summaryrefslogtreecommitdiff
path: root/kernel/bpf/lpm_trie.c
blob: 00e32f2ec3e60ce89ebaa3df8338e713d8374a89 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Longest prefix match list implementation
 *
 * Copyright (c) 2016,2017 Daniel Mack
 * Copyright (c) 2016 David Herrmann
 */

#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include <net/ipv6.h>
#include <uapi/linux/btf.h>

/* Intermediate node */
#define LPM_TREE_NODE_FLAG_IM BIT(0)

struct lpm_trie_node;

struct lpm_trie_node {
	struct rcu_head rcu;
	struct lpm_trie_node __rcu	*child[2];
	u32				prefixlen;
	u32				flags;
	u8				data[];
};

struct lpm_trie {
	struct bpf_map			map;
	struct lpm_trie_node __rcu	*root;
	size_t				n_entries;
	size_t				max_prefixlen;
	size_t				data_size;
	spinlock_t			lock;
};

/* This trie implements a longest prefix match algorithm that can be used to
 * match IP addresses to a stored set of ranges.
 *
 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
 * interpreted as big endian, so data[0] stores the most significant byte.
 *
 * Match ranges are internally stored in instances of struct lpm_trie_node
 * which each contain their prefix length as well as two pointers that may
 * lead to more nodes containing more specific matches. Each node also stores
 * a value that is defined by and returned to userspace via the update_elem
 * and lookup functions.
 *
 * For instance, let's start with a trie that was created with a prefix length
 * of 32, so it can be used for IPv4 addresses, and one single element that
 * matches 192.168.0.0/16. The data array would hence contain
 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
 * stick to IP-address notation for readability though.
 *
 * As the trie is empty initially, the new node (1) will be places as root
 * node, denoted as (R) in the example below. As there are no other node, both
 * child pointers are %NULL.
 *
 *              +----------------+
 *              |       (1)  (R) |
 *              | 192.168.0.0/16 |
 *              |    value: 1    |
 *              |   [0]    [1]   |
 *              +----------------+
 *
 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
 * a node with the same data and a smaller prefix (ie, a less specific one),
 * node (2) will become a child of (1). In child index depends on the next bit
 * that is outside of what (1) matches, and that bit is 0, so (2) will be
 * child[0] of (1):
 *
 *              +----------------+
 *              |       (1)  (R) |
 *              | 192.168.0.0/16 |
 *              |    value: 1    |
 *              |   [0]    [1]   |
 *              +----------------+
 *                   |
 *    +----------------+
 *    |       (2)      |
 *    | 192.168.0.0/24 |
 *    |    value: 2    |
 *    |   [0]    [1]   |
 *    +----------------+
 *
 * The child[1] slot of (1) could be filled with another node which has bit #17
 * (the next bit after the ones that (1) matches on) set to 1. For instance,
 * 192.168.128.0/24:
 *
 *              +----------------+
 *              |       (1)  (R) |
 *              | 192.168.0.0/16 |
 *              |    value: 1    |
 *              |   [0]    [1]   |
 *              +----------------+
 *                   |      |
 *    +----------------+  +------------------+
 *    |       (2)      |  |        (3)       |
 *    | 192.168.0.0/24 |  | 192.168.128.0/24 |
 *    |    value: 2    |  |     value: 3     |
 *    |   [0]    [1]   |  |    [0]    [1]    |
 *    +----------------+  +------------------+
 *
 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
 * it, node (1) is looked at first, and because (4) of the semantics laid out
 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
 * However, that slot is already allocated, so a new node is needed in between.
 * That node does not have a value attached to it and it will never be
 * returned to users as result of a lookup. It is only there to differentiate
 * the traversal further. It will get a prefix as wide as necessary to
 * distinguish its two children:
 *
 *                      +----------------+
 *                      |       (1)  (R) |
 *                      | 192.168.0.0/16 |
 *                      |    value: 1    |
 *                      |   [0]    [1]   |
 *                      +----------------+
 *                           |      |
 *            +----------------+  +------------------+
 *            |       (4)  (I) |  |        (3)       |
 *            | 192.168.0.0/23 |  | 192.168.128.0/24 |
 *            |    value: ---  |  |     value: 3     |
 *            |   [0]    [1]   |  |    [0]    [1]    |
 *            +----------------+  +------------------+
 *                 |      |
 *  +----------------+  +----------------+
 *  |       (2)      |  |       (5)      |
 *  | 192.168.0.0/24 |  | 192.168.1.0/24 |
 *  |    value: 2    |  |     value: 5   |
 *  |   [0]    [1]   |  |   [0]    [1]   |
 *  +----------------+  +----------------+
 *
 * 192.168.1.1/32 would be a child of (5) etc.
 *
 * An intermediate node will be turned into a 'real' node on demand. In the
 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
 *
 * A fully populated trie would have a height of 32 nodes, as the trie was
 * created with a prefix length of 32.
 *
 * The lookup starts at the root node. If the current node matches and if there
 * is a child that can be used to become more specific, the trie is traversed
 * downwards. The last node in the traversal that is a non-intermediate one is
 * returned.
 */

static inline int extract_bit(const u8 *data, size_t index)
{
	return !!(data[index / 8] & (1 << (7 - (index % 8))));
}

/**
 * longest_prefix_match() - determine the longest prefix
 * @trie:	The trie to get internal sizes from
 * @node:	The node to operate on
 * @key:	The key to compare to @node
 *
 * Determine the longest prefix of @node that matches the bits in @key.
 */
static size_t longest_prefix_match(const struct lpm_trie *trie,
				   const struct lpm_trie_node *node,
				   const struct bpf_lpm_trie_key *key)
{
	u32 limit = min(node->prefixlen, key->prefixlen);
	u32 prefixlen = 0, i = 0;

	BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32));
	BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key, data) % sizeof(u32));

#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT)

	/* data_size >= 16 has very small probability.
	 * We do not use a loop for optimal code generation.
	 */
	if (trie->data_size >= 8) {
		u64 diff = be64_to_cpu(*(__be64 *)node->data ^
				       *(__be64 *)key->data);

		prefixlen = 64 - fls64(diff);
		if (prefixlen >= limit)
			return limit;
		if (diff)
			return prefixlen;
		i = 8;
	}
#endif

	while (trie->data_size >= i + 4) {
		u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^
				       *(__be32 *)&key->data[i]);

		prefixlen += 32 - fls(diff);
		if (prefixlen >= limit)
			return limit;
		if (diff)
			return prefixlen;
		i += 4;
	}

	if (trie->data_size >= i + 2) {
		u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^
				       *(__be16 *)&key->data[i]);

		prefixlen += 16 - fls(diff);
		if (prefixlen >= limit)
			return limit;
		if (diff)
			return prefixlen;
		i += 2;
	}

	if (trie->data_size >= i + 1) {
		prefixlen += 8 - fls(node->data[i] ^ key->data[i]);

		if (prefixlen >= limit)
			return limit;
	}

	return prefixlen;
}

/* Called from syscall or from eBPF program */
static void *trie_lookup_elem(struct bpf_map *map, void *_key)
{
	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
	struct lpm_trie_node *node, *found = NULL;
	struct bpf_lpm_trie_key *key = _key;

	/* Start walking the trie from the root node ... */

	for (node = rcu_dereference(trie->root); node;) {
		unsigned int next_bit;
		size_t matchlen;

		/* Determine the longest prefix of @node that matches @key.
		 * If it's the maximum possible prefix for this trie, we have
		 * an exact match and can return it directly.
		 */
		matchlen = longest_prefix_match(trie, node, key);
		if (matchlen == trie->max_prefixlen) {
			found = node;
			break;
		}

		/* If the number of bits that match is smaller than the prefix
		 * length of @node, bail out and return the node we have seen
		 * last in the traversal (ie, the parent).
		 */
		if (matchlen < node->prefixlen)
			break;

		/* Consider this node as return candidate unless it is an
		 * artificially added intermediate one.
		 */
		if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
			found = node;

		/* If the node match is fully satisfied, let's see if we can
		 * become more specific. Determine the next bit in the key and
		 * traverse down.
		 */
		next_bit = extract_bit(key->data, node->prefixlen);
		node = rcu_dereference(node->child[next_bit]);
	}

	if (!found)
		return NULL;

	return found->data + trie->data_size;
}

static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie,
						 const void *value)
{
	struct lpm_trie_node *node;
	size_t size = sizeof(struct lpm_trie_node) + trie->data_size;

	if (value)
		size += trie->map.value_size;

	node = kmalloc_node(size, GFP_ATOMIC | __GFP_NOWARN,
			    trie->map.numa_node);
	if (!node)
		return NULL;

	node->flags = 0;

	if (value)
		memcpy(node->data + trie->data_size, value,
		       trie->map.value_size);

	return node;
}

/* Called from syscall or from eBPF program */
static int trie_update_elem(struct bpf_map *map,
			    void *_key, void *value, u64 flags)
{
	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
	struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
	struct lpm_trie_node __rcu **slot;
	struct bpf_lpm_trie_key *key = _key;
	unsigned long irq_flags;
	unsigned int next_bit;
	size_t matchlen = 0;
	int ret = 0;

	if (unlikely(flags > BPF_EXIST))
		return -EINVAL;

	if (key->prefixlen > trie->max_prefixlen)
		return -EINVAL;

	spin_lock_irqsave(&trie->lock, irq_flags);

	/* Allocate and fill a new node */

	if (trie->n_entries == trie->map.max_entries) {
		ret = -ENOSPC;
		goto out;
	}

	new_node = lpm_trie_node_alloc(trie, value);
	if (!new_node) {
		ret = -ENOMEM;
		goto out;
	}

	trie->n_entries++;

	new_node->prefixlen = key->prefixlen;
	RCU_INIT_POINTER(new_node->child[0], NULL);
	RCU_INIT_POINTER(new_node->child[1], NULL);
	memcpy(new_node->data, key->data, trie->data_size);

	/* Now find a slot to attach the new node. To do that, walk the tree
	 * from the root and match as many bits as possible for each node until
	 * we either find an empty slot or a slot that needs to be replaced by
	 * an intermediate node.
	 */
	slot = &trie->root;

	while ((node = rcu_dereference_protected(*slot,
					lockdep_is_held(&trie->lock)))) {
		matchlen = longest_prefix_match(trie, node, key);

		if (node->prefixlen != matchlen ||
		    node->prefixlen == key->prefixlen ||
		    node->prefixlen == trie->max_prefixlen)
			break;

		next_bit = extract_bit(key->data, node->prefixlen);
		slot = &node->child[next_bit];
	}

	/* If the slot is empty (a free child pointer or an empty root),
	 * simply assign the @new_node to that slot and be done.
	 */
	if (!node) {
		rcu_assign_pointer(*slot, new_node);
		goto out;
	}

	/* If the slot we picked already exists, replace it with @new_node
	 * which already has the correct data array set.
	 */
	if (node->prefixlen == matchlen) {
		new_node->child[0] = node->child[0];
		new_node->child[1] = node->child[1];

		if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
			trie->n_entries--;

		rcu_assign_pointer(*slot, new_node);
		kfree_rcu(node, rcu);

		goto out;
	}

	/* If the new node matches the prefix completely, it must be inserted
	 * as an ancestor. Simply insert it between @node and *@slot.
	 */
	if (matchlen == key->prefixlen) {
		next_bit = extract_bit(node->data, matchlen);
		rcu_assign_pointer(new_node->child[next_bit], node);
		rcu_assign_pointer(*slot, new_node);
		goto out;
	}

	im_node = lpm_trie_node_alloc(trie, NULL);
	if (!im_node) {
		ret = -ENOMEM;
		goto out;
	}

	im_node->prefixlen = matchlen;
	im_node->flags |= LPM_TREE_NODE_FLAG_IM;
	memcpy(im_node->data, node->data, trie->data_size);

	/* Now determine which child to install in which slot */
	if (extract_bit(key->data, matchlen)) {
		rcu_assign_pointer(im_node->child[0], node);
		rcu_assign_pointer(im_node->child[1], new_node);
	} else {
		rcu_assign_pointer(im_node->child[0], new_node);
		rcu_assign_pointer(im_node->child[1], node);
	}

	/* Finally, assign the intermediate node to the determined spot */
	rcu_assign_pointer(*slot, im_node);

out:
	if (ret) {
		if (new_node)
			trie->n_entries--;

		kfree(new_node);
		kfree(im_node);
	}

	spin_unlock_irqrestore(&trie->lock, irq_flags);

	return ret;
}

/* Called from syscall or from eBPF program */
static int trie_delete_elem(struct bpf_map *map, void *_key)
{
	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
	struct bpf_lpm_trie_key *key = _key;
	struct lpm_trie_node __rcu **trim, **trim2;
	struct lpm_trie_node *node, *parent;
	unsigned long irq_flags;
	unsigned int next_bit;
	size_t matchlen = 0;
	int ret = 0;

	if (key->prefixlen > trie->max_prefixlen)
		return -EINVAL;

	spin_lock_irqsave(&trie->lock, irq_flags);

	/* Walk the tree looking for an exact key/length match and keeping
	 * track of the path we traverse.  We will need to know the node
	 * we wish to delete, and the slot that points to the node we want
	 * to delete.  We may also need to know the nodes parent and the
	 * slot that contains it.
	 */
	trim = &trie->root;
	trim2 = trim;
	parent = NULL;
	while ((node = rcu_dereference_protected(
		       *trim, lockdep_is_held(&trie->lock)))) {
		matchlen = longest_prefix_match(trie, node, key);

		if (node->prefixlen != matchlen ||
		    node->prefixlen == key->prefixlen)
			break;

		parent = node;
		trim2 = trim;
		next_bit = extract_bit(key->data, node->prefixlen);
		trim = &node->child[next_bit];
	}

	if (!node || node->prefixlen != key->prefixlen ||
	    node->prefixlen != matchlen ||
	    (node->flags & LPM_TREE_NODE_FLAG_IM)) {
		ret = -ENOENT;
		goto out;
	}

	trie->n_entries--;

	/* If the node we are removing has two children, simply mark it
	 * as intermediate and we are done.
	 */
	if (rcu_access_pointer(node->child[0]) &&
	    rcu_access_pointer(node->child[1])) {
		node->flags |= LPM_TREE_NODE_FLAG_IM;
		goto out;
	}

	/* If the parent of the node we are about to delete is an intermediate
	 * node, and the deleted node doesn't have any children, we can delete
	 * the intermediate parent as well and promote its other child
	 * up the tree.  Doing this maintains the invariant that all
	 * intermediate nodes have exactly 2 children and that there are no
	 * unnecessary intermediate nodes in the tree.
	 */
	if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
	    !node->child[0] && !node->child[1]) {
		if (node == rcu_access_pointer(parent->child[0]))
			rcu_assign_pointer(
				*trim2, rcu_access_pointer(parent->child[1]));
		else
			rcu_assign_pointer(
				*trim2, rcu_access_pointer(parent->child[0]));
		kfree_rcu(parent, rcu);
		kfree_rcu(node, rcu);
		goto out;
	}

	/* The node we are removing has either zero or one child. If there
	 * is a child, move it into the removed node's slot then delete
	 * the node.  Otherwise just clear the slot and delete the node.
	 */
	if (node->child[0])
		rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
	else if (node->child[1])
		rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
	else
		RCU_INIT_POINTER(*trim, NULL);
	kfree_rcu(node, rcu);

out:
	spin_unlock_irqrestore(&trie->lock, irq_flags);

	return ret;
}

#define LPM_DATA_SIZE_MAX	256
#define LPM_DATA_SIZE_MIN	1

#define LPM_VAL_SIZE_MAX	(KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
				 sizeof(struct lpm_trie_node))
#define LPM_VAL_SIZE_MIN	1

#define LPM_KEY_SIZE(X)		(sizeof(struct bpf_lpm_trie_key) + (X))
#define LPM_KEY_SIZE_MAX	LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
#define LPM_KEY_SIZE_MIN	LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)

#define LPM_CREATE_FLAG_MASK	(BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE |	\
				 BPF_F_ACCESS_MASK)

static struct bpf_map *trie_alloc(union bpf_attr *attr)
{
	struct lpm_trie *trie;
	u64 cost = sizeof(*trie), cost_per_node;
	int ret;

	if (!bpf_capable())
		return ERR_PTR(-EPERM);

	/* check sanity of attributes */
	if (attr->max_entries == 0 ||
	    !(attr->map_flags & BPF_F_NO_PREALLOC) ||
	    attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
	    !bpf_map_flags_access_ok(attr->map_flags) ||
	    attr->key_size < LPM_KEY_SIZE_MIN ||
	    attr->key_size > LPM_KEY_SIZE_MAX ||
	    attr->value_size < LPM_VAL_SIZE_MIN ||
	    attr->value_size > LPM_VAL_SIZE_MAX)
		return ERR_PTR(-EINVAL);

	trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN);
	if (!trie)
		return ERR_PTR(-ENOMEM);

	/* copy mandatory map attributes */
	bpf_map_init_from_attr(&trie->map, attr);
	trie->data_size = attr->key_size -
			  offsetof(struct bpf_lpm_trie_key, data);
	trie->max_prefixlen = trie->data_size * 8;

	cost_per_node = sizeof(struct lpm_trie_node) +
			attr->value_size + trie->data_size;
	cost += (u64) attr->max_entries * cost_per_node;

	ret = bpf_map_charge_init(&trie->map.memory, cost);
	if (ret)
		goto out_err;

	spin_lock_init(&trie->lock);

	return &trie->map;
out_err:
	kfree(trie);
	return ERR_PTR(ret);
}

static void trie_free(struct bpf_map *map)
{
	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
	struct lpm_trie_node __rcu **slot;
	struct lpm_trie_node *node;

	/* Always start at the root and walk down to a node that has no
	 * children. Then free that node, nullify its reference in the parent
	 * and start over.
	 */

	for (;;) {
		slot = &trie->root;

		for (;;) {
			node = rcu_dereference_protected(*slot, 1);
			if (!node)
				goto out;

			if (rcu_access_pointer(node->child[0])) {
				slot = &node->child[0];
				continue;
			}

			if (rcu_access_pointer(node->child[1])) {
				slot = &node->child[1];
				continue;
			}

			kfree(node);
			RCU_INIT_POINTER(*slot, NULL);
			break;
		}
	}

out:
	kfree(trie);
}

static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
{
	struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
	struct bpf_lpm_trie_key *key = _key, *next_key = _next_key;
	struct lpm_trie_node **node_stack = NULL;
	int err = 0, stack_ptr = -1;
	unsigned int next_bit;
	size_t matchlen;

	/* The get_next_key follows postorder. For the 4 node example in
	 * the top of this file, the trie_get_next_key() returns the following
	 * one after another:
	 *   192.168.0.0/24
	 *   192.168.1.0/24
	 *   192.168.128.0/24
	 *   192.168.0.0/16
	 *
	 * The idea is to return more specific keys before less specific ones.
	 */

	/* Empty trie */
	search_root = rcu_dereference(trie->root);
	if (!search_root)
		return -ENOENT;

	/* For invalid key, find the leftmost node in the trie */
	if (!key || key->prefixlen > trie->max_prefixlen)
		goto find_leftmost;

	node_stack = kmalloc_array(trie->max_prefixlen,
				   sizeof(struct lpm_trie_node *),
				   GFP_ATOMIC | __GFP_NOWARN);
	if (!node_stack)
		return -ENOMEM;

	/* Try to find the exact node for the given key */
	for (node = search_root; node;) {
		node_stack[++stack_ptr] = node;
		matchlen = longest_prefix_match(trie, node, key);
		if (node->prefixlen != matchlen ||
		    node->prefixlen == key->prefixlen)
			break;

		next_bit = extract_bit(key->data, node->prefixlen);
		node = rcu_dereference(node->child[next_bit]);
	}
	if (!node || node->prefixlen != key->prefixlen ||
	    (node->flags & LPM_TREE_NODE_FLAG_IM))
		goto find_leftmost;

	/* The node with the exactly-matching key has been found,
	 * find the first node in postorder after the matched node.
	 */
	node = node_stack[stack_ptr];
	while (stack_ptr > 0) {
		parent = node_stack[stack_ptr - 1];
		if (rcu_dereference(parent->child[0]) == node) {
			search_root = rcu_dereference(parent->child[1]);
			if (search_root)
				goto find_leftmost;
		}
		if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
			next_node = parent;
			goto do_copy;
		}

		node = parent;
		stack_ptr--;
	}

	/* did not find anything */
	err = -ENOENT;
	goto free_stack;

find_leftmost:
	/* Find the leftmost non-intermediate node, all intermediate nodes
	 * have exact two children, so this function will never return NULL.
	 */
	for (node = search_root; node;) {
		if (node->flags & LPM_TREE_NODE_FLAG_IM) {
			node = rcu_dereference(node->child[0]);
		} else {
			next_node = node;
			node = rcu_dereference(node->child[0]);
			if (!node)
				node = rcu_dereference(next_node->child[1]);
		}
	}
do_copy:
	next_key->prefixlen = next_node->prefixlen;
	memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key, data),
	       next_node->data, trie->data_size);
free_stack:
	kfree(node_stack);
	return err;
}

static int trie_check_btf(const struct bpf_map *map,
			  const struct btf *btf,
			  const struct btf_type *key_type,
			  const struct btf_type *value_type)
{
	/* Keys must have struct bpf_lpm_trie_key embedded. */
	return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ?
	       -EINVAL : 0;
}

static int trie_map_btf_id;
const struct bpf_map_ops trie_map_ops = {
	.map_meta_equal = bpf_map_meta_equal,
	.map_alloc = trie_alloc,
	.map_free = trie_free,
	.map_get_next_key = trie_get_next_key,
	.map_lookup_elem = trie_lookup_elem,
	.map_update_elem = trie_update_elem,
	.map_delete_elem = trie_delete_elem,
	.map_check_btf = trie_check_btf,
	.map_btf_name = "lpm_trie",
	.map_btf_id = &trie_map_btf_id,
};