1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
// SPDX-License-Identifier: GPL-2.0
/*
* KCSAN short boot-time selftests.
*
* Copyright (C) 2019, Google LLC.
*/
#define pr_fmt(fmt) "kcsan: " fmt
#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/init.h>
#include <linux/kcsan-checks.h>
#include <linux/kernel.h>
#include <linux/printk.h>
#include <linux/random.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include "encoding.h"
#define ITERS_PER_TEST 2000
/* Test requirements. */
static bool __init test_requires(void)
{
/* random should be initialized for the below tests */
return prandom_u32() + prandom_u32() != 0;
}
/*
* Test watchpoint encode and decode: check that encoding some access's info,
* and then subsequent decode preserves the access's info.
*/
static bool __init test_encode_decode(void)
{
int i;
for (i = 0; i < ITERS_PER_TEST; ++i) {
size_t size = prandom_u32_max(MAX_ENCODABLE_SIZE) + 1;
bool is_write = !!prandom_u32_max(2);
unsigned long verif_masked_addr;
long encoded_watchpoint;
bool verif_is_write;
unsigned long addr;
size_t verif_size;
prandom_bytes(&addr, sizeof(addr));
if (addr < PAGE_SIZE)
addr = PAGE_SIZE;
if (WARN_ON(!check_encodable(addr, size)))
return false;
encoded_watchpoint = encode_watchpoint(addr, size, is_write);
/* Check special watchpoints */
if (WARN_ON(decode_watchpoint(INVALID_WATCHPOINT, &verif_masked_addr, &verif_size, &verif_is_write)))
return false;
if (WARN_ON(decode_watchpoint(CONSUMED_WATCHPOINT, &verif_masked_addr, &verif_size, &verif_is_write)))
return false;
/* Check decoding watchpoint returns same data */
if (WARN_ON(!decode_watchpoint(encoded_watchpoint, &verif_masked_addr, &verif_size, &verif_is_write)))
return false;
if (WARN_ON(verif_masked_addr != (addr & WATCHPOINT_ADDR_MASK)))
goto fail;
if (WARN_ON(verif_size != size))
goto fail;
if (WARN_ON(is_write != verif_is_write))
goto fail;
continue;
fail:
pr_err("%s fail: %s %zu bytes @ %lx -> encoded: %lx -> %s %zu bytes @ %lx\n",
__func__, is_write ? "write" : "read", size, addr, encoded_watchpoint,
verif_is_write ? "write" : "read", verif_size, verif_masked_addr);
return false;
}
return true;
}
/* Test access matching function. */
static bool __init test_matching_access(void)
{
if (WARN_ON(!matching_access(10, 1, 10, 1)))
return false;
if (WARN_ON(!matching_access(10, 2, 11, 1)))
return false;
if (WARN_ON(!matching_access(10, 1, 9, 2)))
return false;
if (WARN_ON(matching_access(10, 1, 11, 1)))
return false;
if (WARN_ON(matching_access(9, 1, 10, 1)))
return false;
/*
* An access of size 0 could match another access, as demonstrated here.
* Rather than add more comparisons to 'matching_access()', which would
* end up in the fast-path for *all* checks, check_access() simply
* returns for all accesses of size 0.
*/
if (WARN_ON(!matching_access(8, 8, 12, 0)))
return false;
return true;
}
/*
* Correct memory barrier instrumentation is critical to avoiding false
* positives: simple test to check at boot certain barriers are always properly
* instrumented. See kcsan_test for a more complete test.
*/
static DEFINE_SPINLOCK(test_spinlock);
static bool __init test_barrier(void)
{
#ifdef CONFIG_KCSAN_WEAK_MEMORY
struct kcsan_scoped_access *reorder_access = ¤t->kcsan_ctx.reorder_access;
#else
struct kcsan_scoped_access *reorder_access = NULL;
#endif
bool ret = true;
arch_spinlock_t arch_spinlock = __ARCH_SPIN_LOCK_UNLOCKED;
atomic_t dummy;
long test_var;
if (!reorder_access || !IS_ENABLED(CONFIG_SMP))
return true;
#define __KCSAN_CHECK_BARRIER(access_type, barrier, name) \
do { \
reorder_access->type = (access_type) | KCSAN_ACCESS_SCOPED; \
reorder_access->size = 1; \
barrier; \
if (reorder_access->size != 0) { \
pr_err("improperly instrumented type=(" #access_type "): " name "\n"); \
ret = false; \
} \
} while (0)
#define KCSAN_CHECK_READ_BARRIER(b) __KCSAN_CHECK_BARRIER(0, b, #b)
#define KCSAN_CHECK_WRITE_BARRIER(b) __KCSAN_CHECK_BARRIER(KCSAN_ACCESS_WRITE, b, #b)
#define KCSAN_CHECK_RW_BARRIER(b) __KCSAN_CHECK_BARRIER(KCSAN_ACCESS_WRITE | KCSAN_ACCESS_COMPOUND, b, #b)
kcsan_nestable_atomic_begin(); /* No watchpoints in called functions. */
KCSAN_CHECK_READ_BARRIER(mb());
KCSAN_CHECK_READ_BARRIER(rmb());
KCSAN_CHECK_READ_BARRIER(smp_mb());
KCSAN_CHECK_READ_BARRIER(smp_rmb());
KCSAN_CHECK_READ_BARRIER(dma_rmb());
KCSAN_CHECK_READ_BARRIER(smp_mb__before_atomic());
KCSAN_CHECK_READ_BARRIER(smp_mb__after_atomic());
KCSAN_CHECK_READ_BARRIER(smp_mb__after_spinlock());
KCSAN_CHECK_READ_BARRIER(smp_store_mb(test_var, 0));
KCSAN_CHECK_READ_BARRIER(smp_store_release(&test_var, 0));
KCSAN_CHECK_READ_BARRIER(xchg(&test_var, 0));
KCSAN_CHECK_READ_BARRIER(xchg_release(&test_var, 0));
KCSAN_CHECK_READ_BARRIER(cmpxchg(&test_var, 0, 0));
KCSAN_CHECK_READ_BARRIER(cmpxchg_release(&test_var, 0, 0));
KCSAN_CHECK_READ_BARRIER(atomic_set_release(&dummy, 0));
KCSAN_CHECK_READ_BARRIER(atomic_add_return(1, &dummy));
KCSAN_CHECK_READ_BARRIER(atomic_add_return_release(1, &dummy));
KCSAN_CHECK_READ_BARRIER(atomic_fetch_add(1, &dummy));
KCSAN_CHECK_READ_BARRIER(atomic_fetch_add_release(1, &dummy));
KCSAN_CHECK_READ_BARRIER(test_and_set_bit(0, &test_var));
KCSAN_CHECK_READ_BARRIER(test_and_clear_bit(0, &test_var));
KCSAN_CHECK_READ_BARRIER(test_and_change_bit(0, &test_var));
KCSAN_CHECK_READ_BARRIER(clear_bit_unlock(0, &test_var));
KCSAN_CHECK_READ_BARRIER(__clear_bit_unlock(0, &test_var));
KCSAN_CHECK_READ_BARRIER(clear_bit_unlock_is_negative_byte(0, &test_var));
arch_spin_lock(&arch_spinlock);
KCSAN_CHECK_READ_BARRIER(arch_spin_unlock(&arch_spinlock));
spin_lock(&test_spinlock);
KCSAN_CHECK_READ_BARRIER(spin_unlock(&test_spinlock));
KCSAN_CHECK_WRITE_BARRIER(mb());
KCSAN_CHECK_WRITE_BARRIER(wmb());
KCSAN_CHECK_WRITE_BARRIER(smp_mb());
KCSAN_CHECK_WRITE_BARRIER(smp_wmb());
KCSAN_CHECK_WRITE_BARRIER(dma_wmb());
KCSAN_CHECK_WRITE_BARRIER(smp_mb__before_atomic());
KCSAN_CHECK_WRITE_BARRIER(smp_mb__after_atomic());
KCSAN_CHECK_WRITE_BARRIER(smp_mb__after_spinlock());
KCSAN_CHECK_WRITE_BARRIER(smp_store_mb(test_var, 0));
KCSAN_CHECK_WRITE_BARRIER(smp_store_release(&test_var, 0));
KCSAN_CHECK_WRITE_BARRIER(xchg(&test_var, 0));
KCSAN_CHECK_WRITE_BARRIER(xchg_release(&test_var, 0));
KCSAN_CHECK_WRITE_BARRIER(cmpxchg(&test_var, 0, 0));
KCSAN_CHECK_WRITE_BARRIER(cmpxchg_release(&test_var, 0, 0));
KCSAN_CHECK_WRITE_BARRIER(atomic_set_release(&dummy, 0));
KCSAN_CHECK_WRITE_BARRIER(atomic_add_return(1, &dummy));
KCSAN_CHECK_WRITE_BARRIER(atomic_add_return_release(1, &dummy));
KCSAN_CHECK_WRITE_BARRIER(atomic_fetch_add(1, &dummy));
KCSAN_CHECK_WRITE_BARRIER(atomic_fetch_add_release(1, &dummy));
KCSAN_CHECK_WRITE_BARRIER(test_and_set_bit(0, &test_var));
KCSAN_CHECK_WRITE_BARRIER(test_and_clear_bit(0, &test_var));
KCSAN_CHECK_WRITE_BARRIER(test_and_change_bit(0, &test_var));
KCSAN_CHECK_WRITE_BARRIER(clear_bit_unlock(0, &test_var));
KCSAN_CHECK_WRITE_BARRIER(__clear_bit_unlock(0, &test_var));
KCSAN_CHECK_WRITE_BARRIER(clear_bit_unlock_is_negative_byte(0, &test_var));
arch_spin_lock(&arch_spinlock);
KCSAN_CHECK_WRITE_BARRIER(arch_spin_unlock(&arch_spinlock));
spin_lock(&test_spinlock);
KCSAN_CHECK_WRITE_BARRIER(spin_unlock(&test_spinlock));
KCSAN_CHECK_RW_BARRIER(mb());
KCSAN_CHECK_RW_BARRIER(wmb());
KCSAN_CHECK_RW_BARRIER(rmb());
KCSAN_CHECK_RW_BARRIER(smp_mb());
KCSAN_CHECK_RW_BARRIER(smp_wmb());
KCSAN_CHECK_RW_BARRIER(smp_rmb());
KCSAN_CHECK_RW_BARRIER(dma_wmb());
KCSAN_CHECK_RW_BARRIER(dma_rmb());
KCSAN_CHECK_RW_BARRIER(smp_mb__before_atomic());
KCSAN_CHECK_RW_BARRIER(smp_mb__after_atomic());
KCSAN_CHECK_RW_BARRIER(smp_mb__after_spinlock());
KCSAN_CHECK_RW_BARRIER(smp_store_mb(test_var, 0));
KCSAN_CHECK_RW_BARRIER(smp_store_release(&test_var, 0));
KCSAN_CHECK_RW_BARRIER(xchg(&test_var, 0));
KCSAN_CHECK_RW_BARRIER(xchg_release(&test_var, 0));
KCSAN_CHECK_RW_BARRIER(cmpxchg(&test_var, 0, 0));
KCSAN_CHECK_RW_BARRIER(cmpxchg_release(&test_var, 0, 0));
KCSAN_CHECK_RW_BARRIER(atomic_set_release(&dummy, 0));
KCSAN_CHECK_RW_BARRIER(atomic_add_return(1, &dummy));
KCSAN_CHECK_RW_BARRIER(atomic_add_return_release(1, &dummy));
KCSAN_CHECK_RW_BARRIER(atomic_fetch_add(1, &dummy));
KCSAN_CHECK_RW_BARRIER(atomic_fetch_add_release(1, &dummy));
KCSAN_CHECK_RW_BARRIER(test_and_set_bit(0, &test_var));
KCSAN_CHECK_RW_BARRIER(test_and_clear_bit(0, &test_var));
KCSAN_CHECK_RW_BARRIER(test_and_change_bit(0, &test_var));
KCSAN_CHECK_RW_BARRIER(clear_bit_unlock(0, &test_var));
KCSAN_CHECK_RW_BARRIER(__clear_bit_unlock(0, &test_var));
KCSAN_CHECK_RW_BARRIER(clear_bit_unlock_is_negative_byte(0, &test_var));
arch_spin_lock(&arch_spinlock);
KCSAN_CHECK_RW_BARRIER(arch_spin_unlock(&arch_spinlock));
spin_lock(&test_spinlock);
KCSAN_CHECK_RW_BARRIER(spin_unlock(&test_spinlock));
kcsan_nestable_atomic_end();
return ret;
}
static int __init kcsan_selftest(void)
{
int passed = 0;
int total = 0;
#define RUN_TEST(do_test) \
do { \
++total; \
if (do_test()) \
++passed; \
else \
pr_err("selftest: " #do_test " failed"); \
} while (0)
RUN_TEST(test_requires);
RUN_TEST(test_encode_decode);
RUN_TEST(test_matching_access);
RUN_TEST(test_barrier);
pr_info("selftest: %d/%d tests passed\n", passed, total);
if (passed != total)
panic("selftests failed");
return 0;
}
postcore_initcall(kcsan_selftest);
|