dirtied data using the
+ * VM's ASID.
+ *
+ * For simplicity, never remove CPUs from the bitmap. Ideally, KVM
+ * would clear the mask when flushing caches, but doing so requires
+ * serializing multiple calls and having responding CPUs (to the IPI)
+ * mark themselves as still running if they are running (or about to
+ * run) a vCPU for the VM.
+ */
+ wbnoinvd_on_cpus_mask(to_kvm_sev_info(kvm)->have_run_cpus);
+}
+
static unsigned long get_num_contig_pages(unsigned long idx,
struct page **inpages, unsigned long npages)
{
@@ -734,7 +767,6 @@ static unsigned long get_num_contig_pages(unsigned long idx,
static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct kvm_sev_launch_update_data params;
struct sev_data_launch_update_data data;
struct page **inpages;
@@ -751,7 +783,7 @@ static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
vaddr_end = vaddr + size;
/* Lock the user memory. */
- inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
+ inpages = sev_pin_memory(kvm, vaddr, size, &npages, FOLL_WRITE);
if (IS_ERR(inpages))
return PTR_ERR(inpages);
@@ -762,7 +794,7 @@ static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
sev_clflush_pages(inpages, npages);
data.reserved = 0;
- data.handle = sev->handle;
+ data.handle = to_kvm_sev_info(kvm)->handle;
for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
int offset, len;
@@ -802,7 +834,7 @@ e_unpin:
static int sev_es_sync_vmsa(struct vcpu_svm *svm)
{
struct kvm_vcpu *vcpu = &svm->vcpu;
- struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
struct sev_es_save_area *save = svm->sev_es.vmsa;
struct xregs_state *xsave;
const u8 *s;
@@ -972,7 +1004,6 @@ static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
void __user *measure = u64_to_user_ptr(argp->data);
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_launch_measure data;
struct kvm_sev_launch_measure params;
void __user *p = NULL;
@@ -1005,7 +1036,7 @@ static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
}
cmd:
- data.handle = sev->handle;
+ data.handle = to_kvm_sev_info(kvm)->handle;
ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
/*
@@ -1033,19 +1064,17 @@ e_free_blob:
static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_launch_finish data;
if (!sev_guest(kvm))
return -ENOTTY;
- data.handle = sev->handle;
+ data.handle = to_kvm_sev_info(kvm)->handle;
return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
}
static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct kvm_sev_guest_status params;
struct sev_data_guest_status data;
int ret;
@@ -1055,7 +1084,7 @@ static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
memset(&data, 0, sizeof(data));
- data.handle = sev->handle;
+ data.handle = to_kvm_sev_info(kvm)->handle;
ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
if (ret)
return ret;
@@ -1074,11 +1103,10 @@ static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
unsigned long dst, int size,
int *error, bool enc)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_dbg data;
data.reserved = 0;
- data.handle = sev->handle;
+ data.handle = to_kvm_sev_info(kvm)->handle;
data.dst_addr = dst;
data.src_addr = src;
data.len = size;
@@ -1250,7 +1278,7 @@ static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
if (IS_ERR(src_p))
return PTR_ERR(src_p);
- dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
+ dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, FOLL_WRITE);
if (IS_ERR(dst_p)) {
sev_unpin_memory(kvm, src_p, n);
return PTR_ERR(dst_p);
@@ -1302,7 +1330,6 @@ err:
static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_launch_secret data;
struct kvm_sev_launch_secret params;
struct page **pages;
@@ -1316,7 +1343,7 @@ static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
return -EFAULT;
- pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
+ pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, FOLL_WRITE);
if (IS_ERR(pages))
return PTR_ERR(pages);
@@ -1358,7 +1385,7 @@ static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
data.hdr_address = __psp_pa(hdr);
data.hdr_len = params.hdr_len;
- data.handle = sev->handle;
+ data.handle = to_kvm_sev_info(kvm)->handle;
ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
kfree(hdr);
@@ -1378,7 +1405,6 @@ e_unpin_memory:
static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
void __user *report = u64_to_user_ptr(argp->data);
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_attestation_report data;
struct kvm_sev_attestation_report params;
void __user *p;
@@ -1411,7 +1437,7 @@ static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
}
cmd:
- data.handle = sev->handle;
+ data.handle = to_kvm_sev_info(kvm)->handle;
ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
/*
* If we query the session length, FW responded with expected data.
@@ -1441,12 +1467,11 @@ static int
__sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
struct kvm_sev_send_start *params)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_send_start data;
int ret;
memset(&data, 0, sizeof(data));
- data.handle = sev->handle;
+ data.handle = to_kvm_sev_info(kvm)->handle;
ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
params->session_len = data.session_len;
@@ -1459,7 +1484,6 @@ __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_send_start data;
struct kvm_sev_send_start params;
void *amd_certs, *session_data;
@@ -1520,7 +1544,7 @@ static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
data.amd_certs_len = params.amd_certs_len;
data.session_address = __psp_pa(session_data);
data.session_len = params.session_len;
- data.handle = sev->handle;
+ data.handle = to_kvm_sev_info(kvm)->handle;
ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
@@ -1552,12 +1576,11 @@ static int
__sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
struct kvm_sev_send_update_data *params)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_send_update_data data;
int ret;
memset(&data, 0, sizeof(data));
- data.handle = sev->handle;
+ data.handle = to_kvm_sev_info(kvm)->handle;
ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
params->hdr_len = data.hdr_len;
@@ -1572,7 +1595,6 @@ __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_send_update_data data;
struct kvm_sev_send_update_data params;
void *hdr, *trans_data;
@@ -1608,11 +1630,11 @@ static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
/* allocate memory for header and transport buffer */
ret = -ENOMEM;
- hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
+ hdr = kzalloc(params.hdr_len, GFP_KERNEL);
if (!hdr)
goto e_unpin;
- trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
+ trans_data = kzalloc(params.trans_len, GFP_KERNEL);
if (!trans_data)
goto e_free_hdr;
@@ -1626,7 +1648,7 @@ static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
data.guest_address |= sev_me_mask;
data.guest_len = params.guest_len;
- data.handle = sev->handle;
+ data.handle = to_kvm_sev_info(kvm)->handle;
ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
@@ -1657,31 +1679,29 @@ e_unpin:
static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_send_finish data;
if (!sev_guest(kvm))
return -ENOTTY;
- data.handle = sev->handle;
+ data.handle = to_kvm_sev_info(kvm)->handle;
return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
}
static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_send_cancel data;
if (!sev_guest(kvm))
return -ENOTTY;
- data.handle = sev->handle;
+ data.handle = to_kvm_sev_info(kvm)->handle;
return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
}
static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
struct sev_data_receive_start start;
struct kvm_sev_receive_start params;
int *error = &argp->error;
@@ -1755,7 +1775,6 @@ e_free_pdh:
static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct kvm_sev_receive_update_data params;
struct sev_data_receive_update_data data;
void *hdr = NULL, *trans = NULL;
@@ -1798,7 +1817,7 @@ static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
/* Pin guest memory */
guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
- PAGE_SIZE, &n, 1);
+ PAGE_SIZE, &n, FOLL_WRITE);
if (IS_ERR(guest_page)) {
ret = PTR_ERR(guest_page);
goto e_free_trans;
@@ -1815,7 +1834,7 @@ static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
data.guest_address |= sev_me_mask;
data.guest_len = params.guest_len;
- data.handle = sev->handle;
+ data.handle = to_kvm_sev_info(kvm)->handle;
ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
&argp->error);
@@ -1832,13 +1851,12 @@ e_free_hdr:
static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_receive_finish data;
if (!sev_guest(kvm))
return -ENOTTY;
- data.handle = sev->handle;
+ data.handle = to_kvm_sev_info(kvm)->handle;
return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
}
@@ -1858,8 +1876,8 @@ static bool is_cmd_allowed_from_mirror(u32 cmd_id)
static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
{
- struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
- struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
+ struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm);
+ struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm);
int r = -EBUSY;
if (dst_kvm == src_kvm)
@@ -1893,8 +1911,8 @@ release_dst:
static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
{
- struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
- struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
+ struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm);
+ struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm);
mutex_unlock(&dst_kvm->lock);
mutex_unlock(&src_kvm->lock);
@@ -1902,74 +1920,10 @@ static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
atomic_set_release(&src_sev->migration_in_progress, 0);
}
-/* vCPU mutex subclasses. */
-enum sev_migration_role {
- SEV_MIGRATION_SOURCE = 0,
- SEV_MIGRATION_TARGET,
- SEV_NR_MIGRATION_ROLES,
-};
-
-static int sev_lock_vcpus_for_migration(struct kvm *kvm,
- enum sev_migration_role role)
-{
- struct kvm_vcpu *vcpu;
- unsigned long i, j;
-
- kvm_for_each_vcpu(i, vcpu, kvm) {
- if (mutex_lock_killable_nested(&vcpu->mutex, role))
- goto out_unlock;
-
-#ifdef CONFIG_PROVE_LOCKING
- if (!i)
- /*
- * Reset the role to one that avoids colliding with
- * the role used for the first vcpu mutex.
- */
- role = SEV_NR_MIGRATION_ROLES;
- else
- mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
-#endif
- }
-
- return 0;
-
-out_unlock:
-
- kvm_for_each_vcpu(j, vcpu, kvm) {
- if (i == j)
- break;
-
-#ifdef CONFIG_PROVE_LOCKING
- if (j)
- mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
-#endif
-
- mutex_unlock(&vcpu->mutex);
- }
- return -EINTR;
-}
-
-static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
-{
- struct kvm_vcpu *vcpu;
- unsigned long i;
- bool first = true;
-
- kvm_for_each_vcpu(i, vcpu, kvm) {
- if (first)
- first = false;
- else
- mutex_acquire(&vcpu->mutex.dep_map,
- SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
-
- mutex_unlock(&vcpu->mutex);
- }
-}
-
static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
{
- struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
- struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
+ struct kvm_sev_info *dst = to_kvm_sev_info(dst_kvm);
+ struct kvm_sev_info *src = to_kvm_sev_info(src_kvm);
struct kvm_vcpu *dst_vcpu, *src_vcpu;
struct vcpu_svm *dst_svm, *src_svm;
struct kvm_sev_info *mirror;
@@ -2009,8 +1963,7 @@ static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
* and add the new mirror to the list.
*/
if (is_mirroring_enc_context(dst_kvm)) {
- struct kvm_sev_info *owner_sev_info =
- &to_kvm_svm(dst->enc_context_owner)->sev_info;
+ struct kvm_sev_info *owner_sev_info = to_kvm_sev_info(dst->enc_context_owner);
list_del(&src->mirror_entry);
list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
@@ -2053,6 +2006,10 @@ static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
struct kvm_vcpu *src_vcpu;
unsigned long i;
+ if (src->created_vcpus != atomic_read(&src->online_vcpus) ||
+ dst->created_vcpus != atomic_read(&dst->online_vcpus))
+ return -EBUSY;
+
if (!sev_es_guest(src))
return 0;
@@ -2069,7 +2026,7 @@ static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
{
- struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
+ struct kvm_sev_info *dst_sev = to_kvm_sev_info(kvm);
struct kvm_sev_info *src_sev, *cg_cleanup_sev;
CLASS(fd, f)(source_fd);
struct kvm *source_kvm;
@@ -2093,7 +2050,7 @@ int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
goto out_unlock;
}
- src_sev = &to_kvm_svm(source_kvm)->sev_info;
+ src_sev = to_kvm_sev_info(source_kvm);
dst_sev->misc_cg = get_current_misc_cg();
cg_cleanup_sev = dst_sev;
@@ -2104,10 +2061,10 @@ int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
charged = true;
}
- ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
+ ret = kvm_lock_all_vcpus(kvm);
if (ret)
goto out_dst_cgroup;
- ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
+ ret = kvm_lock_all_vcpus(source_kvm);
if (ret)
goto out_dst_vcpu;
@@ -2115,15 +2072,26 @@ int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
if (ret)
goto out_source_vcpu;
+ /*
+ * Allocate a new have_run_cpus for the destination, i.e. don't copy
+ * the set of CPUs from the source. If a CPU was used to run a vCPU in
+ * the source VM but is never used for the destination VM, then the CPU
+ * can only have cached memory that was accessible to the source VM.
+ */
+ if (!zalloc_cpumask_var(&dst_sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) {
+ ret = -ENOMEM;
+ goto out_source_vcpu;
+ }
+
sev_migrate_from(kvm, source_kvm);
kvm_vm_dead(source_kvm);
cg_cleanup_sev = src_sev;
ret = 0;
out_source_vcpu:
- sev_unlock_vcpus_for_migration(source_kvm);
+ kvm_unlock_all_vcpus(source_kvm);
out_dst_vcpu:
- sev_unlock_vcpus_for_migration(kvm);
+ kvm_unlock_all_vcpus(kvm);
out_dst_cgroup:
/* Operates on the source on success, on the destination on failure. */
if (charged)
@@ -2181,7 +2149,7 @@ static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp)
static int snp_bind_asid(struct kvm *kvm, int *error)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
struct sev_data_snp_activate data = {0};
data.gctx_paddr = __psp_pa(sev->snp_context);
@@ -2191,7 +2159,7 @@ static int snp_bind_asid(struct kvm *kvm, int *error)
static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
struct sev_data_snp_launch_start start = {0};
struct kvm_sev_snp_launch_start params;
int rc;
@@ -2213,12 +2181,10 @@ static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
return -EINVAL;
/* Check for policy bits that must be set */
- if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO) ||
- !(params.policy & SNP_POLICY_MASK_SMT))
+ if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO))
return -EINVAL;
- if (params.policy & SNP_POLICY_MASK_SINGLE_SOCKET)
- return -EINVAL;
+ sev->policy = params.policy;
sev->snp_context = snp_context_create(kvm, argp);
if (!sev->snp_context)
@@ -2260,7 +2226,7 @@ static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pf
void __user *src, int order, void *opaque)
{
struct sev_gmem_populate_args *sev_populate_args = opaque;
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
int n_private = 0, ret, i;
int npages = (1 << order);
gfn_t gfn;
@@ -2350,7 +2316,7 @@ err:
static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
struct sev_gmem_populate_args sev_populate_args = {0};
struct kvm_sev_snp_launch_update params;
struct kvm_memory_slot *memslot;
@@ -2434,7 +2400,7 @@ out:
static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
struct sev_data_snp_launch_update data = {};
struct kvm_vcpu *vcpu;
unsigned long i;
@@ -2482,7 +2448,7 @@ static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
struct kvm_sev_snp_launch_finish params;
struct sev_data_snp_launch_finish *data;
void *id_block = NULL, *id_auth = NULL;
@@ -2677,7 +2643,7 @@ out:
int sev_mem_enc_register_region(struct kvm *kvm,
struct kvm_enc_region *range)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
struct enc_region *region;
int ret = 0;
@@ -2696,7 +2662,8 @@ int sev_mem_enc_register_region(struct kvm *kvm,
return -ENOMEM;
mutex_lock(&kvm->lock);
- region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
+ region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages,
+ FOLL_WRITE | FOLL_LONGTERM);
if (IS_ERR(region->pages)) {
ret = PTR_ERR(region->pages);
mutex_unlock(&kvm->lock);
@@ -2729,7 +2696,7 @@ e_free:
static struct enc_region *
find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
struct list_head *head = &sev->regions_list;
struct enc_region *i;
@@ -2773,12 +2740,7 @@ int sev_mem_enc_unregister_region(struct kvm *kvm,
goto failed;
}
- /*
- * Ensure that all guest tagged cache entries are flushed before
- * releasing the pages back to the system for use. CLFLUSH will
- * not do this, so issue a WBINVD.
- */
- wbinvd_on_all_cpus();
+ sev_writeback_caches(kvm);
__unregister_enc_region_locked(kvm, region);
@@ -2820,13 +2782,18 @@ int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
goto e_unlock;
}
+ mirror_sev = to_kvm_sev_info(kvm);
+ if (!zalloc_cpumask_var(&mirror_sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) {
+ ret = -ENOMEM;
+ goto e_unlock;
+ }
+
/*
* The mirror kvm holds an enc_context_owner ref so its asid can't
* disappear until we're done with it
*/
- source_sev = &to_kvm_svm(source_kvm)->sev_info;
+ source_sev = to_kvm_sev_info(source_kvm);
kvm_get_kvm(source_kvm);
- mirror_sev = &to_kvm_svm(kvm)->sev_info;
list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
/* Set enc_context_owner and copy its encryption context over */
@@ -2854,7 +2821,7 @@ e_unlock:
static int snp_decommission_context(struct kvm *kvm)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
struct sev_data_snp_addr data = {};
int ret;
@@ -2879,7 +2846,7 @@ static int snp_decommission_context(struct kvm *kvm)
void sev_vm_destroy(struct kvm *kvm)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
struct list_head *head = &sev->regions_list;
struct list_head *pos, *q;
@@ -2888,7 +2855,13 @@ void sev_vm_destroy(struct kvm *kvm)
WARN_ON(!list_empty(&sev->mirror_vms));
- /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
+ free_cpumask_var(sev->have_run_cpus);
+
+ /*
+ * If this is a mirror VM, remove it from the owner's list of a mirrors
+ * and skip ASID cleanup (the ASID is tied to the lifetime of the owner).
+ * Note, mirror VMs don't support registering encrypted regions.
+ */
if (is_mirroring_enc_context(kvm)) {
struct kvm *owner_kvm = sev->enc_context_owner;
@@ -2899,12 +2872,6 @@ void sev_vm_destroy(struct kvm *kvm)
return;
}
- /*
- * Ensure that all guest tagged cache entries are flushed before
- * releasing the pages back to the system for use. CLFLUSH will
- * not do this, so issue a WBINVD.
- */
- wbinvd_on_all_cpus();
/*
* if userspace was terminated before unregistering the memory regions
@@ -2950,9 +2917,37 @@ void __init sev_set_cpu_caps(void)
}
}
+static bool is_sev_snp_initialized(void)
+{
+ struct sev_user_data_snp_status *status;
+ struct sev_data_snp_addr buf;
+ bool initialized = false;
+ int ret, error = 0;
+
+ status = snp_alloc_firmware_page(GFP_KERNEL | __GFP_ZERO);
+ if (!status)
+ return false;
+
+ buf.address = __psp_pa(status);
+ ret = sev_do_cmd(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &error);
+ if (ret) {
+ pr_err("SEV: SNP_PLATFORM_STATUS failed ret=%d, fw_error=%d (%#x)\n",
+ ret, error, error);
+ goto out;
+ }
+
+ initialized = !!status->state;
+
+out:
+ snp_free_firmware_page(status);
+
+ return initialized;
+}
+
void __init sev_hardware_setup(void)
{
unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
+ struct sev_platform_init_args init_args = {0};
bool sev_snp_supported = false;
bool sev_es_supported = false;
bool sev_supported = false;
@@ -2972,6 +2967,16 @@ void __init sev_hardware_setup(void)
WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID)))
goto out;
+ /*
+ * The kernel's initcall infrastructure lacks the ability to express
+ * dependencies between initcalls, whereas the modules infrastructure
+ * automatically handles dependencies via symbol loading. Ensure the
+ * PSP SEV driver is initialized before proceeding if KVM is built-in,
+ * as the dependency isn't handled by the initcall infrastructure.
+ */
+ if (IS_BUILTIN(CONFIG_KVM_AMD) && sev_module_init())
+ goto out;
+
/* Retrieve SEV CPUID information */
cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
@@ -3043,6 +3048,14 @@ void __init sev_hardware_setup(void)
sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP);
out:
+ if (sev_enabled) {
+ init_args.probe = true;
+ if (sev_platform_init(&init_args))
+ sev_supported = sev_es_supported = sev_snp_supported = false;
+ else if (sev_snp_supported)
+ sev_snp_supported = is_sev_snp_initialized();
+ }
+
if (boot_cpu_has(X86_FEATURE_SEV))
pr_info("SEV %s (ASIDs %u - %u)\n",
sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" :
@@ -3051,11 +3064,11 @@ out:
min_sev_asid, max_sev_asid);
if (boot_cpu_has(X86_FEATURE_SEV_ES))
pr_info("SEV-ES %s (ASIDs %u - %u)\n",
- sev_es_supported ? "enabled" : "disabled",
+ str_enabled_disabled(sev_es_supported),
min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
if (boot_cpu_has(X86_FEATURE_SEV_SNP))
pr_info("SEV-SNP %s (ASIDs %u - %u)\n",
- sev_snp_supported ? "enabled" : "disabled",
+ str_enabled_disabled(sev_snp_supported),
min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
sev_enabled = sev_supported;
@@ -3084,6 +3097,8 @@ void sev_hardware_unsetup(void)
misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
+
+ sev_platform_shutdown();
}
int sev_cpu_init(struct svm_cpu_data *sd)
@@ -3126,30 +3141,29 @@ static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
/*
* VM Page Flush takes a host virtual address and a guest ASID. Fall
- * back to WBINVD if this faults so as not to make any problems worse
- * by leaving stale encrypted data in the cache.
+ * back to full writeback of caches if this faults so as not to make
+ * any problems worse by leaving stale encrypted data in the cache.
*/
- if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
- goto do_wbinvd;
+ if (WARN_ON_ONCE(wrmsrq_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
+ goto do_sev_writeback_caches;
return;
-do_wbinvd:
- wbinvd_on_all_cpus();
+do_sev_writeback_caches:
+ sev_writeback_caches(vcpu->kvm);
}
void sev_guest_memory_reclaimed(struct kvm *kvm)
{
/*
* With SNP+gmem, private/encrypted memory is unreachable via the
- * hva-based mmu notifiers, so these events are only actually
- * pertaining to shared pages where there is no need to perform
- * the WBINVD to flush associated caches.
+ * hva-based mmu notifiers, i.e. these events are explicitly scoped to
+ * shared pages, where there's no need to flush caches.
*/
if (!sev_guest(kvm) || sev_snp_guest(kvm))
return;
- wbinvd_on_all_cpus();
+ sev_writeback_caches(kvm);
}
void sev_free_vcpu(struct kvm_vcpu *vcpu)
@@ -3183,9 +3197,14 @@ skip_vmsa_free:
kvfree(svm->sev_es.ghcb_sa);
}
+static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
+{
+ return (((u64)control->exit_code_hi) << 32) | control->exit_code;
+}
+
static void dump_ghcb(struct vcpu_svm *svm)
{
- struct ghcb *ghcb = svm->sev_es.ghcb;
+ struct vmcb_control_area *control = &svm->vmcb->control;
unsigned int nbits;
/* Re-use the dump_invalid_vmcb module parameter */
@@ -3194,18 +3213,24 @@ static void dump_ghcb(struct vcpu_svm *svm)
return;
}
- nbits = sizeof(ghcb->save.valid_bitmap) * 8;
+ nbits = sizeof(svm->sev_es.valid_bitmap) * 8;
- pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
+ /*
+ * Print KVM's snapshot of the GHCB values that were (unsuccessfully)
+ * used to handle the exit. If the guest has since modified the GHCB
+ * itself, dumping the raw GHCB won't help debug why KVM was unable to
+ * handle the VMGEXIT that KVM observed.
+ */
+ pr_err("GHCB (GPA=%016llx) snapshot:\n", svm->vmcb->control.ghcb_gpa);
pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
- ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
+ kvm_ghcb_get_sw_exit_code(control), kvm_ghcb_sw_exit_code_is_valid(svm));
pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
- ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
+ control->exit_info_1, kvm_ghcb_sw_exit_info_1_is_valid(svm));
pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
- ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
+ control->exit_info_2, kvm_ghcb_sw_exit_info_2_is_valid(svm));
pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
- ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
- pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
+ svm->sev_es.sw_scratch, kvm_ghcb_sw_scratch_is_valid(svm));
+ pr_err("%-20s%*pb\n", "valid_bitmap", nbits, svm->sev_es.valid_bitmap);
}
static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
@@ -3261,7 +3286,7 @@ static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
if (kvm_ghcb_xcr0_is_valid(svm)) {
vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
- kvm_update_cpuid_runtime(vcpu);
+ vcpu->arch.cpuid_dynamic_bits_dirty = true;
}
/* Copy the GHCB exit information into the VMCB fields */
@@ -3276,11 +3301,6 @@ static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
}
-static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
-{
- return (((u64)control->exit_code_hi) << 32) | control->exit_code;
-}
-
static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
{
struct vmcb_control_area *control = &svm->vmcb->control;
@@ -3420,8 +3440,7 @@ vmgexit_err:
dump_ghcb(svm);
}
- ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
- ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason);
+ svm_vmgexit_bad_input(svm, reason);
/* Resume the guest to "return" the error code. */
return 1;
@@ -3462,10 +3481,28 @@ void sev_es_unmap_ghcb(struct vcpu_svm *svm)
svm->sev_es.ghcb = NULL;
}
-void pre_sev_run(struct vcpu_svm *svm, int cpu)
+int pre_sev_run(struct vcpu_svm *svm, int cpu)
{
struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
- unsigned int asid = sev_get_asid(svm->vcpu.kvm);
+ struct kvm *kvm = svm->vcpu.kvm;
+ unsigned int asid = sev_get_asid(kvm);
+
+ /*
+ * Reject KVM_RUN if userspace attempts to run the vCPU with an invalid
+ * VMSA, e.g. if userspace forces the vCPU to be RUNNABLE after an SNP
+ * AP Destroy event.
+ */
+ if (sev_es_guest(kvm) && !VALID_PAGE(svm->vmcb->control.vmsa_pa))
+ return -EINVAL;
+
+ /*
+ * To optimize cache flushes when memory is reclaimed from an SEV VM,
+ * track physical CPUs that enter the guest for SEV VMs and thus can
+ * have encrypted, dirty data in the cache, and flush caches only for
+ * CPUs that have entered the guest.
+ */
+ if (!cpumask_test_cpu(cpu, to_kvm_sev_info(kvm)->have_run_cpus))
+ cpumask_set_cpu(cpu, to_kvm_sev_info(kvm)->have_run_cpus);
/* Assign the asid allocated with this SEV guest */
svm->asid = asid;
@@ -3478,11 +3515,12 @@ void pre_sev_run(struct vcpu_svm *svm, int cpu)
*/
if (sd->sev_vmcbs[asid] == svm->vmcb &&
svm->vcpu.arch.last_vmentry_cpu == cpu)
- return;
+ return 0;
sd->sev_vmcbs[asid] = svm->vmcb;
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
+ return 0;
}
#define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE)
@@ -3564,8 +3602,7 @@ static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
return 0;
e_scratch:
- ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
- ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
+ svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_SCRATCH_AREA);
return 1;
}
@@ -3627,13 +3664,20 @@ static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr)
return 1; /* resume guest */
}
- if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) {
+ if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) {
set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
return 1; /* resume guest */
}
vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
+ /*
+ * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
+ * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
+ * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting
+ * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
+ */
+ vcpu->run->hypercall.ret = 0;
vcpu->run->hypercall.args[0] = gpa;
vcpu->run->hypercall.args[1] = 1;
vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE)
@@ -3658,7 +3702,14 @@ static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret)
svm->sev_es.psc_inflight = 0;
svm->sev_es.psc_idx = 0;
svm->sev_es.psc_2m = false;
- ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, psc_ret);
+
+ /*
+ * PSC requests always get a "no action" response in SW_EXITINFO1, with
+ * a PSC-specific return code in SW_EXITINFO2 that provides the "real"
+ * return code. E.g. if the PSC request was interrupted, the need to
+ * retry is communicated via SW_EXITINFO2, not SW_EXITINFO1.
+ */
+ svm_vmgexit_no_action(svm, psc_ret);
}
static void __snp_complete_one_psc(struct vcpu_svm *svm)
@@ -3710,7 +3761,7 @@ static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc)
bool huge;
u64 gfn;
- if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) {
+ if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) {
snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
return 1;
}
@@ -3797,6 +3848,13 @@ next_range:
case VMGEXIT_PSC_OP_SHARED:
vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
+ /*
+ * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
+ * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
+ * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting
+ * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
+ */
+ vcpu->run->hypercall.ret = 0;
vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn);
vcpu->run->hypercall.args[1] = npages;
vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE
@@ -3820,113 +3878,93 @@ next_range:
goto next_range;
}
- unreachable();
+ BUG();
}
-static int __sev_snp_update_protected_guest_state(struct kvm_vcpu *vcpu)
+/*
+ * Invoked as part of svm_vcpu_reset() processing of an init event.
+ */
+void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
+ struct kvm_memory_slot *slot;
+ struct page *page;
+ kvm_pfn_t pfn;
+ gfn_t gfn;
- WARN_ON(!mutex_is_locked(&svm->sev_es.snp_vmsa_mutex));
+ if (!sev_snp_guest(vcpu->kvm))
+ return;
+
+ guard(mutex)(&svm->sev_es.snp_vmsa_mutex);
+
+ if (!svm->sev_es.snp_ap_waiting_for_reset)
+ return;
+
+ svm->sev_es.snp_ap_waiting_for_reset = false;
/* Mark the vCPU as offline and not runnable */
vcpu->arch.pv.pv_unhalted = false;
- vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
+ kvm_set_mp_state(vcpu, KVM_MP_STATE_HALTED);
/* Clear use of the VMSA */
svm->vmcb->control.vmsa_pa = INVALID_PAGE;
- if (VALID_PAGE(svm->sev_es.snp_vmsa_gpa)) {
- gfn_t gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa);
- struct kvm_memory_slot *slot;
- struct page *page;
- kvm_pfn_t pfn;
-
- slot = gfn_to_memslot(vcpu->kvm, gfn);
- if (!slot)
- return -EINVAL;
-
- /*
- * The new VMSA will be private memory guest memory, so
- * retrieve the PFN from the gmem backend.
- */
- if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, &page, NULL))
- return -EINVAL;
-
- /*
- * From this point forward, the VMSA will always be a
- * guest-mapped page rather than the initial one allocated
- * by KVM in svm->sev_es.vmsa. In theory, svm->sev_es.vmsa
- * could be free'd and cleaned up here, but that involves
- * cleanups like wbinvd_on_all_cpus() which would ideally
- * be handled during teardown rather than guest boot.
- * Deferring that also allows the existing logic for SEV-ES
- * VMSAs to be re-used with minimal SNP-specific changes.
- */
- svm->sev_es.snp_has_guest_vmsa = true;
-
- /* Use the new VMSA */
- svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn);
-
- /* Mark the vCPU as runnable */
- vcpu->arch.pv.pv_unhalted = false;
- vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
-
- svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
-
- /*
- * gmem pages aren't currently migratable, but if this ever
- * changes then care should be taken to ensure
- * svm->sev_es.vmsa is pinned through some other means.
- */
- kvm_release_page_clean(page);
- }
-
/*
* When replacing the VMSA during SEV-SNP AP creation,
* mark the VMCB dirty so that full state is always reloaded.
*/
vmcb_mark_all_dirty(svm->vmcb);
- return 0;
-}
+ if (!VALID_PAGE(svm->sev_es.snp_vmsa_gpa))
+ return;
-/*
- * Invoked as part of svm_vcpu_reset() processing of an init event.
- */
-void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu)
-{
- struct vcpu_svm *svm = to_svm(vcpu);
- int ret;
+ gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa);
+ svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
- if (!sev_snp_guest(vcpu->kvm))
+ slot = gfn_to_memslot(vcpu->kvm, gfn);
+ if (!slot)
return;
- mutex_lock(&svm->sev_es.snp_vmsa_mutex);
+ /*
+ * The new VMSA will be private memory guest memory, so retrieve the
+ * PFN from the gmem backend.
+ */
+ if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, &page, NULL))
+ return;
- if (!svm->sev_es.snp_ap_waiting_for_reset)
- goto unlock;
+ /*
+ * From this point forward, the VMSA will always be a guest-mapped page
+ * rather than the initial one allocated by KVM in svm->sev_es.vmsa. In
+ * theory, svm->sev_es.vmsa could be free'd and cleaned up here, but
+ * that involves cleanups like flushing caches, which would ideally be
+ * handled during teardown rather than guest boot. Deferring that also
+ * allows the existing logic for SEV-ES VMSAs to be re-used with
+ * minimal SNP-specific changes.
+ */
+ svm->sev_es.snp_has_guest_vmsa = true;
- svm->sev_es.snp_ap_waiting_for_reset = false;
+ /* Use the new VMSA */
+ svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn);
- ret = __sev_snp_update_protected_guest_state(vcpu);
- if (ret)
- vcpu_unimpl(vcpu, "snp: AP state update on init failed\n");
+ /* Mark the vCPU as runnable */
+ kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
-unlock:
- mutex_unlock(&svm->sev_es.snp_vmsa_mutex);
+ /*
+ * gmem pages aren't currently migratable, but if this ever changes
+ * then care should be taken to ensure svm->sev_es.vmsa is pinned
+ * through some other means.
+ */
+ kvm_release_page_clean(page);
}
static int sev_snp_ap_creation(struct vcpu_svm *svm)
{
- struct kvm_sev_info *sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm);
struct kvm_vcpu *vcpu = &svm->vcpu;
struct kvm_vcpu *target_vcpu;
struct vcpu_svm *target_svm;
unsigned int request;
unsigned int apic_id;
- bool kick;
- int ret;
request = lower_32_bits(svm->vmcb->control.exit_info_1);
apic_id = upper_32_bits(svm->vmcb->control.exit_info_1);
@@ -3939,47 +3977,23 @@ static int sev_snp_ap_creation(struct vcpu_svm *svm)
return -EINVAL;
}
- ret = 0;
-
target_svm = to_svm(target_vcpu);
- /*
- * The target vCPU is valid, so the vCPU will be kicked unless the
- * request is for CREATE_ON_INIT. For any errors at this stage, the
- * kick will place the vCPU in an non-runnable state.
- */
- kick = true;
-
- mutex_lock(&target_svm->sev_es.snp_vmsa_mutex);
-
- target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
- target_svm->sev_es.snp_ap_waiting_for_reset = true;
-
- /* Interrupt injection mode shouldn't change for AP creation */
- if (request < SVM_VMGEXIT_AP_DESTROY) {
- u64 sev_features;
-
- sev_features = vcpu->arch.regs[VCPU_REGS_RAX];
- sev_features ^= sev->vmsa_features;
-
- if (sev_features & SVM_SEV_FEAT_INT_INJ_MODES) {
- vcpu_unimpl(vcpu, "vmgexit: invalid AP injection mode [%#lx] from guest\n",
- vcpu->arch.regs[VCPU_REGS_RAX]);
- ret = -EINVAL;
- goto out;
- }
- }
+ guard(mutex)(&target_svm->sev_es.snp_vmsa_mutex);
switch (request) {
case SVM_VMGEXIT_AP_CREATE_ON_INIT:
- kick = false;
- fallthrough;
case SVM_VMGEXIT_AP_CREATE:
+ if (vcpu->arch.regs[VCPU_REGS_RAX] != sev->vmsa_features) {
+ vcpu_unimpl(vcpu, "vmgexit: mismatched AP sev_features [%#lx] != [%#llx] from guest\n",
+ vcpu->arch.regs[VCPU_REGS_RAX], sev->vmsa_features);
+ return -EINVAL;
+ }
+
if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) {
vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n",
svm->vmcb->control.exit_info_2);
- ret = -EINVAL;
- goto out;
+ return -EINVAL;
}
/*
@@ -3993,30 +4007,30 @@ static int sev_snp_ap_creation(struct vcpu_svm *svm)
vcpu_unimpl(vcpu,
"vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n",
svm->vmcb->control.exit_info_2);
- ret = -EINVAL;
- goto out;
+ return -EINVAL;
}
target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2;
break;
case SVM_VMGEXIT_AP_DESTROY:
+ target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
break;
default:
vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n",
request);
- ret = -EINVAL;
- break;
+ return -EINVAL;
}
-out:
- if (kick) {
- kvm_make_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu);
- kvm_vcpu_kick(target_vcpu);
- }
+ target_svm->sev_es.snp_ap_waiting_for_reset = true;
- mutex_unlock(&target_svm->sev_es.snp_vmsa_mutex);
+ /*
+ * Unless Creation is deferred until INIT, signal the vCPU to update
+ * its state.
+ */
+ if (request != SVM_VMGEXIT_AP_CREATE_ON_INIT)
+ kvm_make_request_and_kick(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu);
- return ret;
+ return 0;
}
static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
@@ -4055,7 +4069,8 @@ static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_
goto out_unlock;
}
- ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, SNP_GUEST_ERR(0, fw_err));
+ /* No action is requested *from KVM* if there was a firmware error. */
+ svm_vmgexit_no_action(svm, SNP_GUEST_ERR(0, fw_err));
ret = 1; /* resume guest */
@@ -4111,8 +4126,7 @@ static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t r
return snp_handle_guest_req(svm, req_gpa, resp_gpa);
request_invalid:
- ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
- ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
+ svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
return 1; /* resume guest */
}
@@ -4120,7 +4134,7 @@ static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
{
struct vmcb_control_area *control = &svm->vmcb->control;
struct kvm_vcpu *vcpu = &svm->vcpu;
- struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
u64 ghcb_info;
int ret = 1;
@@ -4304,8 +4318,7 @@ int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
if (ret)
return ret;
- ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0);
- ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0);
+ svm_vmgexit_success(svm, 0);
exit_code = kvm_ghcb_get_sw_exit_code(control);
switch (exit_code) {
@@ -4340,7 +4353,7 @@ int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
ret = kvm_emulate_ap_reset_hold(vcpu);
break;
case SVM_VMGEXIT_AP_JUMP_TABLE: {
- struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
switch (control->exit_info_1) {
case 0:
@@ -4349,21 +4362,19 @@ int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
break;
case 1:
/* Get AP jump table address */
- ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table);
+ svm_vmgexit_success(svm, sev->ap_jump_table);
break;
default:
pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
control->exit_info_1);
- ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
- ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
+ svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
}
ret = 1;
break;
}
case SVM_VMGEXIT_HV_FEATURES:
- ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_HV_FT_SUPPORTED);
-
+ svm_vmgexit_success(svm, GHCB_HV_FT_SUPPORTED);
ret = 1;
break;
case SVM_VMGEXIT_TERM_REQUEST:
@@ -4384,8 +4395,7 @@ int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
case SVM_VMGEXIT_AP_CREATION:
ret = sev_snp_ap_creation(svm);
if (ret) {
- ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
- ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
+ svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
}
ret = 1;
@@ -4430,35 +4440,33 @@ int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
count, in);
}
-static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm)
+void sev_es_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
{
- struct kvm_vcpu *vcpu = &svm->vcpu;
-
- if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
- bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
- guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
+ /* Clear intercepts on MSRs that are context switched by hardware. */
+ svm_disable_intercept_for_msr(vcpu, MSR_AMD64_SEV_ES_GHCB, MSR_TYPE_RW);
+ svm_disable_intercept_for_msr(vcpu, MSR_EFER, MSR_TYPE_RW);
+ svm_disable_intercept_for_msr(vcpu, MSR_IA32_CR_PAT, MSR_TYPE_RW);
- set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux);
- }
+ if (boot_cpu_has(X86_FEATURE_V_TSC_AUX))
+ svm_set_intercept_for_msr(vcpu, MSR_TSC_AUX, MSR_TYPE_RW,
+ !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
+ !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID));
/*
* For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if
* the host/guest supports its use.
*
- * guest_can_use() checks a number of requirements on the host/guest to
- * ensure that MSR_IA32_XSS is available, but it might report true even
- * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host
- * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better
- * to further check that the guest CPUID actually supports
- * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved
- * guests will still get intercepted and caught in the normal
- * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths.
+ * KVM treats the guest as being capable of using XSAVES even if XSAVES
+ * isn't enabled in guest CPUID as there is no intercept for XSAVES,
+ * i.e. the guest can use XSAVES/XRSTOR to read/write XSS if XSAVE is
+ * exposed to the guest and XSAVES is supported in hardware. Condition
+ * full XSS passthrough on the guest being able to use XSAVES *and*
+ * XSAVES being exposed to the guest so that KVM can at least honor
+ * guest CPUID for RDMSR and WRMSR.
*/
- if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
- guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
- set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1);
- else
- set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0);
+ svm_set_intercept_for_msr(vcpu, MSR_IA32_XSS, MSR_TYPE_RW,
+ !guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) ||
+ !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES));
}
void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
@@ -4470,15 +4478,12 @@ void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
if (best)
vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
-
- if (sev_es_guest(svm->vcpu.kvm))
- sev_es_vcpu_after_set_cpuid(svm);
}
static void sev_es_init_vmcb(struct vcpu_svm *svm)
{
+ struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm);
struct vmcb *vmcb = svm->vmcb01.ptr;
- struct kvm_vcpu *vcpu = &svm->vcpu;
svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
@@ -4489,8 +4494,16 @@ static void sev_es_init_vmcb(struct vcpu_svm *svm)
* the VMSA will be NULL if this vCPU is the destination for intrahost
* migration, and will be copied later.
*/
- if (svm->sev_es.vmsa && !svm->sev_es.snp_has_guest_vmsa)
- svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
+ if (!svm->sev_es.snp_has_guest_vmsa) {
+ if (svm->sev_es.vmsa)
+ svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
+ else
+ svm->vmcb->control.vmsa_pa = INVALID_PAGE;
+ }
+
+ if (cpu_feature_enabled(X86_FEATURE_ALLOWED_SEV_FEATURES))
+ svm->vmcb->control.allowed_sev_features = sev->vmsa_features |
+ VMCB_ALLOWED_SEV_FEATURES_VALID;
/* Can't intercept CR register access, HV can't modify CR registers */
svm_clr_intercept(svm, INTERCEPT_CR0_READ);
@@ -4528,10 +4541,6 @@ static void sev_es_init_vmcb(struct vcpu_svm *svm)
/* Can't intercept XSETBV, HV can't modify XCR0 directly */
svm_clr_intercept(svm, INTERCEPT_XSETBV);
-
- /* Clear intercepts on selected MSRs */
- set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
- set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
}
void sev_init_vmcb(struct vcpu_svm *svm)
@@ -4552,7 +4561,7 @@ void sev_init_vmcb(struct vcpu_svm *svm)
void sev_es_vcpu_reset(struct vcpu_svm *svm)
{
struct kvm_vcpu *vcpu = &svm->vcpu;
- struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
/*
* Set the GHCB MSR value as per the GHCB specification when emulating
@@ -4567,6 +4576,8 @@ void sev_es_vcpu_reset(struct vcpu_svm *svm)
void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa)
{
+ struct kvm *kvm = svm->vcpu.kvm;
+
/*
* All host state for SEV-ES guests is categorized into three swap types
* based on how it is handled by hardware during a world switch:
@@ -4590,14 +4601,22 @@ void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_are
/*
* If DebugSwap is enabled, debug registers are loaded but NOT saved by
- * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both
- * saves and loads debug registers (Type-A).
+ * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU does
+ * not save or load debug registers. Sadly, KVM can't prevent SNP
+ * guests from lying about DebugSwap on secondary vCPUs, i.e. the
+ * SEV_FEATURES provided at "AP Create" isn't guaranteed to match what
+ * the guest has actually enabled (or not!) in the VMSA.
+ *
+ * If DebugSwap is *possible*, save the masks so that they're restored
+ * if the guest enables DebugSwap. But for the DRs themselves, do NOT
+ * rely on the CPU to restore the host values; KVM will restore them as
+ * needed in common code, via hw_breakpoint_restore(). Note, KVM does
+ * NOT support virtualizing Breakpoint Extensions, i.e. the mask MSRs
+ * don't need to be restored per se, KVM just needs to ensure they are
+ * loaded with the correct values *if* the CPU writes the MSRs.
*/
- if (sev_vcpu_has_debug_swap(svm)) {
- hostsa->dr0 = native_get_debugreg(0);
- hostsa->dr1 = native_get_debugreg(1);
- hostsa->dr2 = native_get_debugreg(2);
- hostsa->dr3 = native_get_debugreg(3);
+ if (sev_vcpu_has_debug_swap(svm) ||
+ (sev_snp_guest(kvm) && cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP))) {
hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
@@ -4622,7 +4641,7 @@ void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
* Return from an AP Reset Hold VMGEXIT, where the guest will
* set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value.
*/
- ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
+ svm_vmgexit_success(svm, 1);
break;
case AP_RESET_HOLD_MSR_PROTO:
/*
@@ -4820,7 +4839,7 @@ static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order)
int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order)
{
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
kvm_pfn_t pfn_aligned;
gfn_t gfn_aligned;
int level, rc;
@@ -4910,7 +4929,7 @@ void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
/*
* SEV-ES avoids host/guest cache coherency issues through
- * WBINVD hooks issued via MMU notifiers during run-time, and
+ * WBNOINVD hooks issued via MMU notifiers during run-time, and
* KVM's VM destroy path at shutdown. Those MMU notifier events
* don't cover gmem since there is no requirement to map pages
* to a HVA in order to use them for a running guest. While the
@@ -4942,3 +4961,97 @@ int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn)
return level;
}
+
+struct vmcb_save_area *sev_decrypt_vmsa(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ struct vmcb_save_area *vmsa;
+ struct kvm_sev_info *sev;
+ int error = 0;
+ int ret;
+
+ if (!sev_es_guest(vcpu->kvm))
+ return NULL;
+
+ /*
+ * If the VMSA has not yet been encrypted, return a pointer to the
+ * current un-encrypted VMSA.
+ */
+ if (!vcpu->arch.guest_state_protected)
+ return (struct vmcb_save_area *)svm->sev_es.vmsa;
+
+ sev = to_kvm_sev_info(vcpu->kvm);
+
+ /* Check if the SEV policy allows debugging */
+ if (sev_snp_guest(vcpu->kvm)) {
+ if (!(sev->policy & SNP_POLICY_DEBUG))
+ return NULL;
+ } else {
+ if (sev->policy & SEV_POLICY_NODBG)
+ return NULL;
+ }
+
+ if (sev_snp_guest(vcpu->kvm)) {
+ struct sev_data_snp_dbg dbg = {0};
+
+ vmsa = snp_alloc_firmware_page(__GFP_ZERO);
+ if (!vmsa)
+ return NULL;
+
+ dbg.gctx_paddr = __psp_pa(sev->snp_context);
+ dbg.src_addr = svm->vmcb->control.vmsa_pa;
+ dbg.dst_addr = __psp_pa(vmsa);
+
+ ret = sev_do_cmd(SEV_CMD_SNP_DBG_DECRYPT, &dbg, &error);
+
+ /*
+ * Return the target page to a hypervisor page no matter what.
+ * If this fails, the page can't be used, so leak it and don't
+ * try to use it.
+ */
+ if (snp_page_reclaim(vcpu->kvm, PHYS_PFN(__pa(vmsa))))
+ return NULL;
+
+ if (ret) {
+ pr_err("SEV: SNP_DBG_DECRYPT failed ret=%d, fw_error=%d (%#x)\n",
+ ret, error, error);
+ free_page((unsigned long)vmsa);
+
+ return NULL;
+ }
+ } else {
+ struct sev_data_dbg dbg = {0};
+ struct page *vmsa_page;
+
+ vmsa_page = alloc_page(GFP_KERNEL);
+ if (!vmsa_page)
+ return NULL;
+
+ vmsa = page_address(vmsa_page);
+
+ dbg.handle = sev->handle;
+ dbg.src_addr = svm->vmcb->control.vmsa_pa;
+ dbg.dst_addr = __psp_pa(vmsa);
+ dbg.len = PAGE_SIZE;
+
+ ret = sev_do_cmd(SEV_CMD_DBG_DECRYPT, &dbg, &error);
+ if (ret) {
+ pr_err("SEV: SEV_CMD_DBG_DECRYPT failed ret=%d, fw_error=%d (0x%x)\n",
+ ret, error, error);
+ __free_page(vmsa_page);
+
+ return NULL;
+ }
+ }
+
+ return vmsa;
+}
+
+void sev_free_decrypted_vmsa(struct kvm_vcpu *vcpu, struct vmcb_save_area *vmsa)
+{
+ /* If the VMSA has not yet been encrypted, nothing was allocated */
+ if (!vcpu->arch.guest_state_protected || !vmsa)
+ return;
+
+ free_page((unsigned long)vmsa);
+}
diff --git a/arch/x86/kvm/svm/svm.c b/arch/x86/kvm/svm/svm.c
index 21dacd312779..d9931c6c4bc6 100644
--- a/arch/x86/kvm/svm/svm.c
+++ b/arch/x86/kvm/svm/svm.c
@@ -28,8 +28,11 @@
#include <linux/rwsem.h>
#include <linux/cc_platform.h>
#include <linux/smp.h>
+#include <linux/string_choices.h>
+#include <linux/mutex.h>
#include <asm/apic.h>
+#include <asm/msr.h>
#include <asm/perf_event.h>
#include <asm/tlbflush.h>
#include <asm/desc.h>
@@ -69,8 +72,6 @@ MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
static bool erratum_383_found __read_mostly;
-u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
-
/*
* Set osvw_len to higher value when updated Revision Guides
* are published and we know what the new status bits are
@@ -79,72 +80,6 @@ static uint64_t osvw_len = 4, osvw_status;
static DEFINE_PER_CPU(u64, current_tsc_ratio);
-#define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4))
-
-static const struct svm_direct_access_msrs {
- u32 index; /* Index of the MSR */
- bool always; /* True if intercept is initially cleared */
-} direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
- { .index = MSR_STAR, .always = true },
- { .index = MSR_IA32_SYSENTER_CS, .always = true },
- { .index = MSR_IA32_SYSENTER_EIP, .always = false },
- { .index = MSR_IA32_SYSENTER_ESP, .always = false },
-#ifdef CONFIG_X86_64
- { .index = MSR_GS_BASE, .always = true },
- { .index = MSR_FS_BASE, .always = true },
- { .index = MSR_KERNEL_GS_BASE, .always = true },
- { .index = MSR_LSTAR, .always = true },
- { .index = MSR_CSTAR, .always = true },
- { .index = MSR_SYSCALL_MASK, .always = true },
-#endif
- { .index = MSR_IA32_SPEC_CTRL, .always = false },
- { .index = MSR_IA32_PRED_CMD, .always = false },
- { .index = MSR_IA32_FLUSH_CMD, .always = false },
- { .index = MSR_IA32_DEBUGCTLMSR, .always = false },
- { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
- { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
- { .index = MSR_IA32_LASTINTFROMIP, .always = false },
- { .index = MSR_IA32_LASTINTTOIP, .always = false },
- { .index = MSR_IA32_XSS, .always = false },
- { .index = MSR_EFER, .always = false },
- { .index = MSR_IA32_CR_PAT, .always = false },
- { .index = MSR_AMD64_SEV_ES_GHCB, .always = true },
- { .index = MSR_TSC_AUX, .always = false },
- { .index = X2APIC_MSR(APIC_ID), .always = false },
- { .index = X2APIC_MSR(APIC_LVR), .always = false },
- { .index = X2APIC_MSR(APIC_TASKPRI), .always = false },
- { .index = X2APIC_MSR(APIC_ARBPRI), .always = false },
- { .index = X2APIC_MSR(APIC_PROCPRI), .always = false },
- { .index = X2APIC_MSR(APIC_EOI), .always = false },
- { .index = X2APIC_MSR(APIC_RRR), .always = false },
- { .index = X2APIC_MSR(APIC_LDR), .always = false },
- { .index = X2APIC_MSR(APIC_DFR), .always = false },
- { .index = X2APIC_MSR(APIC_SPIV), .always = false },
- { .index = X2APIC_MSR(APIC_ISR), .always = false },
- { .index = X2APIC_MSR(APIC_TMR), .always = false },
- { .index = X2APIC_MSR(APIC_IRR), .always = false },
- { .index = X2APIC_MSR(APIC_ESR), .always = false },
- { .index = X2APIC_MSR(APIC_ICR), .always = false },
- { .index = X2APIC_MSR(APIC_ICR2), .always = false },
-
- /*
- * Note:
- * AMD does not virtualize APIC TSC-deadline timer mode, but it is
- * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
- * the AVIC hardware would generate GP fault. Therefore, always
- * intercept the MSR 0x832, and do not setup direct_access_msr.
- */
- { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false },
- { .index = X2APIC_MSR(APIC_LVTPC), .always = false },
- { .index = X2APIC_MSR(APIC_LVT0), .always = false },
- { .index = X2APIC_MSR(APIC_LVT1), .always = false },
- { .index = X2APIC_MSR(APIC_LVTERR), .always = false },
- { .index = X2APIC_MSR(APIC_TMICT), .always = false },
- { .index = X2APIC_MSR(APIC_TMCCT), .always = false },
- { .index = X2APIC_MSR(APIC_TDCR), .always = false },
- { .index = MSR_INVALID, .always = false },
-};
-
/*
* These 2 parameters are used to config the controls for Pause-Loop Exiting:
* pause_filter_count: On processors that support Pause filtering(indicated
@@ -229,6 +164,9 @@ module_param(tsc_scaling, int, 0444);
*/
static bool avic;
module_param(avic, bool, 0444);
+module_param(enable_ipiv, bool, 0444);
+
+module_param(enable_device_posted_irqs, bool, 0444);
bool __read_mostly dump_invalid_vmcb;
module_param(dump_invalid_vmcb, bool, 0644);
@@ -248,6 +186,8 @@ static unsigned long iopm_base;
DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
+static DEFINE_MUTEX(vmcb_dump_mutex);
+
/*
* Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via
* the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
@@ -257,35 +197,6 @@ DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
*/
static int tsc_aux_uret_slot __read_mostly = -1;
-static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
-
-#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
-#define MSRS_RANGE_SIZE 2048
-#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
-
-u32 svm_msrpm_offset(u32 msr)
-{
- u32 offset;
- int i;
-
- for (i = 0; i < NUM_MSR_MAPS; i++) {
- if (msr < msrpm_ranges[i] ||
- msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
- continue;
-
- offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
- offset += (i * MSRS_RANGE_SIZE); /* add range offset */
-
- /* Now we have the u8 offset - but need the u32 offset */
- return offset / 4;
- }
-
- /* MSR not in any range */
- return MSR_INVALID;
-}
-
-static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
-
static int get_npt_level(void)
{
#ifdef CONFIG_X86_64
@@ -476,24 +387,18 @@ static void svm_inject_exception(struct kvm_vcpu *vcpu)
static void svm_init_erratum_383(void)
{
- u32 low, high;
- int err;
u64 val;
if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
return;
/* Use _safe variants to not break nested virtualization */
- val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
- if (err)
+ if (native_read_msr_safe(MSR_AMD64_DC_CFG, &val))
return;
val |= (1ULL << 47);
- low = lower_32_bits(val);
- high = upper_32_bits(val);
-
- native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
+ native_write_msr_safe(MSR_AMD64_DC_CFG, val);
erratum_383_found = true;
}
@@ -567,7 +472,7 @@ static void __svm_write_tsc_multiplier(u64 multiplier)
if (multiplier == __this_cpu_read(current_tsc_ratio))
return;
- wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
+ wrmsrq(MSR_AMD64_TSC_RATIO, multiplier);
__this_cpu_write(current_tsc_ratio, multiplier);
}
@@ -580,15 +485,15 @@ static inline void kvm_cpu_svm_disable(void)
{
uint64_t efer;
- wrmsrl(MSR_VM_HSAVE_PA, 0);
- rdmsrl(MSR_EFER, efer);
+ wrmsrq(MSR_VM_HSAVE_PA, 0);
+ rdmsrq(MSR_EFER, efer);
if (efer & EFER_SVME) {
/*
* Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
* NMI aren't blocked.
*/
stgi();
- wrmsrl(MSR_EFER, efer & ~EFER_SVME);
+ wrmsrq(MSR_EFER, efer & ~EFER_SVME);
}
}
@@ -617,7 +522,7 @@ static int svm_enable_virtualization_cpu(void)
uint64_t efer;
int me = raw_smp_processor_id();
- rdmsrl(MSR_EFER, efer);
+ rdmsrq(MSR_EFER, efer);
if (efer & EFER_SVME)
return -EBUSY;
@@ -627,9 +532,9 @@ static int svm_enable_virtualization_cpu(void)
sd->next_asid = sd->max_asid + 1;
sd->min_asid = max_sev_asid + 1;
- wrmsrl(MSR_EFER, efer | EFER_SVME);
+ wrmsrq(MSR_EFER, efer | EFER_SVME);
- wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
+ wrmsrq(MSR_VM_HSAVE_PA, sd->save_area_pa);
if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
/*
@@ -650,13 +555,12 @@ static int svm_enable_virtualization_cpu(void)
* erratum is present everywhere).
*/
if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
- uint64_t len, status = 0;
+ u64 len, status = 0;
int err;
- len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
+ err = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &len);
if (!err)
- status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
- &err);
+ err = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, &status);
if (err)
osvw_status = osvw_len = 0;
@@ -759,50 +663,8 @@ static void clr_dr_intercepts(struct vcpu_svm *svm)
recalc_intercepts(svm);
}
-static int direct_access_msr_slot(u32 msr)
-{
- u32 i;
-
- for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
- if (direct_access_msrs[i].index == msr)
- return i;
-
- return -ENOENT;
-}
-
-static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
- int write)
-{
- struct vcpu_svm *svm = to_svm(vcpu);
- int slot = direct_access_msr_slot(msr);
-
- if (slot == -ENOENT)
- return;
-
- /* Set the shadow bitmaps to the desired intercept states */
- if (read)
- set_bit(slot, svm->shadow_msr_intercept.read);
- else
- clear_bit(slot, svm->shadow_msr_intercept.read);
-
- if (write)
- set_bit(slot, svm->shadow_msr_intercept.write);
- else
- clear_bit(slot, svm->shadow_msr_intercept.write);
-}
-
-static bool valid_msr_intercept(u32 index)
-{
- return direct_access_msr_slot(index) != -ENOENT;
-}
-
static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
{
- u8 bit_write;
- unsigned long tmp;
- u32 offset;
- u32 *msrpm;
-
/*
* For non-nested case:
* If the L01 MSR bitmap does not intercept the MSR, then we need to
@@ -812,90 +674,102 @@ static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
* If the L02 MSR bitmap does not intercept the MSR, then we need to
* save it.
*/
- msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
- to_svm(vcpu)->msrpm;
-
- offset = svm_msrpm_offset(msr);
- bit_write = 2 * (msr & 0x0f) + 1;
- tmp = msrpm[offset];
+ void *msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm :
+ to_svm(vcpu)->msrpm;
- BUG_ON(offset == MSR_INVALID);
-
- return test_bit(bit_write, &tmp);
+ return svm_test_msr_bitmap_write(msrpm, msr);
}
-static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
- u32 msr, int read, int write)
+void svm_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set)
{
struct vcpu_svm *svm = to_svm(vcpu);
- u8 bit_read, bit_write;
- unsigned long tmp;
- u32 offset;
-
- /*
- * If this warning triggers extend the direct_access_msrs list at the
- * beginning of the file
- */
- WARN_ON(!valid_msr_intercept(msr));
-
- /* Enforce non allowed MSRs to trap */
- if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
- read = 0;
-
- if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
- write = 0;
+ void *msrpm = svm->msrpm;
- offset = svm_msrpm_offset(msr);
- bit_read = 2 * (msr & 0x0f);
- bit_write = 2 * (msr & 0x0f) + 1;
- tmp = msrpm[offset];
-
- BUG_ON(offset == MSR_INVALID);
-
- read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
- write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
+ /* Don't disable interception for MSRs userspace wants to handle. */
+ if (type & MSR_TYPE_R) {
+ if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
+ svm_clear_msr_bitmap_read(msrpm, msr);
+ else
+ svm_set_msr_bitmap_read(msrpm, msr);
+ }
- msrpm[offset] = tmp;
+ if (type & MSR_TYPE_W) {
+ if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
+ svm_clear_msr_bitmap_write(msrpm, msr);
+ else
+ svm_set_msr_bitmap_write(msrpm, msr);
+ }
svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
svm->nested.force_msr_bitmap_recalc = true;
}
-void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
- int read, int write)
-{
- set_shadow_msr_intercept(vcpu, msr, read, write);
- set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
-}
-
-u32 *svm_vcpu_alloc_msrpm(void)
+void *svm_alloc_permissions_map(unsigned long size, gfp_t gfp_mask)
{
- unsigned int order = get_order(MSRPM_SIZE);
- struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
- u32 *msrpm;
+ unsigned int order = get_order(size);
+ struct page *pages = alloc_pages(gfp_mask, order);
+ void *pm;
if (!pages)
return NULL;
- msrpm = page_address(pages);
- memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
+ /*
+ * Set all bits in the permissions map so that all MSR and I/O accesses
+ * are intercepted by default.
+ */
+ pm = page_address(pages);
+ memset(pm, 0xff, PAGE_SIZE * (1 << order));
- return msrpm;
+ return pm;
}
-void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
+static void svm_recalc_lbr_msr_intercepts(struct kvm_vcpu *vcpu)
{
- int i;
+ bool intercept = !(to_svm(vcpu)->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK);
- for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
- if (!direct_access_msrs[i].always)
- continue;
- set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
- }
+ svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHFROMIP, MSR_TYPE_RW, intercept);
+ svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHTOIP, MSR_TYPE_RW, intercept);
+ svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTFROMIP, MSR_TYPE_RW, intercept);
+ svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTTOIP, MSR_TYPE_RW, intercept);
+
+ if (sev_es_guest(vcpu->kvm))
+ svm_set_intercept_for_msr(vcpu, MSR_IA32_DEBUGCTLMSR, MSR_TYPE_RW, intercept);
}
void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
{
+ static const u32 x2avic_passthrough_msrs[] = {
+ X2APIC_MSR(APIC_ID),
+ X2APIC_MSR(APIC_LVR),
+ X2APIC_MSR(APIC_TASKPRI),
+ X2APIC_MSR(APIC_ARBPRI),
+ X2APIC_MSR(APIC_PROCPRI),
+ X2APIC_MSR(APIC_EOI),
+ X2APIC_MSR(APIC_RRR),
+ X2APIC_MSR(APIC_LDR),
+ X2APIC_MSR(APIC_DFR),
+ X2APIC_MSR(APIC_SPIV),
+ X2APIC_MSR(APIC_ISR),
+ X2APIC_MSR(APIC_TMR),
+ X2APIC_MSR(APIC_IRR),
+ X2APIC_MSR(APIC_ESR),
+ X2APIC_MSR(APIC_ICR),
+ X2APIC_MSR(APIC_ICR2),
+
+ /*
+ * Note! Always intercept LVTT, as TSC-deadline timer mode
+ * isn't virtualized by hardware, and the CPU will generate a
+ * #GP instead of a #VMEXIT.
+ */
+ X2APIC_MSR(APIC_LVTTHMR),
+ X2APIC_MSR(APIC_LVTPC),
+ X2APIC_MSR(APIC_LVT0),
+ X2APIC_MSR(APIC_LVT1),
+ X2APIC_MSR(APIC_LVTERR),
+ X2APIC_MSR(APIC_TMICT),
+ X2APIC_MSR(APIC_TMCCT),
+ X2APIC_MSR(APIC_TDCR),
+ };
int i;
if (intercept == svm->x2avic_msrs_intercepted)
@@ -904,84 +778,79 @@ void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
if (!x2avic_enabled)
return;
- for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
- int index = direct_access_msrs[i].index;
-
- if ((index < APIC_BASE_MSR) ||
- (index > APIC_BASE_MSR + 0xff))
- continue;
- set_msr_interception(&svm->vcpu, svm->msrpm, index,
- !intercept, !intercept);
- }
+ for (i = 0; i < ARRAY_SIZE(x2avic_passthrough_msrs); i++)
+ svm_set_intercept_for_msr(&svm->vcpu, x2avic_passthrough_msrs[i],
+ MSR_TYPE_RW, intercept);
svm->x2avic_msrs_intercepted = intercept;
}
-void svm_vcpu_free_msrpm(u32 *msrpm)
+void svm_vcpu_free_msrpm(void *msrpm)
{
__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
}
-static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
+static void svm_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
- u32 i;
- /*
- * Set intercept permissions for all direct access MSRs again. They
- * will automatically get filtered through the MSR filter, so we are
- * back in sync after this.
- */
- for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
- u32 msr = direct_access_msrs[i].index;
- u32 read = test_bit(i, svm->shadow_msr_intercept.read);
- u32 write = test_bit(i, svm->shadow_msr_intercept.write);
-
- set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
- }
-}
+ svm_disable_intercept_for_msr(vcpu, MSR_STAR, MSR_TYPE_RW);
+ svm_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
-static void add_msr_offset(u32 offset)
-{
- int i;
-
- for (i = 0; i < MSRPM_OFFSETS; ++i) {
-
- /* Offset already in list? */
- if (msrpm_offsets[i] == offset)
- return;
+#ifdef CONFIG_X86_64
+ svm_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
+ svm_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
+ svm_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
+ svm_disable_intercept_for_msr(vcpu, MSR_LSTAR, MSR_TYPE_RW);
+ svm_disable_intercept_for_msr(vcpu, MSR_CSTAR, MSR_TYPE_RW);
+ svm_disable_intercept_for_msr(vcpu, MSR_SYSCALL_MASK, MSR_TYPE_RW);
+#endif
- /* Slot used by another offset? */
- if (msrpm_offsets[i] != MSR_INVALID)
- continue;
+ if (lbrv)
+ svm_recalc_lbr_msr_intercepts(vcpu);
- /* Add offset to list */
- msrpm_offsets[i] = offset;
+ if (cpu_feature_enabled(X86_FEATURE_IBPB))
+ svm_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
+ !guest_has_pred_cmd_msr(vcpu));
- return;
- }
+ if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D))
+ svm_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
+ !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
/*
- * If this BUG triggers the msrpm_offsets table has an overflow. Just
- * increase MSRPM_OFFSETS in this case.
+ * Disable interception of SPEC_CTRL if KVM doesn't need to manually
+ * context switch the MSR (SPEC_CTRL is virtualized by the CPU), or if
+ * the guest has a non-zero SPEC_CTRL value, i.e. is likely actively
+ * using SPEC_CTRL.
*/
- BUG();
-}
-
-static void init_msrpm_offsets(void)
-{
- int i;
-
- memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
+ if (cpu_feature_enabled(X86_FEATURE_V_SPEC_CTRL))
+ svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
+ !guest_has_spec_ctrl_msr(vcpu));
+ else
+ svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
+ !svm->spec_ctrl);
- for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
- u32 offset;
+ /*
+ * Intercept SYSENTER_EIP and SYSENTER_ESP when emulating an Intel CPU,
+ * as AMD hardware only store 32 bits, whereas Intel CPUs track 64 bits.
+ */
+ svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW,
+ guest_cpuid_is_intel_compatible(vcpu));
+ svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW,
+ guest_cpuid_is_intel_compatible(vcpu));
+
+ if (kvm_aperfmperf_in_guest(vcpu->kvm)) {
+ svm_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R);
+ svm_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R);
+ }
- offset = svm_msrpm_offset(direct_access_msrs[i].index);
- BUG_ON(offset == MSR_INVALID);
+ if (sev_es_guest(vcpu->kvm))
+ sev_es_recalc_msr_intercepts(vcpu);
- add_msr_offset(offset);
- }
+ /*
+ * x2APIC intercepts are modified on-demand and cannot be filtered by
+ * userspace.
+ */
}
void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
@@ -1000,13 +869,7 @@ void svm_enable_lbrv(struct kvm_vcpu *vcpu)
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
- set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
- set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
- set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
- set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
-
- if (sev_es_guest(vcpu->kvm))
- set_msr_interception(vcpu, svm->msrpm, MSR_IA32_DEBUGCTLMSR, 1, 1);
+ svm_recalc_lbr_msr_intercepts(vcpu);
/* Move the LBR msrs to the vmcb02 so that the guest can see them. */
if (is_guest_mode(vcpu))
@@ -1018,12 +881,8 @@ static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
struct vcpu_svm *svm = to_svm(vcpu);
KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm);
-
svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
- set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
- set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
- set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
- set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
+ svm_recalc_lbr_msr_intercepts(vcpu);
/*
* Move the LBR msrs back to the vmcb01 to avoid copying them
@@ -1049,7 +908,7 @@ void svm_update_lbrv(struct kvm_vcpu *vcpu)
struct vcpu_svm *svm = to_svm(vcpu);
bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
- (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) &&
+ (is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
if (enable_lbrv == current_enable_lbrv)
@@ -1178,45 +1037,33 @@ void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
}
/* Evaluate instruction intercepts that depend on guest CPUID features. */
-static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
- struct vcpu_svm *svm)
+static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu)
{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
/*
* Intercept INVPCID if shadow paging is enabled to sync/free shadow
* roots, or if INVPCID is disabled in the guest to inject #UD.
*/
if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
if (!npt_enabled ||
- !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
+ !guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID))
svm_set_intercept(svm, INTERCEPT_INVPCID);
else
svm_clr_intercept(svm, INTERCEPT_INVPCID);
}
if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
- if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
+ if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP))
svm_clr_intercept(svm, INTERCEPT_RDTSCP);
else
svm_set_intercept(svm, INTERCEPT_RDTSCP);
}
-}
-
-static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
-{
- struct vcpu_svm *svm = to_svm(vcpu);
if (guest_cpuid_is_intel_compatible(vcpu)) {
- /*
- * We must intercept SYSENTER_EIP and SYSENTER_ESP
- * accesses because the processor only stores 32 bits.
- * For the same reason we cannot use virtual VMLOAD/VMSAVE.
- */
svm_set_intercept(svm, INTERCEPT_VMLOAD);
svm_set_intercept(svm, INTERCEPT_VMSAVE);
svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
-
- set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
- set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
} else {
/*
* If hardware supports Virtual VMLOAD VMSAVE then enable it
@@ -1227,12 +1074,15 @@ static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
svm_clr_intercept(svm, INTERCEPT_VMSAVE);
svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
}
- /* No need to intercept these MSRs */
- set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
- set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
}
}
+static void svm_recalc_intercepts_after_set_cpuid(struct kvm_vcpu *vcpu)
+{
+ svm_recalc_instruction_intercepts(vcpu);
+ svm_recalc_msr_intercepts(vcpu);
+}
+
static void init_vmcb(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
@@ -1298,8 +1148,12 @@ static void init_vmcb(struct kvm_vcpu *vcpu)
svm_set_intercept(svm, INTERCEPT_MWAIT);
}
- if (!kvm_hlt_in_guest(vcpu->kvm))
- svm_set_intercept(svm, INTERCEPT_HLT);
+ if (!kvm_hlt_in_guest(vcpu->kvm)) {
+ if (cpu_feature_enabled(X86_FEATURE_IDLE_HLT))
+ svm_set_intercept(svm, INTERCEPT_IDLE_HLT);
+ else
+ svm_set_intercept(svm, INTERCEPT_HLT);
+ }
control->iopm_base_pa = iopm_base;
control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
@@ -1351,15 +1205,6 @@ static void init_vmcb(struct kvm_vcpu *vcpu)
svm_clr_intercept(svm, INTERCEPT_PAUSE);
}
- svm_recalc_instruction_intercepts(vcpu, svm);
-
- /*
- * If the host supports V_SPEC_CTRL then disable the interception
- * of MSR_IA32_SPEC_CTRL.
- */
- if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
- set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
-
if (kvm_vcpu_apicv_active(vcpu))
avic_init_vmcb(svm, vmcb);
@@ -1372,11 +1217,15 @@ static void init_vmcb(struct kvm_vcpu *vcpu)
svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
}
+ if (vcpu->kvm->arch.bus_lock_detection_enabled)
+ svm_set_intercept(svm, INTERCEPT_BUSLOCK);
+
if (sev_guest(vcpu->kvm))
sev_init_vmcb(svm);
svm_hv_init_vmcb(vmcb);
- init_vmcb_after_set_cpuid(vcpu);
+
+ svm_recalc_intercepts_after_set_cpuid(vcpu);
vmcb_mark_all_dirty(vmcb);
@@ -1387,8 +1236,6 @@ static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
- svm_vcpu_init_msrpm(vcpu, svm->msrpm);
-
svm_init_osvw(vcpu);
if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
@@ -1481,24 +1328,11 @@ out:
return err;
}
-static void svm_clear_current_vmcb(struct vmcb *vmcb)
-{
- int i;
-
- for_each_online_cpu(i)
- cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
-}
-
static void svm_vcpu_free(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
- /*
- * The vmcb page can be recycled, causing a false negative in
- * svm_vcpu_load(). So, ensure that no logical CPU has this
- * vmcb page recorded as its current vmcb.
- */
- svm_clear_current_vmcb(svm->vmcb);
+ WARN_ON_ONCE(!list_empty(&svm->ir_list));
svm_leave_nested(vcpu);
svm_free_nested(svm);
@@ -1506,9 +1340,66 @@ static void svm_vcpu_free(struct kvm_vcpu *vcpu)
sev_free_vcpu(vcpu);
__free_page(__sme_pa_to_page(svm->vmcb01.pa));
- __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
+ svm_vcpu_free_msrpm(svm->msrpm);
}
+#ifdef CONFIG_CPU_MITIGATIONS
+static DEFINE_SPINLOCK(srso_lock);
+static atomic_t srso_nr_vms;
+
+static void svm_srso_clear_bp_spec_reduce(void *ign)
+{
+ struct svm_cpu_data *sd = this_cpu_ptr(&svm_data);
+
+ if (!sd->bp_spec_reduce_set)
+ return;
+
+ msr_clear_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
+ sd->bp_spec_reduce_set = false;
+}
+
+static void svm_srso_vm_destroy(void)
+{
+ if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
+ return;
+
+ if (atomic_dec_return(&srso_nr_vms))
+ return;
+
+ guard(spinlock)(&srso_lock);
+
+ /*
+ * Verify a new VM didn't come along, acquire the lock, and increment
+ * the count before this task acquired the lock.
+ */
+ if (atomic_read(&srso_nr_vms))
+ return;
+
+ on_each_cpu(svm_srso_clear_bp_spec_reduce, NULL, 1);
+}
+
+static void svm_srso_vm_init(void)
+{
+ if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
+ return;
+
+ /*
+ * Acquire the lock on 0 => 1 transitions to ensure a potential 1 => 0
+ * transition, i.e. destroying the last VM, is fully complete, e.g. so
+ * that a delayed IPI doesn't clear BP_SPEC_REDUCE after a vCPU runs.
+ */
+ if (atomic_inc_not_zero(&srso_nr_vms))
+ return;
+
+ guard(spinlock)(&srso_lock);
+
+ atomic_inc(&srso_nr_vms);
+}
+#else
+static void svm_srso_vm_init(void) { }
+static void svm_srso_vm_destroy(void) { }
+#endif
+
static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
@@ -1541,6 +1432,11 @@ static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
(!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
+ if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE) &&
+ !sd->bp_spec_reduce_set) {
+ sd->bp_spec_reduce_set = true;
+ msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
+ }
svm->guest_state_loaded = true;
}
@@ -1551,18 +1447,9 @@ static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
- struct vcpu_svm *svm = to_svm(vcpu);
- struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
-
if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
shrink_ple_window(vcpu);
- if (sd->current_vmcb != svm->vmcb) {
- sd->current_vmcb = svm->vmcb;
-
- if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT))
- indirect_branch_prediction_barrier();
- }
if (kvm_vcpu_apicv_active(vcpu))
avic_vcpu_load(vcpu, cpu);
}
@@ -1921,9 +1808,6 @@ void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
unsigned long old_cr4 = vcpu->arch.cr4;
- if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
- svm_flush_tlb_current(vcpu);
-
vcpu->arch.cr4 = cr4;
if (!npt_enabled) {
cr4 |= X86_CR4_PAE;
@@ -1936,7 +1820,7 @@ void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
- kvm_update_cpuid_runtime(vcpu);
+ vcpu->arch.cpuid_dynamic_bits_dirty = true;
}
static void svm_set_segment(struct kvm_vcpu *vcpu,
@@ -1995,11 +1879,11 @@ static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
svm->asid = sd->next_asid++;
}
-static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
+static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
{
- struct vmcb *vmcb = svm->vmcb;
+ struct vmcb *vmcb = to_svm(vcpu)->vmcb;
- if (svm->vcpu.arch.guest_state_protected)
+ if (vcpu->arch.guest_state_protected)
return;
if (unlikely(value != vmcb->save.dr6)) {
@@ -2142,14 +2026,13 @@ static int ac_interception(struct kvm_vcpu *vcpu)
static bool is_erratum_383(void)
{
- int err, i;
+ int i;
u64 value;
if (!erratum_383_found)
return false;
- value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
- if (err)
+ if (native_read_msr_safe(MSR_IA32_MC0_STATUS, &value))
return false;
/* Bit 62 may or may not be set for this mce */
@@ -2160,17 +2043,11 @@ static bool is_erratum_383(void)
/* Clear MCi_STATUS registers */
for (i = 0; i < 6; ++i)
- native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
-
- value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
- if (!err) {
- u32 low, high;
+ native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0);
+ if (!native_read_msr_safe(MSR_IA32_MCG_STATUS, &value)) {
value &= ~(1ULL << 2);
- low = lower_32_bits(value);
- high = upper_32_bits(value);
-
- native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
+ native_write_msr_safe(MSR_IA32_MCG_STATUS, value);
}
/* Flush tlb to evict multi-match entries */
@@ -2224,6 +2101,10 @@ static int shutdown_interception(struct kvm_vcpu *vcpu)
*/
if (!sev_es_guest(vcpu->kvm)) {
clear_page(svm->vmcb);
+#ifdef CONFIG_KVM_SMM
+ if (is_smm(vcpu))
+ kvm_smm_changed(vcpu, false);
+#endif
kvm_vcpu_reset(vcpu, true);
}
@@ -2843,12 +2724,11 @@ static int svm_get_feature_msr(u32 msr, u64 *data)
return 0;
}
-static bool
-sev_es_prevent_msr_access(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+static bool sev_es_prevent_msr_access(struct kvm_vcpu *vcpu,
+ struct msr_data *msr_info)
{
return sev_es_guest(vcpu->kvm) &&
vcpu->arch.guest_state_protected &&
- svm_msrpm_offset(msr_info->index) != MSR_INVALID &&
!msr_write_intercepted(vcpu, msr_info->index);
}
@@ -2864,7 +2744,7 @@ static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
switch (msr_info->index) {
case MSR_AMD64_TSC_RATIO:
if (!msr_info->host_initiated &&
- !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR))
+ !guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR))
return 1;
msr_info->data = svm->tsc_ratio_msr;
break;
@@ -2940,7 +2820,7 @@ static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
break;
case MSR_AMD64_VIRT_SPEC_CTRL:
if (!msr_info->host_initiated &&
- !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
+ !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
return 1;
msr_info->data = svm->virt_spec_ctrl;
@@ -2977,11 +2857,7 @@ static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
return kvm_complete_insn_gp(vcpu, err);
- ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
- ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
- X86_TRAP_GP |
- SVM_EVTINJ_TYPE_EXEPT |
- SVM_EVTINJ_VALID);
+ svm_vmgexit_inject_exception(svm, X86_TRAP_GP);
return 1;
}
@@ -3024,7 +2900,7 @@ static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
switch (ecx) {
case MSR_AMD64_TSC_RATIO:
- if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) {
+ if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) {
if (!msr->host_initiated)
return 1;
@@ -3046,7 +2922,7 @@ static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
svm->tsc_ratio_msr = data;
- if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) &&
+ if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) &&
is_guest_mode(vcpu))
nested_svm_update_tsc_ratio_msr(vcpu);
@@ -3083,15 +2959,15 @@ static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
*
* For nested:
* The handling of the MSR bitmap for L2 guests is done in
- * nested_svm_vmrun_msrpm.
+ * nested_svm_merge_msrpm().
* We update the L1 MSR bit as well since it will end up
* touching the MSR anyway now.
*/
- set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
+ svm_disable_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
break;
case MSR_AMD64_VIRT_SPEC_CTRL:
if (!msr->host_initiated &&
- !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
+ !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
return 1;
if (data & ~SPEC_CTRL_SSBD)
@@ -3153,8 +3029,7 @@ static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
/*
* TSC_AUX is usually changed only during boot and never read
- * directly. Intercept TSC_AUX instead of exposing it to the
- * guest via direct_access_msrs, and switch it via user return.
+ * directly. Intercept TSC_AUX and switch it via user return.
*/
preempt_disable();
ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
@@ -3169,6 +3044,16 @@ static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
break;
}
+
+ /*
+ * Suppress BTF as KVM doesn't virtualize BTF, but there's no
+ * way to communicate lack of support to the guest.
+ */
+ if (data & DEBUGCTLMSR_BTF) {
+ kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
+ data &= ~DEBUGCTLMSR_BTF;
+ }
+
if (data & DEBUGCTL_RESERVED_BITS)
return 1;
@@ -3263,7 +3148,7 @@ static int invpcid_interception(struct kvm_vcpu *vcpu)
unsigned long type;
gva_t gva;
- if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
+ if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
@@ -3276,9 +3161,51 @@ static int invpcid_interception(struct kvm_vcpu *vcpu)
type = svm->vmcb->control.exit_info_2;
gva = svm->vmcb->control.exit_info_1;
+ /*
+ * FIXME: Perform segment checks for 32-bit mode, and inject #SS if the
+ * stack segment is used. The intercept takes priority over all
+ * #GP checks except CPL>0, but somehow still generates a linear
+ * address? The APM is sorely lacking.
+ */
+ if (is_noncanonical_address(gva, vcpu, 0)) {
+ kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
+ return 1;
+ }
+
return kvm_handle_invpcid(vcpu, type, gva);
}
+static inline int complete_userspace_buslock(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ /*
+ * If userspace has NOT changed RIP, then KVM's ABI is to let the guest
+ * execute the bus-locking instruction. Set the bus lock counter to '1'
+ * to effectively step past the bus lock.
+ */
+ if (kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))
+ svm->vmcb->control.bus_lock_counter = 1;
+
+ return 1;
+}
+
+static int bus_lock_exit(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
+ vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
+
+ vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
+ vcpu->arch.complete_userspace_io = complete_userspace_buslock;
+
+ if (is_guest_mode(vcpu))
+ svm->nested.ctl.bus_lock_rip = vcpu->arch.cui_linear_rip;
+
+ return 0;
+}
+
static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
[SVM_EXIT_READ_CR0] = cr_interception,
[SVM_EXIT_READ_CR3] = cr_interception,
@@ -3346,7 +3273,9 @@ static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
[SVM_EXIT_CR4_WRITE_TRAP] = cr_trap,
[SVM_EXIT_CR8_WRITE_TRAP] = cr_trap,
[SVM_EXIT_INVPCID] = invpcid_interception,
+ [SVM_EXIT_IDLE_HLT] = kvm_emulate_halt,
[SVM_EXIT_NPF] = npf_interception,
+ [SVM_EXIT_BUS_LOCK] = bus_lock_exit,
[SVM_EXIT_RSM] = rsm_interception,
[SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
[SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
@@ -3361,14 +3290,21 @@ static void dump_vmcb(struct kvm_vcpu *vcpu)
struct vmcb_control_area *control = &svm->vmcb->control;
struct vmcb_save_area *save = &svm->vmcb->save;
struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
+ char *vm_type;
if (!dump_invalid_vmcb) {
pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
return;
}
- pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
- svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
+ guard(mutex)(&vmcb_dump_mutex);
+
+ vm_type = sev_snp_guest(vcpu->kvm) ? "SEV-SNP" :
+ sev_es_guest(vcpu->kvm) ? "SEV-ES" :
+ sev_guest(vcpu->kvm) ? "SEV" : "SVM";
+
+ pr_err("%s vCPU%u VMCB %p, last attempted VMRUN on CPU %d\n",
+ vm_type, vcpu->vcpu_id, svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
pr_err("VMCB Control Area:\n");
pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
@@ -3406,6 +3342,17 @@ static void dump_vmcb(struct kvm_vcpu *vcpu)
pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
+ pr_err("%-20s%016llx\n", "allowed_sev_features:", control->allowed_sev_features);
+ pr_err("%-20s%016llx\n", "guest_sev_features:", control->guest_sev_features);
+
+ if (sev_es_guest(vcpu->kvm)) {
+ save = sev_decrypt_vmsa(vcpu);
+ if (!save)
+ goto no_vmsa;
+
+ save01 = save;
+ }
+
pr_err("VMCB State Save Area:\n");
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
"es:",
@@ -3476,6 +3423,63 @@ static void dump_vmcb(struct kvm_vcpu *vcpu)
pr_err("%-15s %016llx %-13s %016llx\n",
"excp_from:", save->last_excp_from,
"excp_to:", save->last_excp_to);
+
+ if (sev_es_guest(vcpu->kvm)) {
+ struct sev_es_save_area *vmsa = (struct sev_es_save_area *)save;
+
+ pr_err("%-15s %016llx\n",
+ "sev_features", vmsa->sev_features);
+
+ pr_err("%-15s %016llx %-13s %016llx\n",
+ "rax:", vmsa->rax, "rbx:", vmsa->rbx);
+ pr_err("%-15s %016llx %-13s %016llx\n",
+ "rcx:", vmsa->rcx, "rdx:", vmsa->rdx);
+ pr_err("%-15s %016llx %-13s %016llx\n",
+ "rsi:", vmsa->rsi, "rdi:", vmsa->rdi);
+ pr_err("%-15s %016llx %-13s %016llx\n",
+ "rbp:", vmsa->rbp, "rsp:", vmsa->rsp);
+ pr_err("%-15s %016llx %-13s %016llx\n",
+ "r8:", vmsa->r8, "r9:", vmsa->r9);
+ pr_err("%-15s %016llx %-13s %016llx\n",
+ "r10:", vmsa->r10, "r11:", vmsa->r11);
+ pr_err("%-15s %016llx %-13s %016llx\n",
+ "r12:", vmsa->r12, "r13:", vmsa->r13);
+ pr_err("%-15s %016llx %-13s %016llx\n",
+ "r14:", vmsa->r14, "r15:", vmsa->r15);
+ pr_err("%-15s %016llx %-13s %016llx\n",
+ "xcr0:", vmsa->xcr0, "xss:", vmsa->xss);
+ } else {
+ pr_err("%-15s %016llx %-13s %016lx\n",
+ "rax:", save->rax, "rbx:",
+ vcpu->arch.regs[VCPU_REGS_RBX]);
+ pr_err("%-15s %016lx %-13s %016lx\n",
+ "rcx:", vcpu->arch.regs[VCPU_REGS_RCX],
+ "rdx:", vcpu->arch.regs[VCPU_REGS_RDX]);
+ pr_err("%-15s %016lx %-13s %016lx\n",
+ "rsi:", vcpu->arch.regs[VCPU_REGS_RSI],
+ "rdi:", vcpu->arch.regs[VCPU_REGS_RDI]);
+ pr_err("%-15s %016lx %-13s %016llx\n",
+ "rbp:", vcpu->arch.regs[VCPU_REGS_RBP],
+ "rsp:", save->rsp);
+#ifdef CONFIG_X86_64
+ pr_err("%-15s %016lx %-13s %016lx\n",
+ "r8:", vcpu->arch.regs[VCPU_REGS_R8],
+ "r9:", vcpu->arch.regs[VCPU_REGS_R9]);
+ pr_err("%-15s %016lx %-13s %016lx\n",
+ "r10:", vcpu->arch.regs[VCPU_REGS_R10],
+ "r11:", vcpu->arch.regs[VCPU_REGS_R11]);
+ pr_err("%-15s %016lx %-13s %016lx\n",
+ "r12:", vcpu->arch.regs[VCPU_REGS_R12],
+ "r13:", vcpu->arch.regs[VCPU_REGS_R13]);
+ pr_err("%-15s %016lx %-13s %016lx\n",
+ "r14:", vcpu->arch.regs[VCPU_REGS_R14],
+ "r15:", vcpu->arch.regs[VCPU_REGS_R15]);
+#endif
+ }
+
+no_vmsa:
+ if (sev_es_guest(vcpu->kvm))
+ sev_free_decrypted_vmsa(vcpu, save);
}
static bool svm_check_exit_valid(u64 exit_code)
@@ -3508,10 +3512,14 @@ int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
return interrupt_window_interception(vcpu);
else if (exit_code == SVM_EXIT_INTR)
return intr_interception(vcpu);
- else if (exit_code == SVM_EXIT_HLT)
+ else if (exit_code == SVM_EXIT_HLT || exit_code == SVM_EXIT_IDLE_HLT)
return kvm_emulate_halt(vcpu);
else if (exit_code == SVM_EXIT_NPF)
return npf_interception(vcpu);
+#ifdef CONFIG_KVM_AMD_SEV
+ else if (exit_code == SVM_EXIT_VMGEXIT)
+ return sev_handle_vmgexit(vcpu);
+#endif
#endif
return svm_exit_handlers[exit_code](vcpu);
}
@@ -3533,6 +3541,21 @@ static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
*error_code = 0;
}
+static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info,
+ u32 *error_code)
+{
+ struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
+
+ *intr_info = control->event_inj;
+
+ if ((*intr_info & SVM_EXITINTINFO_VALID) &&
+ (*intr_info & SVM_EXITINTINFO_VALID_ERR))
+ *error_code = control->event_inj_err;
+ else
+ *error_code = 0;
+
+}
+
static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
{
struct vcpu_svm *svm = to_svm(vcpu);
@@ -3576,7 +3599,7 @@ static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
return svm_invoke_exit_handler(vcpu, exit_code);
}
-static void pre_svm_run(struct kvm_vcpu *vcpu)
+static int pre_svm_run(struct kvm_vcpu *vcpu)
{
struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
struct vcpu_svm *svm = to_svm(vcpu);
@@ -3598,6 +3621,8 @@ static void pre_svm_run(struct kvm_vcpu *vcpu)
/* FIXME: handle wraparound of asid_generation */
if (svm->current_vmcb->asid_generation != sd->asid_generation)
new_asid(svm, sd);
+
+ return 0;
}
static void svm_inject_nmi(struct kvm_vcpu *vcpu)
@@ -4105,20 +4130,23 @@ static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
vcpu->arch.nmi_injected = true;
svm->nmi_l1_to_l2 = nmi_l1_to_l2;
break;
- case SVM_EXITINTINFO_TYPE_EXEPT:
+ case SVM_EXITINTINFO_TYPE_EXEPT: {
+ u32 error_code = 0;
+
/*
* Never re-inject a #VC exception.
*/
if (vector == X86_TRAP_VC)
break;
- if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
- u32 err = svm->vmcb->control.exit_int_info_err;
- kvm_requeue_exception_e(vcpu, vector, err);
+ if (exitintinfo & SVM_EXITINTINFO_VALID_ERR)
+ error_code = svm->vmcb->control.exit_int_info_err;
- } else
- kvm_requeue_exception(vcpu, vector);
+ kvm_requeue_exception(vcpu, vector,
+ exitintinfo & SVM_EXITINTINFO_VALID_ERR,
+ error_code);
break;
+ }
case SVM_EXITINTINFO_TYPE_INTR:
kvm_queue_interrupt(vcpu, vector, false);
break;
@@ -4178,6 +4206,18 @@ static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_in
guest_state_enter_irqoff();
+ /*
+ * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of
+ * VMRUN controls whether or not physical IRQs are masked (KVM always
+ * runs with V_INTR_MASKING_MASK). Toggle RFLAGS.IF here to avoid the
+ * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow
+ * into guest state if delivery of an event during VMRUN triggers a
+ * #VMEXIT, and the guest_state transitions already tell lockdep that
+ * IRQs are being enabled/disabled. Note! GIF=0 for the entirety of
+ * this path, so IRQs aren't actually unmasked while running host code.
+ */
+ raw_local_irq_enable();
+
amd_clear_divider();
if (sev_es_guest(vcpu->kvm))
@@ -4186,12 +4226,14 @@ static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_in
else
__svm_vcpu_run(svm, spec_ctrl_intercepted);
+ raw_local_irq_disable();
+
guest_state_exit_irqoff();
}
-static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu,
- bool force_immediate_exit)
+static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
{
+ bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT;
struct vcpu_svm *svm = to_svm(vcpu);
bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
@@ -4220,7 +4262,12 @@ static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu,
if (force_immediate_exit)
smp_send_reschedule(vcpu->cpu);
- pre_svm_run(vcpu);
+ if (pre_svm_run(vcpu)) {
+ vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+ vcpu->run->fail_entry.hardware_entry_failure_reason = SVM_EXIT_ERR;
+ vcpu->run->fail_entry.cpu = vcpu->cpu;
+ return EXIT_FASTPATH_EXIT_USERSPACE;
+ }
sync_lapic_to_cr8(vcpu);
@@ -4233,17 +4280,28 @@ static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu,
svm_hv_update_vp_id(svm->vmcb, vcpu);
/*
- * Run with all-zero DR6 unless needed, so that we can get the exact cause
- * of a #DB.
+ * Run with all-zero DR6 unless the guest can write DR6 freely, so that
+ * KVM can get the exact cause of a #DB. Note, loading guest DR6 from
+ * KVM's snapshot is only necessary when DR accesses won't exit.
*/
- if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
- svm_set_dr6(svm, vcpu->arch.dr6);
- else
- svm_set_dr6(svm, DR6_ACTIVE_LOW);
+ if (unlikely(run_flags & KVM_RUN_LOAD_GUEST_DR6))
+ svm_set_dr6(vcpu, vcpu->arch.dr6);
+ else if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)))
+ svm_set_dr6(vcpu, DR6_ACTIVE_LOW);
clgi();
kvm_load_guest_xsave_state(vcpu);
+ /*
+ * Hardware only context switches DEBUGCTL if LBR virtualization is
+ * enabled. Manually load DEBUGCTL if necessary (and restore it after
+ * VM-Exit), as running with the host's DEBUGCTL can negatively affect
+ * guest state and can even be fatal, e.g. due to Bus Lock Detect.
+ */
+ if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
+ vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
+ update_debugctlmsr(svm->vmcb->save.dbgctl);
+
kvm_wait_lapic_expire(vcpu);
/*
@@ -4271,6 +4329,10 @@ static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu,
if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
+ if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
+ vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
+ update_debugctlmsr(vcpu->arch.host_debugctl);
+
kvm_load_host_xsave_state(vcpu);
stgi();
@@ -4392,42 +4454,22 @@ static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
* XSS on VM-Enter/VM-Exit. Failure to do so would effectively give
* the guest read/write access to the host's XSS.
*/
- if (boot_cpu_has(X86_FEATURE_XSAVE) &&
- boot_cpu_has(X86_FEATURE_XSAVES) &&
- guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
- kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES);
-
- kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS);
- kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR);
- kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV);
+ guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES,
+ boot_cpu_has(X86_FEATURE_XSAVES) &&
+ guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE));
/*
* Intercept VMLOAD if the vCPU model is Intel in order to emulate that
* VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
* SVM on Intel is bonkers and extremely unlikely to work).
*/
- if (!guest_cpuid_is_intel_compatible(vcpu))
- kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
-
- kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER);
- kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD);
- kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF);
- kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI);
-
- svm_recalc_instruction_intercepts(vcpu, svm);
-
- if (boot_cpu_has(X86_FEATURE_IBPB))
- set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
- !!guest_has_pred_cmd_msr(vcpu));
-
- if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
- set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
- !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
+ if (guest_cpuid_is_intel_compatible(vcpu))
+ guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
if (sev_guest(vcpu->kvm))
sev_vcpu_after_set_cpuid(svm);
- init_vmcb_after_set_cpuid(vcpu);
+ svm_recalc_intercepts_after_set_cpuid(vcpu);
}
static bool svm_has_wbinvd_exit(void)
@@ -4673,7 +4715,7 @@ static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
* responsible for ensuring nested SVM and SMIs are mutually exclusive.
*/
- if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
+ if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
return 1;
smram->smram64.svm_guest_flag = 1;
@@ -4720,14 +4762,14 @@ static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
const struct kvm_smram_state_64 *smram64 = &smram->smram64;
- if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
+ if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
return 0;
/* Non-zero if SMI arrived while vCPU was in guest mode. */
if (!smram64->svm_guest_flag)
return 0;
- if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
+ if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
return 1;
if (!(smram64->efer & EFER_SVME))
@@ -4790,9 +4832,15 @@ static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
void *insn, int insn_len)
{
+ struct vcpu_svm *svm = to_svm(vcpu);
bool smep, smap, is_user;
u64 error_code;
+ /* Check that emulation is possible during event vectoring */
+ if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) &&
+ !kvm_can_emulate_event_vectoring(emul_type))
+ return X86EMUL_UNHANDLEABLE_VECTORING;
+
/* Emulation is always possible when KVM has access to all guest state. */
if (!sev_guest(vcpu->kvm))
return X86EMUL_CONTINUE;
@@ -4889,7 +4937,7 @@ static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
* In addition, don't apply the erratum workaround if the #NPF occurred
* while translating guest page tables (see below).
*/
- error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
+ error_code = svm->vmcb->control.exit_info_1;
if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
goto resume_guest;
@@ -4953,6 +5001,8 @@ static void svm_vm_destroy(struct kvm *kvm)
{
avic_vm_destroy(kvm);
sev_vm_destroy(kvm);
+
+ svm_srso_vm_destroy();
}
static int svm_vm_init(struct kvm *kvm)
@@ -4970,7 +5020,7 @@ static int svm_vm_init(struct kvm *kvm)
}
if (!pause_filter_count || !pause_filter_thresh)
- kvm->arch.pause_in_guest = true;
+ kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE);
if (enable_apicv) {
int ret = avic_vm_init(kvm);
@@ -4978,6 +5028,7 @@ static int svm_vm_init(struct kvm *kvm)
return ret;
}
+ svm_srso_vm_init();
return 0;
}
@@ -5077,6 +5128,7 @@ static struct kvm_x86_ops svm_x86_ops __initdata = {
.required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
.get_exit_info = svm_get_exit_info,
+ .get_entry_info = svm_get_entry_info,
.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
@@ -5119,7 +5171,7 @@ static struct kvm_x86_ops svm_x86_ops __initdata = {
.apic_init_signal_blocked = svm_apic_init_signal_blocked,
- .msr_filter_changed = svm_msr_filter_changed,
+ .recalc_msr_intercepts = svm_recalc_msr_intercepts,
.complete_emulated_msr = svm_complete_emulated_msr,
.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
@@ -5147,7 +5199,7 @@ static __init void svm_adjust_mmio_mask(void)
return;
/* If memory encryption is not enabled, use existing mask */
- rdmsrl(MSR_AMD64_SYSCFG, msr);
+ rdmsrq(MSR_AMD64_SYSCFG, msr);
if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
return;
@@ -5221,6 +5273,9 @@ static __init void svm_set_cpu_caps(void)
kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
}
+ if (cpu_feature_enabled(X86_FEATURE_BUS_LOCK_THRESHOLD))
+ kvm_caps.has_bus_lock_exit = true;
+
/* CPUID 0x80000008 */
if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
boot_cpu_has(X86_FEATURE_AMD_SSBD))
@@ -5252,11 +5307,8 @@ static __init void svm_set_cpu_caps(void)
static __init int svm_hardware_setup(void)
{
- int cpu;
- struct page *iopm_pages;
void *iopm_va;
- int r;
- unsigned int order = get_order(IOPM_SIZE);
+ int cpu, r;
/*
* NX is required for shadow paging and for NPT if the NX huge pages
@@ -5268,17 +5320,6 @@ static __init int svm_hardware_setup(void)
}
kvm_enable_efer_bits(EFER_NX);
- iopm_pages = alloc_pages(GFP_KERNEL, order);
-
- if (!iopm_pages)
- return -ENOMEM;
-
- iopm_va = page_address(iopm_pages);
- memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
- iopm_base = __sme_page_pa(iopm_pages);
-
- init_msrpm_offsets();
-
kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
XFEATURE_MASK_BNDCSR);
@@ -5312,6 +5353,10 @@ static __init int svm_hardware_setup(void)
if (nested) {
pr_info("Nested Virtualization enabled\n");
kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
+
+ r = nested_svm_init_msrpm_merge_offsets();
+ if (r)
+ return r;
}
/*
@@ -5328,7 +5373,7 @@ static __init int svm_hardware_setup(void)
/* Force VM NPT level equal to the host's paging level */
kvm_configure_mmu(npt_enabled, get_npt_level(),
get_npt_level(), PG_LEVEL_1G);
- pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
+ pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled));
/* Setup shadow_me_value and shadow_me_mask */
kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
@@ -5343,6 +5388,13 @@ static __init int svm_hardware_setup(void)
else
pr_info("LBR virtualization supported\n");
}
+
+ iopm_va = svm_alloc_permissions_map(IOPM_SIZE, GFP_KERNEL);
+ if (!iopm_va)
+ return -ENOMEM;
+
+ iopm_base = __sme_set(__pa(iopm_va));
+
/*
* Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
* may be modified by svm_adjust_mmio_mask()), as well as nrips.
@@ -5360,6 +5412,7 @@ static __init int svm_hardware_setup(void)
enable_apicv = avic = avic && avic_hardware_setup();
if (!enable_apicv) {
+ enable_ipiv = false;
svm_x86_ops.vcpu_blocking = NULL;
svm_x86_ops.vcpu_unblocking = NULL;
svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
@@ -5416,6 +5469,7 @@ static __init int svm_hardware_setup(void)
*/
allow_smaller_maxphyaddr = !npt_enabled;
+ kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_CD_NW_CLEARED;
return 0;
err:
@@ -5440,6 +5494,8 @@ static int __init svm_init(void)
{
int r;
+ KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_svm);
+
__unused_size_checks();
if (!kvm_is_svm_supported())
diff --git a/arch/x86/kvm/svm/svm.h b/arch/x86/kvm/svm/svm.h
index 43fa6a16eb19..58b9d168e0c8 100644
--- a/arch/x86/kvm/svm/svm.h
+++ b/arch/x86/kvm/svm/svm.h
@@ -44,9 +44,6 @@ static inline struct page *__sme_pa_to_page(unsigned long pa)
#define IOPM_SIZE PAGE_SIZE * 3
#define MSRPM_SIZE PAGE_SIZE * 2
-#define MAX_DIRECT_ACCESS_MSRS 48
-#define MSRPM_OFFSETS 32
-extern u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
extern bool npt_enabled;
extern int nrips;
extern int vgif;
@@ -98,6 +95,7 @@ struct kvm_sev_info {
unsigned int asid; /* ASID used for this guest */
unsigned int handle; /* SEV firmware handle */
int fd; /* SEV device fd */
+ unsigned long policy;
unsigned long pages_locked; /* Number of pages locked */
struct list_head regions_list; /* List of registered regions */
u64 ap_jump_table; /* SEV-ES AP Jump Table address */
@@ -112,15 +110,19 @@ struct kvm_sev_info {
void *guest_req_buf; /* Bounce buffer for SNP Guest Request input */
void *guest_resp_buf; /* Bounce buffer for SNP Guest Request output */
struct mutex guest_req_mutex; /* Must acquire before using bounce buffers */
+ cpumask_var_t have_run_cpus; /* CPUs that have done VMRUN for this VM. */
};
+#define SEV_POLICY_NODBG BIT_ULL(0)
+#define SNP_POLICY_DEBUG BIT_ULL(19)
+
struct kvm_svm {
struct kvm kvm;
/* Struct members for AVIC */
u32 avic_vm_id;
- struct page *avic_logical_id_table_page;
- struct page *avic_physical_id_table_page;
+ u32 *avic_logical_id_table;
+ u64 *avic_physical_id_table;
struct hlist_node hnode;
struct kvm_sev_info sev_info;
@@ -169,6 +171,7 @@ struct vmcb_ctrl_area_cached {
u64 nested_cr3;
u64 virt_ext;
u32 clean;
+ u64 bus_lock_rip;
union {
#if IS_ENABLED(CONFIG_HYPERV) || IS_ENABLED(CONFIG_KVM_HYPERV)
struct hv_vmcb_enlightenments hv_enlightenments;
@@ -184,8 +187,11 @@ struct svm_nested_state {
u64 vmcb12_gpa;
u64 last_vmcb12_gpa;
- /* These are the merged vectors */
- u32 *msrpm;
+ /*
+ * The MSR permissions map used for vmcb02, which is the merge result
+ * of vmcb01 and vmcb12
+ */
+ void *msrpm;
/* A VMRUN has started but has not yet been performed, so
* we cannot inject a nested vmexit yet. */
@@ -266,7 +272,7 @@ struct vcpu_svm {
*/
u64 virt_spec_ctrl;
- u32 *msrpm;
+ void *msrpm;
ulong nmi_iret_rip;
@@ -301,24 +307,26 @@ struct vcpu_svm {
u32 ldr_reg;
u32 dfr_reg;
- struct page *avic_backing_page;
- u64 *avic_physical_id_cache;
+
+ /* This is essentially a shadow of the vCPU's actual entry in the
+ * Physical ID table that is programmed into the VMCB, i.e. that is
+ * seen by the CPU. If IPI virtualization is disabled, IsRunning is
+ * only ever set in the shadow, i.e. is never propagated to the "real"
+ * table, so that hardware never sees IsRunning=1.
+ */
+ u64 avic_physical_id_entry;
/*
- * Per-vcpu list of struct amd_svm_iommu_ir:
- * This is used mainly to store interrupt remapping information used
- * when update the vcpu affinity. This avoids the need to scan for
- * IRTE and try to match ga_tag in the IOMMU driver.
+ * Per-vCPU list of irqfds that are eligible to post IRQs directly to
+ * the vCPU (a.k.a. device posted IRQs, a.k.a. IRQ bypass). The list
+ * is used to reconfigure IRTEs when the vCPU is loaded/put (to set the
+ * target pCPU), when AVIC is toggled on/off (to (de)activate bypass),
+ * and if the irqfd becomes ineligible for posting (to put the IRTE
+ * back into remapped mode).
*/
struct list_head ir_list;
spinlock_t ir_list_lock;
- /* Save desired MSR intercept (read: pass-through) state */
- struct {
- DECLARE_BITMAP(read, MAX_DIRECT_ACCESS_MSRS);
- DECLARE_BITMAP(write, MAX_DIRECT_ACCESS_MSRS);
- } shadow_msr_intercept;
-
struct vcpu_sev_es_state sev_es;
bool guest_state_loaded;
@@ -335,11 +343,11 @@ struct svm_cpu_data {
u32 next_asid;
u32 min_asid;
+ bool bp_spec_reduce_set;
+
struct vmcb *save_area;
unsigned long save_area_pa;
- struct vmcb *current_vmcb;
-
/* index = sev_asid, value = vmcb pointer */
struct vmcb **sev_vmcbs;
};
@@ -358,39 +366,30 @@ static __always_inline struct kvm_sev_info *to_kvm_sev_info(struct kvm *kvm)
return &to_kvm_svm(kvm)->sev_info;
}
+#ifdef CONFIG_KVM_AMD_SEV
static __always_inline bool sev_guest(struct kvm *kvm)
{
-#ifdef CONFIG_KVM_AMD_SEV
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
-
- return sev->active;
-#else
- return false;
-#endif
+ return to_kvm_sev_info(kvm)->active;
}
-
static __always_inline bool sev_es_guest(struct kvm *kvm)
{
-#ifdef CONFIG_KVM_AMD_SEV
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
return sev->es_active && !WARN_ON_ONCE(!sev->active);
-#else
- return false;
-#endif
}
static __always_inline bool sev_snp_guest(struct kvm *kvm)
{
-#ifdef CONFIG_KVM_AMD_SEV
- struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+ struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
return (sev->vmsa_features & SVM_SEV_FEAT_SNP_ACTIVE) &&
!WARN_ON_ONCE(!sev_es_guest(kvm));
+}
#else
- return false;
+#define sev_guest(kvm) false
+#define sev_es_guest(kvm) false
+#define sev_snp_guest(kvm) false
#endif
-}
static inline bool ghcb_gpa_is_registered(struct vcpu_svm *svm, u64 val)
{
@@ -502,7 +501,7 @@ static inline bool svm_is_intercept(struct vcpu_svm *svm, int bit)
static inline bool nested_vgif_enabled(struct vcpu_svm *svm)
{
- return guest_can_use(&svm->vcpu, X86_FEATURE_VGIF) &&
+ return guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_VGIF) &&
(svm->nested.ctl.int_ctl & V_GIF_ENABLE_MASK);
}
@@ -554,7 +553,7 @@ static inline bool nested_npt_enabled(struct vcpu_svm *svm)
static inline bool nested_vnmi_enabled(struct vcpu_svm *svm)
{
- return guest_can_use(&svm->vcpu, X86_FEATURE_VNMI) &&
+ return guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_VNMI) &&
(svm->nested.ctl.int_ctl & V_NMI_ENABLE_MASK);
}
@@ -588,17 +587,103 @@ static inline bool is_vnmi_enabled(struct vcpu_svm *svm)
return false;
}
-/* svm.c */
-#define MSR_INVALID 0xffffffffU
+static inline void svm_vmgexit_set_return_code(struct vcpu_svm *svm,
+ u64 response, u64 data)
+{
+ ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, response);
+ ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, data);
+}
-#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
+static inline void svm_vmgexit_inject_exception(struct vcpu_svm *svm, u8 vector)
+{
+ u64 data = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT | vector;
+
+ svm_vmgexit_set_return_code(svm, GHCB_HV_RESP_ISSUE_EXCEPTION, data);
+}
+static inline void svm_vmgexit_bad_input(struct vcpu_svm *svm, u64 suberror)
+{
+ svm_vmgexit_set_return_code(svm, GHCB_HV_RESP_MALFORMED_INPUT, suberror);
+}
+
+static inline void svm_vmgexit_success(struct vcpu_svm *svm, u64 data)
+{
+ svm_vmgexit_set_return_code(svm, GHCB_HV_RESP_NO_ACTION, data);
+}
+
+static inline void svm_vmgexit_no_action(struct vcpu_svm *svm, u64 data)
+{
+ svm_vmgexit_set_return_code(svm, GHCB_HV_RESP_NO_ACTION, data);
+}
+
+/*
+ * The MSRPM is 8KiB in size, divided into four 2KiB ranges (the fourth range
+ * is reserved). Each MSR within a range is covered by two bits, one each for
+ * read (bit 0) and write (bit 1), where a bit value of '1' means intercepted.
+ */
+#define SVM_MSRPM_BYTES_PER_RANGE 2048
+#define SVM_BITS_PER_MSR 2
+#define SVM_MSRS_PER_BYTE (BITS_PER_BYTE / SVM_BITS_PER_MSR)
+#define SVM_MSRS_PER_RANGE (SVM_MSRPM_BYTES_PER_RANGE * SVM_MSRS_PER_BYTE)
+static_assert(SVM_MSRS_PER_RANGE == 8192);
+#define SVM_MSRPM_OFFSET_MASK (SVM_MSRS_PER_RANGE - 1)
+
+static __always_inline int svm_msrpm_bit_nr(u32 msr)
+{
+ int range_nr;
+
+ switch (msr & ~SVM_MSRPM_OFFSET_MASK) {
+ case 0:
+ range_nr = 0;
+ break;
+ case 0xc0000000:
+ range_nr = 1;
+ break;
+ case 0xc0010000:
+ range_nr = 2;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ return range_nr * SVM_MSRPM_BYTES_PER_RANGE * BITS_PER_BYTE +
+ (msr & SVM_MSRPM_OFFSET_MASK) * SVM_BITS_PER_MSR;
+}
+
+#define __BUILD_SVM_MSR_BITMAP_HELPER(rtype, action, bitop, access, bit_rw) \
+static inline rtype svm_##action##_msr_bitmap_##access(unsigned long *bitmap, \
+ u32 msr) \
+{ \
+ int bit_nr; \
+ \
+ bit_nr = svm_msrpm_bit_nr(msr); \
+ if (bit_nr < 0) \
+ return (rtype)true; \
+ \
+ return bitop##_bit(bit_nr + bit_rw, bitmap); \
+}
+
+#define BUILD_SVM_MSR_BITMAP_HELPERS(ret_type, action, bitop) \
+ __BUILD_SVM_MSR_BITMAP_HELPER(ret_type, action, bitop, read, 0) \
+ __BUILD_SVM_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 1)
+
+BUILD_SVM_MSR_BITMAP_HELPERS(bool, test, test)
+BUILD_SVM_MSR_BITMAP_HELPERS(void, clear, __clear)
+BUILD_SVM_MSR_BITMAP_HELPERS(void, set, __set)
+
+#define DEBUGCTL_RESERVED_BITS (~DEBUGCTLMSR_LBR)
+
+/* svm.c */
extern bool dump_invalid_vmcb;
-u32 svm_msrpm_offset(u32 msr);
-u32 *svm_vcpu_alloc_msrpm(void);
-void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm);
-void svm_vcpu_free_msrpm(u32 *msrpm);
+void *svm_alloc_permissions_map(unsigned long size, gfp_t gfp_mask);
+
+static inline void *svm_vcpu_alloc_msrpm(void)
+{
+ return svm_alloc_permissions_map(MSRPM_SIZE, GFP_KERNEL_ACCOUNT);
+}
+
+void svm_vcpu_free_msrpm(void *msrpm);
void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb);
void svm_enable_lbrv(struct kvm_vcpu *vcpu);
void svm_update_lbrv(struct kvm_vcpu *vcpu);
@@ -618,6 +703,20 @@ void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool disable);
void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
int trig_mode, int vec);
+void svm_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set);
+
+static inline void svm_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
+ u32 msr, int type)
+{
+ svm_set_intercept_for_msr(vcpu, msr, type, false);
+}
+
+static inline void svm_enable_intercept_for_msr(struct kvm_vcpu *vcpu,
+ u32 msr, int type)
+{
+ svm_set_intercept_for_msr(vcpu, msr, type, true);
+}
+
/* nested.c */
#define NESTED_EXIT_HOST 0 /* Exit handled on host level */
@@ -646,6 +745,8 @@ static inline bool nested_exit_on_nmi(struct vcpu_svm *svm)
return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_NMI);
}
+int __init nested_svm_init_msrpm_merge_offsets(void);
+
int enter_svm_guest_mode(struct kvm_vcpu *vcpu,
u64 vmcb_gpa, struct vmcb *vmcb12, bool from_vmrun);
void svm_leave_nested(struct kvm_vcpu *vcpu);
@@ -696,7 +797,8 @@ extern struct kvm_x86_nested_ops svm_nested_ops;
BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \
BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \
BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) | \
- BIT(APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED) \
+ BIT(APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED) | \
+ BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_TOO_BIG) \
)
bool avic_hardware_setup(void);
@@ -711,8 +813,9 @@ void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
void avic_vcpu_put(struct kvm_vcpu *vcpu);
void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu);
void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu);
-int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq,
- uint32_t guest_irq, bool set);
+int avic_pi_update_irte(struct kvm_kernel_irqfd *irqfd, struct kvm *kvm,
+ unsigned int host_irq, uint32_t guest_irq,
+ struct kvm_vcpu *vcpu, u32 vector);
void avic_vcpu_blocking(struct kvm_vcpu *vcpu);
void avic_vcpu_unblocking(struct kvm_vcpu *vcpu);
void avic_ring_doorbell(struct kvm_vcpu *vcpu);
@@ -722,11 +825,12 @@ void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu);
/* sev.c */
-void pre_sev_run(struct vcpu_svm *svm, int cpu);
+int pre_sev_run(struct vcpu_svm *svm, int cpu);
void sev_init_vmcb(struct vcpu_svm *svm);
void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm);
int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in);
void sev_es_vcpu_reset(struct vcpu_svm *svm);
+void sev_es_recalc_msr_intercepts(struct kvm_vcpu *vcpu);
void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa);
void sev_es_unmap_ghcb(struct vcpu_svm *svm);
@@ -763,6 +867,8 @@ void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu);
int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn);
+struct vmcb_save_area *sev_decrypt_vmsa(struct kvm_vcpu *vcpu);
+void sev_free_decrypted_vmsa(struct kvm_vcpu *vcpu, struct vmcb_save_area *vmsa);
#else
static inline struct page *snp_safe_alloc_page_node(int node, gfp_t gfp)
{
@@ -794,6 +900,11 @@ static inline int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn)
return 0;
}
+static inline struct vmcb_save_area *sev_decrypt_vmsa(struct kvm_vcpu *vcpu)
+{
+ return NULL;
+}
+static inline void sev_free_decrypted_vmsa(struct kvm_vcpu *vcpu, struct vmcb_save_area *vmsa) {}
#endif
/* vmenter.S */
diff --git a/arch/x86/kvm/svm/vmenter.S b/arch/x86/kvm/svm/vmenter.S
index 2ed80aea3bb1..235c4af6b692 100644
--- a/arch/x86/kvm/svm/vmenter.S
+++ b/arch/x86/kvm/svm/vmenter.S
@@ -169,13 +169,12 @@ SYM_FUNC_START(__svm_vcpu_run)
#endif
mov VCPU_RDI(%_ASM_DI), %_ASM_DI
- /* Enter guest mode */
- sti
+ /* Clobbers EFLAGS.ZF */
+ VM_CLEAR_CPU_BUFFERS
+ /* Enter guest mode */
3: vmrun %_ASM_AX
4:
- cli
-
/* Pop @svm to RAX while it's the only available register. */
pop %_ASM_AX
@@ -339,13 +338,12 @@ SYM_FUNC_START(__svm_sev_es_vcpu_run)
mov SVM_current_vmcb(%rdi), %rax
mov KVM_VMCB_pa(%rax), %rax
- /* Enter guest mode */
- sti
+ /* Clobbers EFLAGS.ZF */
+ VM_CLEAR_CPU_BUFFERS
+ /* Enter guest mode */
1: vmrun %rax
-
-2: cli
-
+2:
/* IMPORTANT: Stuff the RSB immediately after VM-Exit, before RET! */
FILL_RETURN_BUFFER %rax, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_VMEXIT