summaryrefslogtreecommitdiff
path: root/tools/testing/selftests/kvm/x86_64/state_test.c
blob: e0a3c0204b7cd11c5da7024bea68f0da71e41bab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/*
 * KVM_GET/SET_* tests
 *
 * Copyright (C) 2018, Red Hat, Inc.
 *
 * This work is licensed under the terms of the GNU GPL, version 2.
 *
 * Tests for vCPU state save/restore, including nested guest state.
 */
#define _GNU_SOURCE /* for program_invocation_short_name */
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>

#include "test_util.h"

#include "kvm_util.h"
#include "processor.h"
#include "vmx.h"

#define VCPU_ID		5

static bool have_nested_state;

void l2_guest_code(void)
{
	GUEST_SYNC(6);

        /* Exit to L1 */
	vmcall();

	/* L1 has now set up a shadow VMCS for us.  */
	GUEST_ASSERT(vmreadz(GUEST_RIP) == 0xc0ffee);
	GUEST_SYNC(10);
	GUEST_ASSERT(vmreadz(GUEST_RIP) == 0xc0ffee);
	GUEST_ASSERT(!vmwrite(GUEST_RIP, 0xc0fffee));
	GUEST_SYNC(11);
	GUEST_ASSERT(vmreadz(GUEST_RIP) == 0xc0fffee);
	GUEST_ASSERT(!vmwrite(GUEST_RIP, 0xc0ffffee));
	GUEST_SYNC(12);

	/* Done, exit to L1 and never come back.  */
	vmcall();
}

void l1_guest_code(struct vmx_pages *vmx_pages)
{
#define L2_GUEST_STACK_SIZE 64
        unsigned long l2_guest_stack[L2_GUEST_STACK_SIZE];

	GUEST_ASSERT(vmx_pages->vmcs_gpa);
	GUEST_ASSERT(prepare_for_vmx_operation(vmx_pages));
	GUEST_SYNC(3);
	GUEST_ASSERT(load_vmcs(vmx_pages));
	GUEST_ASSERT(vmptrstz() == vmx_pages->vmcs_gpa);

	GUEST_SYNC(4);
	GUEST_ASSERT(vmptrstz() == vmx_pages->vmcs_gpa);

	prepare_vmcs(vmx_pages, l2_guest_code,
		     &l2_guest_stack[L2_GUEST_STACK_SIZE]);

	GUEST_SYNC(5);
	GUEST_ASSERT(vmptrstz() == vmx_pages->vmcs_gpa);
	GUEST_ASSERT(!vmlaunch());
	GUEST_ASSERT(vmptrstz() == vmx_pages->vmcs_gpa);
	GUEST_ASSERT(vmreadz(VM_EXIT_REASON) == EXIT_REASON_VMCALL);

	/* Check that the launched state is preserved.  */
	GUEST_ASSERT(vmlaunch());

	GUEST_ASSERT(!vmresume());
	GUEST_ASSERT(vmreadz(VM_EXIT_REASON) == EXIT_REASON_VMCALL);

	GUEST_SYNC(7);
	GUEST_ASSERT(vmreadz(VM_EXIT_REASON) == EXIT_REASON_VMCALL);

	GUEST_ASSERT(!vmresume());
	GUEST_ASSERT(vmreadz(VM_EXIT_REASON) == EXIT_REASON_VMCALL);

	vmwrite(GUEST_RIP, vmreadz(GUEST_RIP) + 3);

	vmwrite(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
	vmwrite(VMCS_LINK_POINTER, vmx_pages->shadow_vmcs_gpa);

	GUEST_ASSERT(!vmptrld(vmx_pages->shadow_vmcs_gpa));
	GUEST_ASSERT(vmlaunch());
	GUEST_SYNC(8);
	GUEST_ASSERT(vmlaunch());
	GUEST_ASSERT(vmresume());

	vmwrite(GUEST_RIP, 0xc0ffee);
	GUEST_SYNC(9);
	GUEST_ASSERT(vmreadz(GUEST_RIP) == 0xc0ffee);

	GUEST_ASSERT(!vmptrld(vmx_pages->vmcs_gpa));
	GUEST_ASSERT(!vmresume());
	GUEST_ASSERT(vmreadz(VM_EXIT_REASON) == EXIT_REASON_VMCALL);

	GUEST_ASSERT(!vmptrld(vmx_pages->shadow_vmcs_gpa));
	GUEST_ASSERT(vmreadz(GUEST_RIP) == 0xc0ffffee);
	GUEST_ASSERT(vmlaunch());
	GUEST_ASSERT(vmresume());
	GUEST_SYNC(13);
	GUEST_ASSERT(vmreadz(GUEST_RIP) == 0xc0ffffee);
	GUEST_ASSERT(vmlaunch());
	GUEST_ASSERT(vmresume());
}

void guest_code(struct vmx_pages *vmx_pages)
{
	GUEST_SYNC(1);
	GUEST_SYNC(2);

	if (vmx_pages)
		l1_guest_code(vmx_pages);

	GUEST_DONE();
}

int main(int argc, char *argv[])
{
	struct vmx_pages *vmx_pages = NULL;
	vm_vaddr_t vmx_pages_gva = 0;

	struct kvm_regs regs1, regs2;
	struct kvm_vm *vm;
	struct kvm_run *run;
	struct kvm_x86_state *state;
	struct ucall uc;
	int stage;

	struct kvm_cpuid_entry2 *entry = kvm_get_supported_cpuid_entry(1);

	/* Create VM */
	vm = vm_create_default(VCPU_ID, 0, guest_code);
	vcpu_set_cpuid(vm, VCPU_ID, kvm_get_supported_cpuid());
	run = vcpu_state(vm, VCPU_ID);

	vcpu_regs_get(vm, VCPU_ID, &regs1);

	if (kvm_check_cap(KVM_CAP_NESTED_STATE)) {
		vmx_pages = vcpu_alloc_vmx(vm, &vmx_pages_gva);
		vcpu_args_set(vm, VCPU_ID, 1, vmx_pages_gva);
	} else {
		printf("will skip nested state checks\n");
		vcpu_args_set(vm, VCPU_ID, 1, 0);
	}

	for (stage = 1;; stage++) {
		_vcpu_run(vm, VCPU_ID);
		TEST_ASSERT(run->exit_reason == KVM_EXIT_IO,
			    "Stage %d: unexpected exit reason: %u (%s),\n",
			    stage, run->exit_reason,
			    exit_reason_str(run->exit_reason));

		switch (get_ucall(vm, VCPU_ID, &uc)) {
		case UCALL_ABORT:
			TEST_ASSERT(false, "%s at %s:%d", (const char *)uc.args[0],
				    __FILE__, uc.args[1]);
			/* NOT REACHED */
		case UCALL_SYNC:
			break;
		case UCALL_DONE:
			goto done;
		default:
			TEST_ASSERT(false, "Unknown ucall 0x%x.", uc.cmd);
		}

		/* UCALL_SYNC is handled here.  */
		TEST_ASSERT(!strcmp((const char *)uc.args[0], "hello") &&
			    uc.args[1] == stage, "Unexpected register values vmexit #%lx, got %lx",
			    stage, (ulong)uc.args[1]);

		state = vcpu_save_state(vm, VCPU_ID);
		memset(&regs1, 0, sizeof(regs1));
		vcpu_regs_get(vm, VCPU_ID, &regs1);

		kvm_vm_release(vm);

		/* Restore state in a new VM.  */
		kvm_vm_restart(vm, O_RDWR);
		vm_vcpu_add(vm, VCPU_ID, 0, 0);
		vcpu_set_cpuid(vm, VCPU_ID, kvm_get_supported_cpuid());
		vcpu_load_state(vm, VCPU_ID, state);
		run = vcpu_state(vm, VCPU_ID);
		free(state);

		memset(&regs2, 0, sizeof(regs2));
		vcpu_regs_get(vm, VCPU_ID, &regs2);
		TEST_ASSERT(!memcmp(&regs1, &regs2, sizeof(regs2)),
			    "Unexpected register values after vcpu_load_state; rdi: %lx rsi: %lx",
			    (ulong) regs2.rdi, (ulong) regs2.rsi);
	}

done:
	kvm_vm_free(vm);
}