1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
|
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2012 SAMSUNG Electronics
* Padmavathi Venna <padma.v@samsung.com>
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <log.h>
#include <malloc.h>
#include <spi.h>
#include <fdtdec.h>
#include <time.h>
#include <asm/arch/clk.h>
#include <asm/arch/clock.h>
#include <asm/arch/cpu.h>
#include <asm/arch/gpio.h>
#include <asm/arch/pinmux.h>
#include <asm/arch/spi.h>
#include <asm/io.h>
#include <linux/delay.h>
DECLARE_GLOBAL_DATA_PTR;
struct exynos_spi_platdata {
enum periph_id periph_id;
s32 frequency; /* Default clock frequency, -1 for none */
struct exynos_spi *regs;
uint deactivate_delay_us; /* Delay to wait after deactivate */
};
struct exynos_spi_priv {
struct exynos_spi *regs;
unsigned int freq; /* Default frequency */
unsigned int mode;
enum periph_id periph_id; /* Peripheral ID for this device */
unsigned int fifo_size;
int skip_preamble;
ulong last_transaction_us; /* Time of last transaction end */
};
/**
* Flush spi tx, rx fifos and reset the SPI controller
*
* @param regs Pointer to SPI registers
*/
static void spi_flush_fifo(struct exynos_spi *regs)
{
clrsetbits_le32(®s->ch_cfg, SPI_CH_HS_EN, SPI_CH_RST);
clrbits_le32(®s->ch_cfg, SPI_CH_RST);
setbits_le32(®s->ch_cfg, SPI_TX_CH_ON | SPI_RX_CH_ON);
}
static void spi_get_fifo_levels(struct exynos_spi *regs,
int *rx_lvl, int *tx_lvl)
{
uint32_t spi_sts = readl(®s->spi_sts);
*rx_lvl = (spi_sts >> SPI_RX_LVL_OFFSET) & SPI_FIFO_LVL_MASK;
*tx_lvl = (spi_sts >> SPI_TX_LVL_OFFSET) & SPI_FIFO_LVL_MASK;
}
/**
* If there's something to transfer, do a software reset and set a
* transaction size.
*
* @param regs SPI peripheral registers
* @param count Number of bytes to transfer
* @param step Number of bytes to transfer in each packet (1 or 4)
*/
static void spi_request_bytes(struct exynos_spi *regs, int count, int step)
{
debug("%s: regs=%p, count=%d, step=%d\n", __func__, regs, count, step);
/* For word address we need to swap bytes */
if (step == 4) {
setbits_le32(®s->mode_cfg,
SPI_MODE_CH_WIDTH_WORD | SPI_MODE_BUS_WIDTH_WORD);
count /= 4;
setbits_le32(®s->swap_cfg, SPI_TX_SWAP_EN | SPI_RX_SWAP_EN |
SPI_TX_BYTE_SWAP | SPI_RX_BYTE_SWAP |
SPI_TX_HWORD_SWAP | SPI_RX_HWORD_SWAP);
} else {
/* Select byte access and clear the swap configuration */
clrbits_le32(®s->mode_cfg,
SPI_MODE_CH_WIDTH_WORD | SPI_MODE_BUS_WIDTH_WORD);
writel(0, ®s->swap_cfg);
}
assert(count && count < (1 << 16));
setbits_le32(®s->ch_cfg, SPI_CH_RST);
clrbits_le32(®s->ch_cfg, SPI_CH_RST);
writel(count | SPI_PACKET_CNT_EN, ®s->pkt_cnt);
}
static int spi_rx_tx(struct exynos_spi_priv *priv, int todo,
void **dinp, void const **doutp, unsigned long flags)
{
struct exynos_spi *regs = priv->regs;
uchar *rxp = *dinp;
const uchar *txp = *doutp;
int rx_lvl, tx_lvl;
uint out_bytes, in_bytes;
int toread;
unsigned start = get_timer(0);
int stopping;
int step;
out_bytes = in_bytes = todo;
stopping = priv->skip_preamble && (flags & SPI_XFER_END) &&
!(priv->mode & SPI_SLAVE);
/*
* Try to transfer words if we can. This helps read performance at
* SPI clock speeds above about 20MHz.
*/
step = 1;
if (!((todo | (uintptr_t)rxp | (uintptr_t)txp) & 3) &&
!priv->skip_preamble)
step = 4;
/*
* If there's something to send, do a software reset and set a
* transaction size.
*/
spi_request_bytes(regs, todo, step);
/*
* Bytes are transmitted/received in pairs. Wait to receive all the
* data because then transmission will be done as well.
*/
toread = in_bytes;
while (in_bytes) {
int temp;
/* Keep the fifos full/empty. */
spi_get_fifo_levels(regs, &rx_lvl, &tx_lvl);
/*
* Don't completely fill the txfifo, since we don't want our
* rxfifo to overflow, and it may already contain data.
*/
while (tx_lvl < priv->fifo_size/2 && out_bytes) {
if (!txp)
temp = -1;
else if (step == 4)
temp = *(uint32_t *)txp;
else
temp = *txp;
writel(temp, ®s->tx_data);
out_bytes -= step;
if (txp)
txp += step;
tx_lvl += step;
}
if (rx_lvl >= step) {
while (rx_lvl >= step) {
temp = readl(®s->rx_data);
if (priv->skip_preamble) {
if (temp == SPI_PREAMBLE_END_BYTE) {
priv->skip_preamble = 0;
stopping = 0;
}
} else {
if (rxp || stopping) {
if (step == 4)
*(uint32_t *)rxp = temp;
else
*rxp = temp;
rxp += step;
}
in_bytes -= step;
}
toread -= step;
rx_lvl -= step;
}
} else if (!toread) {
/*
* We have run out of input data, but haven't read
* enough bytes after the preamble yet. Read some more,
* and make sure that we transmit dummy bytes too, to
* keep things going.
*/
assert(!out_bytes);
out_bytes = in_bytes;
toread = in_bytes;
txp = NULL;
spi_request_bytes(regs, toread, step);
}
if (priv->skip_preamble && get_timer(start) > 100) {
debug("SPI timeout: in_bytes=%d, out_bytes=%d, ",
in_bytes, out_bytes);
return -ETIMEDOUT;
}
}
*dinp = rxp;
*doutp = txp;
return 0;
}
/**
* Activate the CS by driving it LOW
*
* @param slave Pointer to spi_slave to which controller has to
* communicate with
*/
static void spi_cs_activate(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct exynos_spi_platdata *pdata = dev_get_platdata(bus);
struct exynos_spi_priv *priv = dev_get_priv(bus);
/* If it's too soon to do another transaction, wait */
if (pdata->deactivate_delay_us &&
priv->last_transaction_us) {
ulong delay_us; /* The delay completed so far */
delay_us = timer_get_us() - priv->last_transaction_us;
if (delay_us < pdata->deactivate_delay_us)
udelay(pdata->deactivate_delay_us - delay_us);
}
clrbits_le32(&priv->regs->cs_reg, SPI_SLAVE_SIG_INACT);
debug("Activate CS, bus '%s'\n", bus->name);
priv->skip_preamble = priv->mode & SPI_PREAMBLE;
}
/**
* Deactivate the CS by driving it HIGH
*
* @param slave Pointer to spi_slave to which controller has to
* communicate with
*/
static void spi_cs_deactivate(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct exynos_spi_platdata *pdata = dev_get_platdata(bus);
struct exynos_spi_priv *priv = dev_get_priv(bus);
setbits_le32(&priv->regs->cs_reg, SPI_SLAVE_SIG_INACT);
/* Remember time of this transaction so we can honour the bus delay */
if (pdata->deactivate_delay_us)
priv->last_transaction_us = timer_get_us();
debug("Deactivate CS, bus '%s'\n", bus->name);
}
static int exynos_spi_ofdata_to_platdata(struct udevice *bus)
{
struct exynos_spi_platdata *plat = bus->platdata;
const void *blob = gd->fdt_blob;
int node = dev_of_offset(bus);
plat->regs = dev_read_addr_ptr(bus);
plat->periph_id = pinmux_decode_periph_id(blob, node);
if (plat->periph_id == PERIPH_ID_NONE) {
debug("%s: Invalid peripheral ID %d\n", __func__,
plat->periph_id);
return -FDT_ERR_NOTFOUND;
}
/* Use 500KHz as a suitable default */
plat->frequency = fdtdec_get_int(blob, node, "spi-max-frequency",
500000);
plat->deactivate_delay_us = fdtdec_get_int(blob, node,
"spi-deactivate-delay", 0);
debug("%s: regs=%p, periph_id=%d, max-frequency=%d, deactivate_delay=%d\n",
__func__, plat->regs, plat->periph_id, plat->frequency,
plat->deactivate_delay_us);
return 0;
}
static int exynos_spi_probe(struct udevice *bus)
{
struct exynos_spi_platdata *plat = dev_get_platdata(bus);
struct exynos_spi_priv *priv = dev_get_priv(bus);
priv->regs = plat->regs;
if (plat->periph_id == PERIPH_ID_SPI1 ||
plat->periph_id == PERIPH_ID_SPI2)
priv->fifo_size = 64;
else
priv->fifo_size = 256;
priv->skip_preamble = 0;
priv->last_transaction_us = timer_get_us();
priv->freq = plat->frequency;
priv->periph_id = plat->periph_id;
return 0;
}
static int exynos_spi_claim_bus(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct exynos_spi_priv *priv = dev_get_priv(bus);
exynos_pinmux_config(priv->periph_id, PINMUX_FLAG_NONE);
spi_flush_fifo(priv->regs);
writel(SPI_FB_DELAY_180, &priv->regs->fb_clk);
return 0;
}
static int exynos_spi_release_bus(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct exynos_spi_priv *priv = dev_get_priv(bus);
spi_flush_fifo(priv->regs);
return 0;
}
static int exynos_spi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct udevice *bus = dev->parent;
struct exynos_spi_priv *priv = dev_get_priv(bus);
int upto, todo;
int bytelen;
int ret = 0;
/* spi core configured to do 8 bit transfers */
if (bitlen % 8) {
debug("Non byte aligned SPI transfer.\n");
return -1;
}
/* Start the transaction, if necessary. */
if ((flags & SPI_XFER_BEGIN))
spi_cs_activate(dev);
/*
* Exynos SPI limits each transfer to 65535 transfers. To keep
* things simple, allow a maximum of 65532 bytes. We could allow
* more in word mode, but the performance difference is small.
*/
bytelen = bitlen / 8;
for (upto = 0; !ret && upto < bytelen; upto += todo) {
todo = min(bytelen - upto, (1 << 16) - 4);
ret = spi_rx_tx(priv, todo, &din, &dout, flags);
if (ret)
break;
}
/* Stop the transaction, if necessary. */
if ((flags & SPI_XFER_END) && !(priv->mode & SPI_SLAVE)) {
spi_cs_deactivate(dev);
if (priv->skip_preamble) {
assert(!priv->skip_preamble);
debug("Failed to complete premable transaction\n");
ret = -1;
}
}
return ret;
}
static int exynos_spi_set_speed(struct udevice *bus, uint speed)
{
struct exynos_spi_platdata *plat = bus->platdata;
struct exynos_spi_priv *priv = dev_get_priv(bus);
int ret;
if (speed > plat->frequency)
speed = plat->frequency;
ret = set_spi_clk(priv->periph_id, speed);
if (ret)
return ret;
priv->freq = speed;
debug("%s: regs=%p, speed=%d\n", __func__, priv->regs, priv->freq);
return 0;
}
static int exynos_spi_set_mode(struct udevice *bus, uint mode)
{
struct exynos_spi_priv *priv = dev_get_priv(bus);
uint32_t reg;
reg = readl(&priv->regs->ch_cfg);
reg &= ~(SPI_CH_CPHA_B | SPI_CH_CPOL_L);
if (mode & SPI_CPHA)
reg |= SPI_CH_CPHA_B;
if (mode & SPI_CPOL)
reg |= SPI_CH_CPOL_L;
writel(reg, &priv->regs->ch_cfg);
priv->mode = mode;
debug("%s: regs=%p, mode=%d\n", __func__, priv->regs, priv->mode);
return 0;
}
static const struct dm_spi_ops exynos_spi_ops = {
.claim_bus = exynos_spi_claim_bus,
.release_bus = exynos_spi_release_bus,
.xfer = exynos_spi_xfer,
.set_speed = exynos_spi_set_speed,
.set_mode = exynos_spi_set_mode,
/*
* cs_info is not needed, since we require all chip selects to be
* in the device tree explicitly
*/
};
static const struct udevice_id exynos_spi_ids[] = {
{ .compatible = "samsung,exynos-spi" },
{ }
};
U_BOOT_DRIVER(exynos_spi) = {
.name = "exynos_spi",
.id = UCLASS_SPI,
.of_match = exynos_spi_ids,
.ops = &exynos_spi_ops,
.ofdata_to_platdata = exynos_spi_ofdata_to_platdata,
.platdata_auto = sizeof(struct exynos_spi_platdata),
.priv_auto = sizeof(struct exynos_spi_priv),
.probe = exynos_spi_probe,
};
|