summaryrefslogtreecommitdiff
path: root/mm/kmsan/hooks.c
blob: 5d6e2dee5692a32f4bff22a9b16d955eb7955dc4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
// SPDX-License-Identifier: GPL-2.0
/*
 * KMSAN hooks for kernel subsystems.
 *
 * These functions handle creation of KMSAN metadata for memory allocations.
 *
 * Copyright (C) 2018-2022 Google LLC
 * Author: Alexander Potapenko <glider@google.com>
 *
 */

#include <linux/cacheflush.h>
#include <linux/dma-direction.h>
#include <linux/gfp.h>
#include <linux/kmsan.h>
#include <linux/mm.h>
#include <linux/mm_types.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/usb.h>

#include "../internal.h"
#include "../slab.h"
#include "kmsan.h"

/*
 * Instrumented functions shouldn't be called under
 * kmsan_enter_runtime()/kmsan_leave_runtime(), because this will lead to
 * skipping effects of functions like memset() inside instrumented code.
 */

void kmsan_task_create(struct task_struct *task)
{
	kmsan_enter_runtime();
	kmsan_internal_task_create(task);
	kmsan_leave_runtime();
}

void kmsan_task_exit(struct task_struct *task)
{
	struct kmsan_ctx *ctx = &task->kmsan_ctx;

	if (!kmsan_enabled || kmsan_in_runtime())
		return;

	ctx->allow_reporting = false;
}

void kmsan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags)
{
	if (unlikely(object == NULL))
		return;
	if (!kmsan_enabled || kmsan_in_runtime())
		return;
	/*
	 * There's a ctor or this is an RCU cache - do nothing. The memory
	 * status hasn't changed since last use.
	 */
	if (s->ctor || (s->flags & SLAB_TYPESAFE_BY_RCU))
		return;

	kmsan_enter_runtime();
	if (flags & __GFP_ZERO)
		kmsan_internal_unpoison_memory(object, s->object_size,
					       KMSAN_POISON_CHECK);
	else
		kmsan_internal_poison_memory(object, s->object_size, flags,
					     KMSAN_POISON_CHECK);
	kmsan_leave_runtime();
}

void kmsan_slab_free(struct kmem_cache *s, void *object)
{
	if (!kmsan_enabled || kmsan_in_runtime())
		return;

	/* RCU slabs could be legally used after free within the RCU period */
	if (unlikely(s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)))
		return;
	/*
	 * If there's a constructor, freed memory must remain in the same state
	 * until the next allocation. We cannot save its state to detect
	 * use-after-free bugs, instead we just keep it unpoisoned.
	 */
	if (s->ctor)
		return;
	kmsan_enter_runtime();
	kmsan_internal_poison_memory(object, s->object_size, GFP_KERNEL,
				     KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
	kmsan_leave_runtime();
}

void kmsan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
{
	if (unlikely(ptr == NULL))
		return;
	if (!kmsan_enabled || kmsan_in_runtime())
		return;
	kmsan_enter_runtime();
	if (flags & __GFP_ZERO)
		kmsan_internal_unpoison_memory((void *)ptr, size,
					       /*checked*/ true);
	else
		kmsan_internal_poison_memory((void *)ptr, size, flags,
					     KMSAN_POISON_CHECK);
	kmsan_leave_runtime();
}

void kmsan_kfree_large(const void *ptr)
{
	struct page *page;

	if (!kmsan_enabled || kmsan_in_runtime())
		return;
	kmsan_enter_runtime();
	page = virt_to_head_page((void *)ptr);
	KMSAN_WARN_ON(ptr != page_address(page));
	kmsan_internal_poison_memory((void *)ptr,
				     page_size(page),
				     GFP_KERNEL,
				     KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
	kmsan_leave_runtime();
}

static unsigned long vmalloc_shadow(unsigned long addr)
{
	return (unsigned long)kmsan_get_metadata((void *)addr,
						 KMSAN_META_SHADOW);
}

static unsigned long vmalloc_origin(unsigned long addr)
{
	return (unsigned long)kmsan_get_metadata((void *)addr,
						 KMSAN_META_ORIGIN);
}

void kmsan_vunmap_range_noflush(unsigned long start, unsigned long end)
{
	__vunmap_range_noflush(vmalloc_shadow(start), vmalloc_shadow(end));
	__vunmap_range_noflush(vmalloc_origin(start), vmalloc_origin(end));
	flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
	flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
}

/*
 * This function creates new shadow/origin pages for the physical pages mapped
 * into the virtual memory. If those physical pages already had shadow/origin,
 * those are ignored.
 */
int kmsan_ioremap_page_range(unsigned long start, unsigned long end,
			     phys_addr_t phys_addr, pgprot_t prot,
			     unsigned int page_shift)
{
	gfp_t gfp_mask = GFP_KERNEL | __GFP_ZERO;
	struct page *shadow, *origin;
	unsigned long off = 0;
	int nr, err = 0, clean = 0, mapped;

	if (!kmsan_enabled || kmsan_in_runtime())
		return 0;

	nr = (end - start) / PAGE_SIZE;
	kmsan_enter_runtime();
	for (int i = 0; i < nr; i++, off += PAGE_SIZE, clean = i) {
		shadow = alloc_pages(gfp_mask, 1);
		origin = alloc_pages(gfp_mask, 1);
		if (!shadow || !origin) {
			err = -ENOMEM;
			goto ret;
		}
		mapped = __vmap_pages_range_noflush(
			vmalloc_shadow(start + off),
			vmalloc_shadow(start + off + PAGE_SIZE), prot, &shadow,
			PAGE_SHIFT);
		if (mapped) {
			err = mapped;
			goto ret;
		}
		shadow = NULL;
		mapped = __vmap_pages_range_noflush(
			vmalloc_origin(start + off),
			vmalloc_origin(start + off + PAGE_SIZE), prot, &origin,
			PAGE_SHIFT);
		if (mapped) {
			__vunmap_range_noflush(
				vmalloc_shadow(start + off),
				vmalloc_shadow(start + off + PAGE_SIZE));
			err = mapped;
			goto ret;
		}
		origin = NULL;
	}
	/* Page mapping loop finished normally, nothing to clean up. */
	clean = 0;

ret:
	if (clean > 0) {
		/*
		 * Something went wrong. Clean up shadow/origin pages allocated
		 * on the last loop iteration, then delete mappings created
		 * during the previous iterations.
		 */
		if (shadow)
			__free_pages(shadow, 1);
		if (origin)
			__free_pages(origin, 1);
		__vunmap_range_noflush(
			vmalloc_shadow(start),
			vmalloc_shadow(start + clean * PAGE_SIZE));
		__vunmap_range_noflush(
			vmalloc_origin(start),
			vmalloc_origin(start + clean * PAGE_SIZE));
	}
	flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
	flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
	kmsan_leave_runtime();
	return err;
}

void kmsan_iounmap_page_range(unsigned long start, unsigned long end)
{
	unsigned long v_shadow, v_origin;
	struct page *shadow, *origin;
	int nr;

	if (!kmsan_enabled || kmsan_in_runtime())
		return;

	nr = (end - start) / PAGE_SIZE;
	kmsan_enter_runtime();
	v_shadow = (unsigned long)vmalloc_shadow(start);
	v_origin = (unsigned long)vmalloc_origin(start);
	for (int i = 0; i < nr;
	     i++, v_shadow += PAGE_SIZE, v_origin += PAGE_SIZE) {
		shadow = kmsan_vmalloc_to_page_or_null((void *)v_shadow);
		origin = kmsan_vmalloc_to_page_or_null((void *)v_origin);
		__vunmap_range_noflush(v_shadow, vmalloc_shadow(end));
		__vunmap_range_noflush(v_origin, vmalloc_origin(end));
		if (shadow)
			__free_pages(shadow, 1);
		if (origin)
			__free_pages(origin, 1);
	}
	flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
	flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
	kmsan_leave_runtime();
}

void kmsan_copy_to_user(void __user *to, const void *from, size_t to_copy,
			size_t left)
{
	unsigned long ua_flags;

	if (!kmsan_enabled || kmsan_in_runtime())
		return;
	/*
	 * At this point we've copied the memory already. It's hard to check it
	 * before copying, as the size of actually copied buffer is unknown.
	 */

	/* copy_to_user() may copy zero bytes. No need to check. */
	if (!to_copy)
		return;
	/* Or maybe copy_to_user() failed to copy anything. */
	if (to_copy <= left)
		return;

	ua_flags = user_access_save();
	if ((u64)to < TASK_SIZE) {
		/* This is a user memory access, check it. */
		kmsan_internal_check_memory((void *)from, to_copy - left, to,
					    REASON_COPY_TO_USER);
	} else {
		/* Otherwise this is a kernel memory access. This happens when a
		 * compat syscall passes an argument allocated on the kernel
		 * stack to a real syscall.
		 * Don't check anything, just copy the shadow of the copied
		 * bytes.
		 */
		kmsan_internal_memmove_metadata((void *)to, (void *)from,
						to_copy - left);
	}
	user_access_restore(ua_flags);
}
EXPORT_SYMBOL(kmsan_copy_to_user);

/* Helper function to check an URB. */
void kmsan_handle_urb(const struct urb *urb, bool is_out)
{
	if (!urb)
		return;
	if (is_out)
		kmsan_internal_check_memory(urb->transfer_buffer,
					    urb->transfer_buffer_length,
					    /*user_addr*/ 0, REASON_SUBMIT_URB);
	else
		kmsan_internal_unpoison_memory(urb->transfer_buffer,
					       urb->transfer_buffer_length,
					       /*checked*/ false);
}
EXPORT_SYMBOL_GPL(kmsan_handle_urb);

static void kmsan_handle_dma_page(const void *addr, size_t size,
				  enum dma_data_direction dir)
{
	switch (dir) {
	case DMA_BIDIRECTIONAL:
		kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
					    REASON_ANY);
		kmsan_internal_unpoison_memory((void *)addr, size,
					       /*checked*/ false);
		break;
	case DMA_TO_DEVICE:
		kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
					    REASON_ANY);
		break;
	case DMA_FROM_DEVICE:
		kmsan_internal_unpoison_memory((void *)addr, size,
					       /*checked*/ false);
		break;
	case DMA_NONE:
		break;
	}
}

/* Helper function to handle DMA data transfers. */
void kmsan_handle_dma(struct page *page, size_t offset, size_t size,
		      enum dma_data_direction dir)
{
	u64 page_offset, to_go, addr;

	if (PageHighMem(page))
		return;
	addr = (u64)page_address(page) + offset;
	/*
	 * The kernel may occasionally give us adjacent DMA pages not belonging
	 * to the same allocation. Process them separately to avoid triggering
	 * internal KMSAN checks.
	 */
	while (size > 0) {
		page_offset = offset_in_page(addr);
		to_go = min(PAGE_SIZE - page_offset, (u64)size);
		kmsan_handle_dma_page((void *)addr, to_go, dir);
		addr += to_go;
		size -= to_go;
	}
}

void kmsan_handle_dma_sg(struct scatterlist *sg, int nents,
			 enum dma_data_direction dir)
{
	struct scatterlist *item;
	int i;

	for_each_sg(sg, item, nents, i)
		kmsan_handle_dma(sg_page(item), item->offset, item->length,
				 dir);
}

/* Functions from kmsan-checks.h follow. */
void kmsan_poison_memory(const void *address, size_t size, gfp_t flags)
{
	if (!kmsan_enabled || kmsan_in_runtime())
		return;
	kmsan_enter_runtime();
	/* The users may want to poison/unpoison random memory. */
	kmsan_internal_poison_memory((void *)address, size, flags,
				     KMSAN_POISON_NOCHECK);
	kmsan_leave_runtime();
}
EXPORT_SYMBOL(kmsan_poison_memory);

void kmsan_unpoison_memory(const void *address, size_t size)
{
	unsigned long ua_flags;

	if (!kmsan_enabled || kmsan_in_runtime())
		return;

	ua_flags = user_access_save();
	kmsan_enter_runtime();
	/* The users may want to poison/unpoison random memory. */
	kmsan_internal_unpoison_memory((void *)address, size,
				       KMSAN_POISON_NOCHECK);
	kmsan_leave_runtime();
	user_access_restore(ua_flags);
}
EXPORT_SYMBOL(kmsan_unpoison_memory);

/*
 * Version of kmsan_unpoison_memory() that can be called from within the KMSAN
 * runtime.
 *
 * Non-instrumented IRQ entry functions receive struct pt_regs from assembly
 * code. Those regs need to be unpoisoned, otherwise using them will result in
 * false positives.
 * Using kmsan_unpoison_memory() is not an option in entry code, because the
 * return value of in_task() is inconsistent - as a result, certain calls to
 * kmsan_unpoison_memory() are ignored. kmsan_unpoison_entry_regs() ensures that
 * the registers are unpoisoned even if kmsan_in_runtime() is true in the early
 * entry code.
 */
void kmsan_unpoison_entry_regs(const struct pt_regs *regs)
{
	unsigned long ua_flags;

	if (!kmsan_enabled)
		return;

	ua_flags = user_access_save();
	kmsan_internal_unpoison_memory((void *)regs, sizeof(*regs),
				       KMSAN_POISON_NOCHECK);
	user_access_restore(ua_flags);
}

void kmsan_check_memory(const void *addr, size_t size)
{
	if (!kmsan_enabled)
		return;
	return kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
					   REASON_ANY);
}
EXPORT_SYMBOL(kmsan_check_memory);