summaryrefslogtreecommitdiff
path: root/tools/testing/selftests/kvm/max_guest_memory_test.c
blob: 3875c4b23a04f37fd67f88c8774e6aa91caf09a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
// SPDX-License-Identifier: GPL-2.0
#define _GNU_SOURCE

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
#include <sys/types.h>
#include <signal.h>
#include <errno.h>
#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/atomic.h>

#include "kvm_util.h"
#include "test_util.h"
#include "guest_modes.h"
#include "processor.h"

static void guest_code(uint64_t start_gpa, uint64_t end_gpa, uint64_t stride)
{
	uint64_t gpa;

	for (gpa = start_gpa; gpa < end_gpa; gpa += stride)
		*((volatile uint64_t *)gpa) = gpa;

	GUEST_DONE();
}

struct vcpu_info {
	struct kvm_vm *vm;
	uint32_t id;
	uint64_t start_gpa;
	uint64_t end_gpa;
};

static int nr_vcpus;
static atomic_t rendezvous;

static void rendezvous_with_boss(void)
{
	int orig = atomic_read(&rendezvous);

	if (orig > 0) {
		atomic_dec_and_test(&rendezvous);
		while (atomic_read(&rendezvous) > 0)
			cpu_relax();
	} else {
		atomic_inc(&rendezvous);
		while (atomic_read(&rendezvous) < 0)
			cpu_relax();
	}
}

static void run_vcpu(struct kvm_vm *vm, uint32_t vcpu_id)
{
	vcpu_run(vm, vcpu_id);
	ASSERT_EQ(get_ucall(vm, vcpu_id, NULL), UCALL_DONE);
}

static void *vcpu_worker(void *data)
{
	struct vcpu_info *vcpu = data;
	struct kvm_vm *vm = vcpu->vm;
	struct kvm_sregs sregs;
	struct kvm_regs regs;

	vcpu_args_set(vm, vcpu->id, 3, vcpu->start_gpa, vcpu->end_gpa,
		      vm_get_page_size(vm));

	/* Snapshot regs before the first run. */
	vcpu_regs_get(vm, vcpu->id, &regs);
	rendezvous_with_boss();

	run_vcpu(vm, vcpu->id);
	rendezvous_with_boss();
	vcpu_regs_set(vm, vcpu->id, &regs);
	vcpu_sregs_get(vm, vcpu->id, &sregs);
#ifdef __x86_64__
	/* Toggle CR0.WP to trigger a MMU context reset. */
	sregs.cr0 ^= X86_CR0_WP;
#endif
	vcpu_sregs_set(vm, vcpu->id, &sregs);
	rendezvous_with_boss();

	run_vcpu(vm, vcpu->id);
	rendezvous_with_boss();

	return NULL;
}

static pthread_t *spawn_workers(struct kvm_vm *vm, uint64_t start_gpa,
				uint64_t end_gpa)
{
	struct vcpu_info *info;
	uint64_t gpa, nr_bytes;
	pthread_t *threads;
	int i;

	threads = malloc(nr_vcpus * sizeof(*threads));
	TEST_ASSERT(threads, "Failed to allocate vCPU threads");

	info = malloc(nr_vcpus * sizeof(*info));
	TEST_ASSERT(info, "Failed to allocate vCPU gpa ranges");

	nr_bytes = ((end_gpa - start_gpa) / nr_vcpus) &
			~((uint64_t)vm_get_page_size(vm) - 1);
	TEST_ASSERT(nr_bytes, "C'mon, no way you have %d CPUs", nr_vcpus);

	for (i = 0, gpa = start_gpa; i < nr_vcpus; i++, gpa += nr_bytes) {
		info[i].vm = vm;
		info[i].id = i;
		info[i].start_gpa = gpa;
		info[i].end_gpa = gpa + nr_bytes;
		pthread_create(&threads[i], NULL, vcpu_worker, &info[i]);
	}
	return threads;
}

static void rendezvous_with_vcpus(struct timespec *time, const char *name)
{
	int i, rendezvoused;

	pr_info("Waiting for vCPUs to finish %s...\n", name);

	rendezvoused = atomic_read(&rendezvous);
	for (i = 0; abs(rendezvoused) != 1; i++) {
		usleep(100);
		if (!(i & 0x3f))
			pr_info("\r%d vCPUs haven't rendezvoused...",
				abs(rendezvoused) - 1);
		rendezvoused = atomic_read(&rendezvous);
	}

	clock_gettime(CLOCK_MONOTONIC, time);

	/* Release the vCPUs after getting the time of the previous action. */
	pr_info("\rAll vCPUs finished %s, releasing...\n", name);
	if (rendezvoused > 0)
		atomic_set(&rendezvous, -nr_vcpus - 1);
	else
		atomic_set(&rendezvous, nr_vcpus + 1);
}

static void calc_default_nr_vcpus(void)
{
	cpu_set_t possible_mask;
	int r;

	r = sched_getaffinity(0, sizeof(possible_mask), &possible_mask);
	TEST_ASSERT(!r, "sched_getaffinity failed, errno = %d (%s)",
		    errno, strerror(errno));

	nr_vcpus = CPU_COUNT(&possible_mask) * 3/4;
	TEST_ASSERT(nr_vcpus > 0, "Uh, no CPUs?");
}

int main(int argc, char *argv[])
{
	/*
	 * Skip the first 4gb and slot0.  slot0 maps <1gb and is used to back
	 * the guest's code, stack, and page tables.  Because selftests creates
	 * an IRQCHIP, a.k.a. a local APIC, KVM creates an internal memslot
	 * just below the 4gb boundary.  This test could create memory at
	 * 1gb-3gb,but it's simpler to skip straight to 4gb.
	 */
	const uint64_t size_1gb = (1 << 30);
	const uint64_t start_gpa = (4ull * size_1gb);
	const int first_slot = 1;

	struct timespec time_start, time_run1, time_reset, time_run2;
	uint64_t max_gpa, gpa, slot_size, max_mem, i;
	int max_slots, slot, opt, fd;
	bool hugepages = false;
	pthread_t *threads;
	struct kvm_vm *vm;
	void *mem;

	/*
	 * Default to 2gb so that maxing out systems with MAXPHADDR=46, which
	 * are quite common for x86, requires changing only max_mem (KVM allows
	 * 32k memslots, 32k * 2gb == ~64tb of guest memory).
	 */
	slot_size = 2 * size_1gb;

	max_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS);
	TEST_ASSERT(max_slots > first_slot, "KVM is broken");

	/* All KVM MMUs should be able to survive a 128gb guest. */
	max_mem = 128 * size_1gb;

	calc_default_nr_vcpus();

	while ((opt = getopt(argc, argv, "c:h:m:s:H")) != -1) {
		switch (opt) {
		case 'c':
			nr_vcpus = atoi(optarg);
			TEST_ASSERT(nr_vcpus > 0, "number of vcpus must be >0");
			break;
		case 'm':
			max_mem = atoi(optarg) * size_1gb;
			TEST_ASSERT(max_mem > 0, "memory size must be >0");
			break;
		case 's':
			slot_size = atoi(optarg) * size_1gb;
			TEST_ASSERT(slot_size > 0, "slot size must be >0");
			break;
		case 'H':
			hugepages = true;
			break;
		case 'h':
		default:
			printf("usage: %s [-c nr_vcpus] [-m max_mem_in_gb] [-s slot_size_in_gb] [-H]\n", argv[0]);
			exit(1);
		}
	}

	vm = vm_create_default_with_vcpus(nr_vcpus, 0, 0, guest_code, NULL);

	max_gpa = vm_get_max_gfn(vm) << vm_get_page_shift(vm);
	TEST_ASSERT(max_gpa > (4 * slot_size), "MAXPHYADDR <4gb ");

	fd = kvm_memfd_alloc(slot_size, hugepages);
	mem = mmap(NULL, slot_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
	TEST_ASSERT(mem != MAP_FAILED, "mmap() failed");

	TEST_ASSERT(!madvise(mem, slot_size, MADV_NOHUGEPAGE), "madvise() failed");

	/* Pre-fault the memory to avoid taking mmap_sem on guest page faults. */
	for (i = 0; i < slot_size; i += vm_get_page_size(vm))
		((uint8_t *)mem)[i] = 0xaa;

	gpa = 0;
	for (slot = first_slot; slot < max_slots; slot++) {
		gpa = start_gpa + ((slot - first_slot) * slot_size);
		if (gpa + slot_size > max_gpa)
			break;

		if ((gpa - start_gpa) >= max_mem)
			break;

		vm_set_user_memory_region(vm, slot, 0, gpa, slot_size, mem);

#ifdef __x86_64__
		/* Identity map memory in the guest using 1gb pages. */
		for (i = 0; i < slot_size; i += size_1gb)
			__virt_pg_map(vm, gpa + i, gpa + i, X86_PAGE_SIZE_1G);
#else
		for (i = 0; i < slot_size; i += vm_get_page_size(vm))
			virt_pg_map(vm, gpa + i, gpa + i);
#endif
	}

	atomic_set(&rendezvous, nr_vcpus + 1);
	threads = spawn_workers(vm, start_gpa, gpa);

	pr_info("Running with %lugb of guest memory and %u vCPUs\n",
		(gpa - start_gpa) / size_1gb, nr_vcpus);

	rendezvous_with_vcpus(&time_start, "spawning");
	rendezvous_with_vcpus(&time_run1, "run 1");
	rendezvous_with_vcpus(&time_reset, "reset");
	rendezvous_with_vcpus(&time_run2, "run 2");

	time_run2  = timespec_sub(time_run2,   time_reset);
	time_reset = timespec_sub(time_reset, time_run1);
	time_run1  = timespec_sub(time_run1,   time_start);

	pr_info("run1 = %ld.%.9lds, reset = %ld.%.9lds, run2 =  %ld.%.9lds\n",
		time_run1.tv_sec, time_run1.tv_nsec,
		time_reset.tv_sec, time_reset.tv_nsec,
		time_run2.tv_sec, time_run2.tv_nsec);

	/*
	 * Delete even numbered slots (arbitrary) and unmap the first half of
	 * the backing (also arbitrary) to verify KVM correctly drops all
	 * references to the removed regions.
	 */
	for (slot = (slot - 1) & ~1ull; slot >= first_slot; slot -= 2)
		vm_set_user_memory_region(vm, slot, 0, 0, 0, NULL);

	munmap(mem, slot_size / 2);

	/* Sanity check that the vCPUs actually ran. */
	for (i = 0; i < nr_vcpus; i++)
		pthread_join(threads[i], NULL);

	/*
	 * Deliberately exit without deleting the remaining memslots or closing
	 * kvm_fd to test cleanup via mmu_notifier.release.
	 */
}