summaryrefslogtreecommitdiff
path: root/kernel/irq/timings.c
blob: 1d1c411d4cae97597fd4000633ec7a435385a898 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2016, Linaro Ltd - Daniel Lezcano <daniel.lezcano@linaro.org>

#include <linux/kernel.h>
#include <linux/percpu.h>
#include <linux/slab.h>
#include <linux/static_key.h>
#include <linux/interrupt.h>
#include <linux/idr.h>
#include <linux/irq.h>
#include <linux/math64.h>
#include <linux/log2.h>

#include <trace/events/irq.h>

#include "internals.h"

DEFINE_STATIC_KEY_FALSE(irq_timing_enabled);

DEFINE_PER_CPU(struct irq_timings, irq_timings);

static DEFINE_IDR(irqt_stats);

void irq_timings_enable(void)
{
	static_branch_enable(&irq_timing_enabled);
}

void irq_timings_disable(void)
{
	static_branch_disable(&irq_timing_enabled);
}

/*
 * The main goal of this algorithm is to predict the next interrupt
 * occurrence on the current CPU.
 *
 * Currently, the interrupt timings are stored in a circular array
 * buffer every time there is an interrupt, as a tuple: the interrupt
 * number and the associated timestamp when the event occurred <irq,
 * timestamp>.
 *
 * For every interrupt occurring in a short period of time, we can
 * measure the elapsed time between the occurrences for the same
 * interrupt and we end up with a suite of intervals. The experience
 * showed the interrupts are often coming following a periodic
 * pattern.
 *
 * The objective of the algorithm is to find out this periodic pattern
 * in a fastest way and use its period to predict the next irq event.
 *
 * When the next interrupt event is requested, we are in the situation
 * where the interrupts are disabled and the circular buffer
 * containing the timings is filled with the events which happened
 * after the previous next-interrupt-event request.
 *
 * At this point, we read the circular buffer and we fill the irq
 * related statistics structure. After this step, the circular array
 * containing the timings is empty because all the values are
 * dispatched in their corresponding buffers.
 *
 * Now for each interrupt, we can predict the next event by using the
 * suffix array, log interval and exponential moving average
 *
 * 1. Suffix array
 *
 * Suffix array is an array of all the suffixes of a string. It is
 * widely used as a data structure for compression, text search, ...
 * For instance for the word 'banana', the suffixes will be: 'banana'
 * 'anana' 'nana' 'ana' 'na' 'a'
 *
 * Usually, the suffix array is sorted but for our purpose it is
 * not necessary and won't provide any improvement in the context of
 * the solved problem where we clearly define the boundaries of the
 * search by a max period and min period.
 *
 * The suffix array will build a suite of intervals of different
 * length and will look for the repetition of each suite. If the suite
 * is repeating then we have the period because it is the length of
 * the suite whatever its position in the buffer.
 *
 * 2. Log interval
 *
 * We saw the irq timings allow to compute the interval of the
 * occurrences for a specific interrupt. We can reasonibly assume the
 * longer is the interval, the higher is the error for the next event
 * and we can consider storing those interval values into an array
 * where each slot in the array correspond to an interval at the power
 * of 2 of the index. For example, index 12 will contain values
 * between 2^11 and 2^12.
 *
 * At the end we have an array of values where at each index defines a
 * [2^index - 1, 2 ^ index] interval values allowing to store a large
 * number of values inside a small array.
 *
 * For example, if we have the value 1123, then we store it at
 * ilog2(1123) = 10 index value.
 *
 * Storing those value at the specific index is done by computing an
 * exponential moving average for this specific slot. For instance,
 * for values 1800, 1123, 1453, ... fall under the same slot (10) and
 * the exponential moving average is computed every time a new value
 * is stored at this slot.
 *
 * 3. Exponential Moving Average
 *
 * The EMA is largely used to track a signal for stocks or as a low
 * pass filter. The magic of the formula, is it is very simple and the
 * reactivity of the average can be tuned with the factors called
 * alpha.
 *
 * The higher the alphas are, the faster the average respond to the
 * signal change. In our case, if a slot in the array is a big
 * interval, we can have numbers with a big difference between
 * them. The impact of those differences in the average computation
 * can be tuned by changing the alpha value.
 *
 *
 *  -- The algorithm --
 *
 * We saw the different processing above, now let's see how they are
 * used together.
 *
 * For each interrupt:
 *	For each interval:
 *		Compute the index = ilog2(interval)
 *		Compute a new_ema(buffer[index], interval)
 *		Store the index in a circular buffer
 *
 *	Compute the suffix array of the indexes
 *
 *	For each suffix:
 *		If the suffix is reverse-found 3 times
 *			Return suffix
 *
 *	Return Not found
 *
 * However we can not have endless suffix array to be build, it won't
 * make sense and it will add an extra overhead, so we can restrict
 * this to a maximum suffix length of 5 and a minimum suffix length of
 * 2. The experience showed 5 is the majority of the maximum pattern
 * period found for different devices.
 *
 * The result is a pattern finding less than 1us for an interrupt.
 *
 * Example based on real values:
 *
 * Example 1 : MMC write/read interrupt interval:
 *
 *	223947, 1240, 1384, 1386, 1386,
 *	217416, 1236, 1384, 1386, 1387,
 *	214719, 1241, 1386, 1387, 1384,
 *	213696, 1234, 1384, 1386, 1388,
 *	219904, 1240, 1385, 1389, 1385,
 *	212240, 1240, 1386, 1386, 1386,
 *	214415, 1236, 1384, 1386, 1387,
 *	214276, 1234, 1384, 1388, ?
 *
 * For each element, apply ilog2(value)
 *
 *	15, 8, 8, 8, 8,
 *	15, 8, 8, 8, 8,
 *	15, 8, 8, 8, 8,
 *	15, 8, 8, 8, 8,
 *	15, 8, 8, 8, 8,
 *	15, 8, 8, 8, 8,
 *	15, 8, 8, 8, 8,
 *	15, 8, 8, 8, ?
 *
 * Max period of 5, we take the last (max_period * 3) 15 elements as
 * we can be confident if the pattern repeats itself three times it is
 * a repeating pattern.
 *
 *	             8,
 *	15, 8, 8, 8, 8,
 *	15, 8, 8, 8, 8,
 *	15, 8, 8, 8, ?
 *
 * Suffixes are:
 *
 *  1) 8, 15, 8, 8, 8  <- max period
 *  2) 8, 15, 8, 8
 *  3) 8, 15, 8
 *  4) 8, 15           <- min period
 *
 * From there we search the repeating pattern for each suffix.
 *
 * buffer: 8, 15, 8, 8, 8, 8, 15, 8, 8, 8, 8, 15, 8, 8, 8
 *         |   |  |  |  |  |   |  |  |  |  |   |  |  |  |
 *         8, 15, 8, 8, 8  |   |  |  |  |  |   |  |  |  |
 *                         8, 15, 8, 8, 8  |   |  |  |  |
 *                                         8, 15, 8, 8, 8
 *
 * When moving the suffix, we found exactly 3 matches.
 *
 * The first suffix with period 5 is repeating.
 *
 * The next event is (3 * max_period) % suffix_period
 *
 * In this example, the result 0, so the next event is suffix[0] => 8
 *
 * However, 8 is the index in the array of exponential moving average
 * which was calculated on the fly when storing the values, so the
 * interval is ema[8] = 1366
 *
 *
 * Example 2:
 *
 *	4, 3, 5, 100,
 *	3, 3, 5, 117,
 *	4, 4, 5, 112,
 *	4, 3, 4, 110,
 *	3, 5, 3, 117,
 *	4, 4, 5, 112,
 *	4, 3, 4, 110,
 *	3, 4, 5, 112,
 *	4, 3, 4, 110
 *
 * ilog2
 *
 *	0, 0, 0, 4,
 *	0, 0, 0, 4,
 *	0, 0, 0, 4,
 *	0, 0, 0, 4,
 *	0, 0, 0, 4,
 *	0, 0, 0, 4,
 *	0, 0, 0, 4,
 *	0, 0, 0, 4,
 *	0, 0, 0, 4
 *
 * Max period 5:
 *	   0, 0, 4,
 *	0, 0, 0, 4,
 *	0, 0, 0, 4,
 *	0, 0, 0, 4
 *
 * Suffixes:
 *
 *  1) 0, 0, 4, 0, 0
 *  2) 0, 0, 4, 0
 *  3) 0, 0, 4
 *  4) 0, 0
 *
 * buffer: 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4
 *         |  |  |  |  |  |  X
 *         0, 0, 4, 0, 0, |  X
 *                        0, 0
 *
 * buffer: 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4
 *         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
 *         0, 0, 4, 0, |  |  |  |  |  |  |  |  |  |  |
 *                     0, 0, 4, 0, |  |  |  |  |  |  |
 *                                 0, 0, 4, 0, |  |  |
 *                                             0  0  4
 *
 * Pattern is found 3 times, the remaining is 1 which results from
 * (max_period * 3) % suffix_period. This value is the index in the
 * suffix arrays. The suffix array for a period 4 has the value 4
 * at index 1.
 */
#define EMA_ALPHA_VAL		64
#define EMA_ALPHA_SHIFT		7

#define PREDICTION_PERIOD_MIN	3
#define PREDICTION_PERIOD_MAX	5
#define PREDICTION_FACTOR	4
#define PREDICTION_MAX		10 /* 2 ^ PREDICTION_MAX useconds */
#define PREDICTION_BUFFER_SIZE	16 /* slots for EMAs, hardly more than 16 */

/*
 * Number of elements in the circular buffer: If it happens it was
 * flushed before, then the number of elements could be smaller than
 * IRQ_TIMINGS_SIZE, so the count is used, otherwise the array size is
 * used as we wrapped. The index begins from zero when we did not
 * wrap. That could be done in a nicer way with the proper circular
 * array structure type but with the cost of extra computation in the
 * interrupt handler hot path. We choose efficiency.
 */
#define for_each_irqts(i, irqts)					\
	for (i = irqts->count < IRQ_TIMINGS_SIZE ?			\
		     0 : irqts->count & IRQ_TIMINGS_MASK,		\
		     irqts->count = min(IRQ_TIMINGS_SIZE,		\
					irqts->count);			\
	     irqts->count > 0; irqts->count--,				\
		     i = (i + 1) & IRQ_TIMINGS_MASK)

struct irqt_stat {
	u64	last_ts;
	u64	ema_time[PREDICTION_BUFFER_SIZE];
	int	timings[IRQ_TIMINGS_SIZE];
	int	circ_timings[IRQ_TIMINGS_SIZE];
	int	count;
};

/*
 * Exponential moving average computation
 */
static u64 irq_timings_ema_new(u64 value, u64 ema_old)
{
	s64 diff;

	if (unlikely(!ema_old))
		return value;

	diff = (value - ema_old) * EMA_ALPHA_VAL;
	/*
	 * We can use a s64 type variable to be added with the u64
	 * ema_old variable as this one will never have its topmost
	 * bit set, it will be always smaller than 2^63 nanosec
	 * interrupt interval (292 years).
	 */
	return ema_old + (diff >> EMA_ALPHA_SHIFT);
}

static int irq_timings_next_event_index(int *buffer, size_t len, int period_max)
{
	int period;

	/*
	 * Move the beginning pointer to the end minus the max period x 3.
	 * We are at the point we can begin searching the pattern
	 */
	buffer = &buffer[len - (period_max * 3)];

	/* Adjust the length to the maximum allowed period x 3 */
	len = period_max * 3;

	/*
	 * The buffer contains the suite of intervals, in a ilog2
	 * basis, we are looking for a repetition. We point the
	 * beginning of the search three times the length of the
	 * period beginning at the end of the buffer. We do that for
	 * each suffix.
	 */
	for (period = period_max; period >= PREDICTION_PERIOD_MIN; period--) {

		/*
		 * The first comparison always succeed because the
		 * suffix is deduced from the first n-period bytes of
		 * the buffer and we compare the initial suffix with
		 * itself, so we can skip the first iteration.
		 */
		int idx = period;
		size_t size = period;

		/*
		 * We look if the suite with period 'i' repeat
		 * itself. If it is truncated at the end, as it
		 * repeats we can use the period to find out the next
		 * element with the modulo.
		 */
		while (!memcmp(buffer, &buffer[idx], size * sizeof(int))) {

			/*
			 * Move the index in a period basis
			 */
			idx += size;

			/*
			 * If this condition is reached, all previous
			 * memcmp were successful, so the period is
			 * found.
			 */
			if (idx == len)
				return buffer[len % period];

			/*
			 * If the remaining elements to compare are
			 * smaller than the period, readjust the size
			 * of the comparison for the last iteration.
			 */
			if (len - idx < period)
				size = len - idx;
		}
	}

	return -1;
}

static u64 __irq_timings_next_event(struct irqt_stat *irqs, int irq, u64 now)
{
	int index, i, period_max, count, start, min = INT_MAX;

	if ((now - irqs->last_ts) >= NSEC_PER_SEC) {
		irqs->count = irqs->last_ts = 0;
		return U64_MAX;
	}

	/*
	 * As we want to find three times the repetition, we need a
	 * number of intervals greater or equal to three times the
	 * maximum period, otherwise we truncate the max period.
	 */
	period_max = irqs->count > (3 * PREDICTION_PERIOD_MAX) ?
		PREDICTION_PERIOD_MAX : irqs->count / 3;

	/*
	 * If we don't have enough irq timings for this prediction,
	 * just bail out.
	 */
	if (period_max <= PREDICTION_PERIOD_MIN)
		return U64_MAX;

	/*
	 * 'count' will depends if the circular buffer wrapped or not
	 */
	count = irqs->count < IRQ_TIMINGS_SIZE ?
		irqs->count : IRQ_TIMINGS_SIZE;

	start = irqs->count < IRQ_TIMINGS_SIZE ?
		0 : (irqs->count & IRQ_TIMINGS_MASK);

	/*
	 * Copy the content of the circular buffer into another buffer
	 * in order to linearize the buffer instead of dealing with
	 * wrapping indexes and shifted array which will be prone to
	 * error and extremelly difficult to debug.
	 */
	for (i = 0; i < count; i++) {
		int index = (start + i) & IRQ_TIMINGS_MASK;

		irqs->timings[i] = irqs->circ_timings[index];
		min = min_t(int, irqs->timings[i], min);
	}

	index = irq_timings_next_event_index(irqs->timings, count, period_max);
	if (index < 0)
		return irqs->last_ts + irqs->ema_time[min];

	return irqs->last_ts + irqs->ema_time[index];
}

static inline void irq_timings_store(int irq, struct irqt_stat *irqs, u64 ts)
{
	u64 old_ts = irqs->last_ts;
	u64 interval;
	int index;

	/*
	 * The timestamps are absolute time values, we need to compute
	 * the timing interval between two interrupts.
	 */
	irqs->last_ts = ts;

	/*
	 * The interval type is u64 in order to deal with the same
	 * type in our computation, that prevent mindfuck issues with
	 * overflow, sign and division.
	 */
	interval = ts - old_ts;

	/*
	 * The interrupt triggered more than one second apart, that
	 * ends the sequence as predictible for our purpose. In this
	 * case, assume we have the beginning of a sequence and the
	 * timestamp is the first value. As it is impossible to
	 * predict anything at this point, return.
	 *
	 * Note the first timestamp of the sequence will always fall
	 * in this test because the old_ts is zero. That is what we
	 * want as we need another timestamp to compute an interval.
	 */
	if (interval >= NSEC_PER_SEC) {
		irqs->count = 0;
		return;
	}

	/*
	 * Get the index in the ema table for this interrupt. The
	 * PREDICTION_FACTOR increase the interval size for the array
	 * of exponential average.
	 */
	index = likely(interval) ?
		ilog2((interval >> 10) / PREDICTION_FACTOR) : 0;

	/*
	 * Store the index as an element of the pattern in another
	 * circular array.
	 */
	irqs->circ_timings[irqs->count & IRQ_TIMINGS_MASK] = index;

	irqs->ema_time[index] = irq_timings_ema_new(interval,
						    irqs->ema_time[index]);

	irqs->count++;
}

/**
 * irq_timings_next_event - Return when the next event is supposed to arrive
 *
 * During the last busy cycle, the number of interrupts is incremented
 * and stored in the irq_timings structure. This information is
 * necessary to:
 *
 * - know if the index in the table wrapped up:
 *
 *      If more than the array size interrupts happened during the
 *      last busy/idle cycle, the index wrapped up and we have to
 *      begin with the next element in the array which is the last one
 *      in the sequence, otherwise it is a the index 0.
 *
 * - have an indication of the interrupts activity on this CPU
 *   (eg. irq/sec)
 *
 * The values are 'consumed' after inserting in the statistical model,
 * thus the count is reinitialized.
 *
 * The array of values **must** be browsed in the time direction, the
 * timestamp must increase between an element and the next one.
 *
 * Returns a nanosec time based estimation of the earliest interrupt,
 * U64_MAX otherwise.
 */
u64 irq_timings_next_event(u64 now)
{
	struct irq_timings *irqts = this_cpu_ptr(&irq_timings);
	struct irqt_stat *irqs;
	struct irqt_stat __percpu *s;
	u64 ts, next_evt = U64_MAX;
	int i, irq = 0;

	/*
	 * This function must be called with the local irq disabled in
	 * order to prevent the timings circular buffer to be updated
	 * while we are reading it.
	 */
	lockdep_assert_irqs_disabled();

	if (!irqts->count)
		return next_evt;

	/*
	 * Number of elements in the circular buffer: If it happens it
	 * was flushed before, then the number of elements could be
	 * smaller than IRQ_TIMINGS_SIZE, so the count is used,
	 * otherwise the array size is used as we wrapped. The index
	 * begins from zero when we did not wrap. That could be done
	 * in a nicer way with the proper circular array structure
	 * type but with the cost of extra computation in the
	 * interrupt handler hot path. We choose efficiency.
	 *
	 * Inject measured irq/timestamp to the pattern prediction
	 * model while decrementing the counter because we consume the
	 * data from our circular buffer.
	 */
	for_each_irqts(i, irqts) {
		irq = irq_timing_decode(irqts->values[i], &ts);
		s = idr_find(&irqt_stats, irq);
		if (s)
			irq_timings_store(irq, this_cpu_ptr(s), ts);
	}

	/*
	 * Look in the list of interrupts' statistics, the earliest
	 * next event.
	 */
	idr_for_each_entry(&irqt_stats, s, i) {

		irqs = this_cpu_ptr(s);

		ts = __irq_timings_next_event(irqs, i, now);
		if (ts <= now)
			return now;

		if (ts < next_evt)
			next_evt = ts;
	}

	return next_evt;
}

void irq_timings_free(int irq)
{
	struct irqt_stat __percpu *s;

	s = idr_find(&irqt_stats, irq);
	if (s) {
		free_percpu(s);
		idr_remove(&irqt_stats, irq);
	}
}

int irq_timings_alloc(int irq)
{
	struct irqt_stat __percpu *s;
	int id;

	/*
	 * Some platforms can have the same private interrupt per cpu,
	 * so this function may be be called several times with the
	 * same interrupt number. Just bail out in case the per cpu
	 * stat structure is already allocated.
	 */
	s = idr_find(&irqt_stats, irq);
	if (s)
		return 0;

	s = alloc_percpu(*s);
	if (!s)
		return -ENOMEM;

	idr_preload(GFP_KERNEL);
	id = idr_alloc(&irqt_stats, s, irq, irq + 1, GFP_NOWAIT);
	idr_preload_end();

	if (id < 0) {
		free_percpu(s);
		return id;
	}

	return 0;
}