1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
|
// SPDX-License-Identifier: GPL-2.0
/*
* fs/f2fs/inode.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/buffer_head.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include "xattr.h"
#include <trace/events/f2fs.h>
void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync)
{
if (is_inode_flag_set(inode, FI_NEW_INODE))
return;
if (f2fs_inode_dirtied(inode, sync))
return;
mark_inode_dirty_sync(inode);
}
void f2fs_set_inode_flags(struct inode *inode)
{
unsigned int flags = F2FS_I(inode)->i_flags;
unsigned int new_fl = 0;
if (flags & F2FS_SYNC_FL)
new_fl |= S_SYNC;
if (flags & F2FS_APPEND_FL)
new_fl |= S_APPEND;
if (flags & F2FS_IMMUTABLE_FL)
new_fl |= S_IMMUTABLE;
if (flags & F2FS_NOATIME_FL)
new_fl |= S_NOATIME;
if (flags & F2FS_DIRSYNC_FL)
new_fl |= S_DIRSYNC;
if (file_is_encrypt(inode))
new_fl |= S_ENCRYPTED;
inode_set_flags(inode, new_fl,
S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|
S_ENCRYPTED);
}
static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
{
int extra_size = get_extra_isize(inode);
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
if (ri->i_addr[extra_size])
inode->i_rdev = old_decode_dev(
le32_to_cpu(ri->i_addr[extra_size]));
else
inode->i_rdev = new_decode_dev(
le32_to_cpu(ri->i_addr[extra_size + 1]));
}
}
static int __written_first_block(struct f2fs_sb_info *sbi,
struct f2fs_inode *ri)
{
block_t addr = le32_to_cpu(ri->i_addr[offset_in_addr(ri)]);
if (!__is_valid_data_blkaddr(addr))
return 1;
if (!f2fs_is_valid_blkaddr(sbi, addr, DATA_GENERIC_ENHANCE))
return -EFSCORRUPTED;
return 0;
}
static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
{
int extra_size = get_extra_isize(inode);
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
if (old_valid_dev(inode->i_rdev)) {
ri->i_addr[extra_size] =
cpu_to_le32(old_encode_dev(inode->i_rdev));
ri->i_addr[extra_size + 1] = 0;
} else {
ri->i_addr[extra_size] = 0;
ri->i_addr[extra_size + 1] =
cpu_to_le32(new_encode_dev(inode->i_rdev));
ri->i_addr[extra_size + 2] = 0;
}
}
}
static void __recover_inline_status(struct inode *inode, struct page *ipage)
{
void *inline_data = inline_data_addr(inode, ipage);
__le32 *start = inline_data;
__le32 *end = start + MAX_INLINE_DATA(inode) / sizeof(__le32);
while (start < end) {
if (*start++) {
f2fs_wait_on_page_writeback(ipage, NODE, true, true);
set_inode_flag(inode, FI_DATA_EXIST);
set_raw_inline(inode, F2FS_INODE(ipage));
set_page_dirty(ipage);
return;
}
}
return;
}
static bool f2fs_enable_inode_chksum(struct f2fs_sb_info *sbi, struct page *page)
{
struct f2fs_inode *ri = &F2FS_NODE(page)->i;
if (!f2fs_sb_has_inode_chksum(sbi))
return false;
if (!IS_INODE(page) || !(ri->i_inline & F2FS_EXTRA_ATTR))
return false;
if (!F2FS_FITS_IN_INODE(ri, le16_to_cpu(ri->i_extra_isize),
i_inode_checksum))
return false;
return true;
}
static __u32 f2fs_inode_chksum(struct f2fs_sb_info *sbi, struct page *page)
{
struct f2fs_node *node = F2FS_NODE(page);
struct f2fs_inode *ri = &node->i;
__le32 ino = node->footer.ino;
__le32 gen = ri->i_generation;
__u32 chksum, chksum_seed;
__u32 dummy_cs = 0;
unsigned int offset = offsetof(struct f2fs_inode, i_inode_checksum);
unsigned int cs_size = sizeof(dummy_cs);
chksum = f2fs_chksum(sbi, sbi->s_chksum_seed, (__u8 *)&ino,
sizeof(ino));
chksum_seed = f2fs_chksum(sbi, chksum, (__u8 *)&gen, sizeof(gen));
chksum = f2fs_chksum(sbi, chksum_seed, (__u8 *)ri, offset);
chksum = f2fs_chksum(sbi, chksum, (__u8 *)&dummy_cs, cs_size);
offset += cs_size;
chksum = f2fs_chksum(sbi, chksum, (__u8 *)ri + offset,
F2FS_BLKSIZE - offset);
return chksum;
}
bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page)
{
struct f2fs_inode *ri;
__u32 provided, calculated;
if (unlikely(is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)))
return true;
#ifdef CONFIG_F2FS_CHECK_FS
if (!f2fs_enable_inode_chksum(sbi, page))
#else
if (!f2fs_enable_inode_chksum(sbi, page) ||
PageDirty(page) || PageWriteback(page))
#endif
return true;
ri = &F2FS_NODE(page)->i;
provided = le32_to_cpu(ri->i_inode_checksum);
calculated = f2fs_inode_chksum(sbi, page);
if (provided != calculated)
f2fs_warn(sbi, "checksum invalid, nid = %lu, ino_of_node = %x, %x vs. %x",
page->index, ino_of_node(page), provided, calculated);
return provided == calculated;
}
void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page)
{
struct f2fs_inode *ri = &F2FS_NODE(page)->i;
if (!f2fs_enable_inode_chksum(sbi, page))
return;
ri->i_inode_checksum = cpu_to_le32(f2fs_inode_chksum(sbi, page));
}
static bool sanity_check_inode(struct inode *inode, struct page *node_page)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode_info *fi = F2FS_I(inode);
unsigned long long iblocks;
iblocks = le64_to_cpu(F2FS_INODE(node_page)->i_blocks);
if (!iblocks) {
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_warn(sbi, "%s: corrupted inode i_blocks i_ino=%lx iblocks=%llu, run fsck to fix.",
__func__, inode->i_ino, iblocks);
return false;
}
if (ino_of_node(node_page) != nid_of_node(node_page)) {
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_warn(sbi, "%s: corrupted inode footer i_ino=%lx, ino,nid: [%u, %u] run fsck to fix.",
__func__, inode->i_ino,
ino_of_node(node_page), nid_of_node(node_page));
return false;
}
if (f2fs_sb_has_flexible_inline_xattr(sbi)
&& !f2fs_has_extra_attr(inode)) {
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_warn(sbi, "%s: corrupted inode ino=%lx, run fsck to fix.",
__func__, inode->i_ino);
return false;
}
if (f2fs_has_extra_attr(inode) &&
!f2fs_sb_has_extra_attr(sbi)) {
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_warn(sbi, "%s: inode (ino=%lx) is with extra_attr, but extra_attr feature is off",
__func__, inode->i_ino);
return false;
}
if (fi->i_extra_isize > F2FS_TOTAL_EXTRA_ATTR_SIZE ||
fi->i_extra_isize % sizeof(__le32)) {
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_warn(sbi, "%s: inode (ino=%lx) has corrupted i_extra_isize: %d, max: %zu",
__func__, inode->i_ino, fi->i_extra_isize,
F2FS_TOTAL_EXTRA_ATTR_SIZE);
return false;
}
if (f2fs_has_extra_attr(inode) &&
f2fs_sb_has_flexible_inline_xattr(sbi) &&
f2fs_has_inline_xattr(inode) &&
(!fi->i_inline_xattr_size ||
fi->i_inline_xattr_size > MAX_INLINE_XATTR_SIZE)) {
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_warn(sbi, "%s: inode (ino=%lx) has corrupted i_inline_xattr_size: %d, max: %zu",
__func__, inode->i_ino, fi->i_inline_xattr_size,
MAX_INLINE_XATTR_SIZE);
return false;
}
if (F2FS_I(inode)->extent_tree) {
struct extent_info *ei = &F2FS_I(inode)->extent_tree->largest;
if (ei->len &&
(!f2fs_is_valid_blkaddr(sbi, ei->blk,
DATA_GENERIC_ENHANCE) ||
!f2fs_is_valid_blkaddr(sbi, ei->blk + ei->len - 1,
DATA_GENERIC_ENHANCE))) {
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_warn(sbi, "%s: inode (ino=%lx) extent info [%u, %u, %u] is incorrect, run fsck to fix",
__func__, inode->i_ino,
ei->blk, ei->fofs, ei->len);
return false;
}
}
if (f2fs_has_inline_data(inode) &&
(!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))) {
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_warn(sbi, "%s: inode (ino=%lx, mode=%u) should not have inline_data, run fsck to fix",
__func__, inode->i_ino, inode->i_mode);
return false;
}
if (f2fs_has_inline_dentry(inode) && !S_ISDIR(inode->i_mode)) {
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_warn(sbi, "%s: inode (ino=%lx, mode=%u) should not have inline_dentry, run fsck to fix",
__func__, inode->i_ino, inode->i_mode);
return false;
}
return true;
}
static int do_read_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode_info *fi = F2FS_I(inode);
struct page *node_page;
struct f2fs_inode *ri;
projid_t i_projid;
int err;
/* Check if ino is within scope */
if (f2fs_check_nid_range(sbi, inode->i_ino))
return -EINVAL;
node_page = f2fs_get_node_page(sbi, inode->i_ino);
if (IS_ERR(node_page))
return PTR_ERR(node_page);
ri = F2FS_INODE(node_page);
inode->i_mode = le16_to_cpu(ri->i_mode);
i_uid_write(inode, le32_to_cpu(ri->i_uid));
i_gid_write(inode, le32_to_cpu(ri->i_gid));
set_nlink(inode, le32_to_cpu(ri->i_links));
inode->i_size = le64_to_cpu(ri->i_size);
inode->i_blocks = SECTOR_FROM_BLOCK(le64_to_cpu(ri->i_blocks) - 1);
inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
inode->i_generation = le32_to_cpu(ri->i_generation);
if (S_ISDIR(inode->i_mode))
fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
else if (S_ISREG(inode->i_mode))
fi->i_gc_failures[GC_FAILURE_PIN] =
le16_to_cpu(ri->i_gc_failures);
fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
fi->i_flags = le32_to_cpu(ri->i_flags);
if (S_ISREG(inode->i_mode))
fi->i_flags &= ~F2FS_PROJINHERIT_FL;
fi->flags = 0;
fi->i_advise = ri->i_advise;
fi->i_pino = le32_to_cpu(ri->i_pino);
fi->i_dir_level = ri->i_dir_level;
if (f2fs_init_extent_tree(inode, &ri->i_ext))
set_page_dirty(node_page);
get_inline_info(inode, ri);
fi->i_extra_isize = f2fs_has_extra_attr(inode) ?
le16_to_cpu(ri->i_extra_isize) : 0;
if (f2fs_sb_has_flexible_inline_xattr(sbi)) {
fi->i_inline_xattr_size = le16_to_cpu(ri->i_inline_xattr_size);
} else if (f2fs_has_inline_xattr(inode) ||
f2fs_has_inline_dentry(inode)) {
fi->i_inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
} else {
/*
* Previous inline data or directory always reserved 200 bytes
* in inode layout, even if inline_xattr is disabled. In order
* to keep inline_dentry's structure for backward compatibility,
* we get the space back only from inline_data.
*/
fi->i_inline_xattr_size = 0;
}
if (!sanity_check_inode(inode, node_page)) {
f2fs_put_page(node_page, 1);
return -EFSCORRUPTED;
}
/* check data exist */
if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode))
__recover_inline_status(inode, node_page);
/* try to recover cold bit for non-dir inode */
if (!S_ISDIR(inode->i_mode) && !is_cold_node(node_page)) {
set_cold_node(node_page, false);
set_page_dirty(node_page);
}
/* get rdev by using inline_info */
__get_inode_rdev(inode, ri);
if (S_ISREG(inode->i_mode)) {
err = __written_first_block(sbi, ri);
if (err < 0) {
f2fs_put_page(node_page, 1);
return err;
}
if (!err)
set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
}
if (!f2fs_need_inode_block_update(sbi, inode->i_ino))
fi->last_disk_size = inode->i_size;
if (fi->i_flags & F2FS_PROJINHERIT_FL)
set_inode_flag(inode, FI_PROJ_INHERIT);
if (f2fs_has_extra_attr(inode) && f2fs_sb_has_project_quota(sbi) &&
F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
i_projid = (projid_t)le32_to_cpu(ri->i_projid);
else
i_projid = F2FS_DEF_PROJID;
fi->i_projid = make_kprojid(&init_user_ns, i_projid);
if (f2fs_has_extra_attr(inode) && f2fs_sb_has_inode_crtime(sbi) &&
F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
fi->i_crtime.tv_sec = le64_to_cpu(ri->i_crtime);
fi->i_crtime.tv_nsec = le32_to_cpu(ri->i_crtime_nsec);
}
F2FS_I(inode)->i_disk_time[0] = inode->i_atime;
F2FS_I(inode)->i_disk_time[1] = inode->i_ctime;
F2FS_I(inode)->i_disk_time[2] = inode->i_mtime;
F2FS_I(inode)->i_disk_time[3] = F2FS_I(inode)->i_crtime;
f2fs_put_page(node_page, 1);
stat_inc_inline_xattr(inode);
stat_inc_inline_inode(inode);
stat_inc_inline_dir(inode);
return 0;
}
struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
struct inode *inode;
int ret = 0;
inode = iget_locked(sb, ino);
if (!inode)
return ERR_PTR(-ENOMEM);
if (!(inode->i_state & I_NEW)) {
trace_f2fs_iget(inode);
return inode;
}
if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
goto make_now;
ret = do_read_inode(inode);
if (ret)
goto bad_inode;
make_now:
if (ino == F2FS_NODE_INO(sbi)) {
inode->i_mapping->a_ops = &f2fs_node_aops;
mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
} else if (ino == F2FS_META_INO(sbi)) {
inode->i_mapping->a_ops = &f2fs_meta_aops;
mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
} else if (S_ISREG(inode->i_mode)) {
inode->i_op = &f2fs_file_inode_operations;
inode->i_fop = &f2fs_file_operations;
inode->i_mapping->a_ops = &f2fs_dblock_aops;
} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = &f2fs_dir_inode_operations;
inode->i_fop = &f2fs_dir_operations;
inode->i_mapping->a_ops = &f2fs_dblock_aops;
inode_nohighmem(inode);
} else if (S_ISLNK(inode->i_mode)) {
if (file_is_encrypt(inode))
inode->i_op = &f2fs_encrypted_symlink_inode_operations;
else
inode->i_op = &f2fs_symlink_inode_operations;
inode_nohighmem(inode);
inode->i_mapping->a_ops = &f2fs_dblock_aops;
} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
inode->i_op = &f2fs_special_inode_operations;
init_special_inode(inode, inode->i_mode, inode->i_rdev);
} else {
ret = -EIO;
goto bad_inode;
}
f2fs_set_inode_flags(inode);
unlock_new_inode(inode);
trace_f2fs_iget(inode);
return inode;
bad_inode:
f2fs_inode_synced(inode);
iget_failed(inode);
trace_f2fs_iget_exit(inode, ret);
return ERR_PTR(ret);
}
struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino)
{
struct inode *inode;
retry:
inode = f2fs_iget(sb, ino);
if (IS_ERR(inode)) {
if (PTR_ERR(inode) == -ENOMEM) {
congestion_wait(BLK_RW_ASYNC, HZ/50);
goto retry;
}
}
return inode;
}
void f2fs_update_inode(struct inode *inode, struct page *node_page)
{
struct f2fs_inode *ri;
struct extent_tree *et = F2FS_I(inode)->extent_tree;
f2fs_wait_on_page_writeback(node_page, NODE, true, true);
set_page_dirty(node_page);
f2fs_inode_synced(inode);
ri = F2FS_INODE(node_page);
ri->i_mode = cpu_to_le16(inode->i_mode);
ri->i_advise = F2FS_I(inode)->i_advise;
ri->i_uid = cpu_to_le32(i_uid_read(inode));
ri->i_gid = cpu_to_le32(i_gid_read(inode));
ri->i_links = cpu_to_le32(inode->i_nlink);
ri->i_size = cpu_to_le64(i_size_read(inode));
ri->i_blocks = cpu_to_le64(SECTOR_TO_BLOCK(inode->i_blocks) + 1);
if (et) {
read_lock(&et->lock);
set_raw_extent(&et->largest, &ri->i_ext);
read_unlock(&et->lock);
} else {
memset(&ri->i_ext, 0, sizeof(ri->i_ext));
}
set_raw_inline(inode, ri);
ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
if (S_ISDIR(inode->i_mode))
ri->i_current_depth =
cpu_to_le32(F2FS_I(inode)->i_current_depth);
else if (S_ISREG(inode->i_mode))
ri->i_gc_failures =
cpu_to_le16(F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]);
ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
ri->i_generation = cpu_to_le32(inode->i_generation);
ri->i_dir_level = F2FS_I(inode)->i_dir_level;
if (f2fs_has_extra_attr(inode)) {
ri->i_extra_isize = cpu_to_le16(F2FS_I(inode)->i_extra_isize);
if (f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(inode)))
ri->i_inline_xattr_size =
cpu_to_le16(F2FS_I(inode)->i_inline_xattr_size);
if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)) &&
F2FS_FITS_IN_INODE(ri, F2FS_I(inode)->i_extra_isize,
i_projid)) {
projid_t i_projid;
i_projid = from_kprojid(&init_user_ns,
F2FS_I(inode)->i_projid);
ri->i_projid = cpu_to_le32(i_projid);
}
if (f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
F2FS_FITS_IN_INODE(ri, F2FS_I(inode)->i_extra_isize,
i_crtime)) {
ri->i_crtime =
cpu_to_le64(F2FS_I(inode)->i_crtime.tv_sec);
ri->i_crtime_nsec =
cpu_to_le32(F2FS_I(inode)->i_crtime.tv_nsec);
}
}
__set_inode_rdev(inode, ri);
/* deleted inode */
if (inode->i_nlink == 0)
clear_inline_node(node_page);
F2FS_I(inode)->i_disk_time[0] = inode->i_atime;
F2FS_I(inode)->i_disk_time[1] = inode->i_ctime;
F2FS_I(inode)->i_disk_time[2] = inode->i_mtime;
F2FS_I(inode)->i_disk_time[3] = F2FS_I(inode)->i_crtime;
#ifdef CONFIG_F2FS_CHECK_FS
f2fs_inode_chksum_set(F2FS_I_SB(inode), node_page);
#endif
}
void f2fs_update_inode_page(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct page *node_page;
retry:
node_page = f2fs_get_node_page(sbi, inode->i_ino);
if (IS_ERR(node_page)) {
int err = PTR_ERR(node_page);
if (err == -ENOMEM) {
cond_resched();
goto retry;
} else if (err != -ENOENT) {
f2fs_stop_checkpoint(sbi, false);
}
return;
}
f2fs_update_inode(inode, node_page);
f2fs_put_page(node_page, 1);
}
int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
if (inode->i_ino == F2FS_NODE_INO(sbi) ||
inode->i_ino == F2FS_META_INO(sbi))
return 0;
if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
return 0;
if (f2fs_is_checkpoint_ready(sbi))
return -ENOSPC;
/*
* We need to balance fs here to prevent from producing dirty node pages
* during the urgent cleaning time when runing out of free sections.
*/
f2fs_update_inode_page(inode);
if (wbc && wbc->nr_to_write)
f2fs_balance_fs(sbi, true);
return 0;
}
/*
* Called at the last iput() if i_nlink is zero
*/
void f2fs_evict_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
nid_t xnid = F2FS_I(inode)->i_xattr_nid;
int err = 0;
/* some remained atomic pages should discarded */
if (f2fs_is_atomic_file(inode))
f2fs_drop_inmem_pages(inode);
trace_f2fs_evict_inode(inode);
truncate_inode_pages_final(&inode->i_data);
if (inode->i_ino == F2FS_NODE_INO(sbi) ||
inode->i_ino == F2FS_META_INO(sbi))
goto out_clear;
f2fs_bug_on(sbi, get_dirty_pages(inode));
f2fs_remove_dirty_inode(inode);
f2fs_destroy_extent_tree(inode);
if (inode->i_nlink || is_bad_inode(inode))
goto no_delete;
err = dquot_initialize(inode);
if (err) {
err = 0;
set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
}
f2fs_remove_ino_entry(sbi, inode->i_ino, APPEND_INO);
f2fs_remove_ino_entry(sbi, inode->i_ino, UPDATE_INO);
f2fs_remove_ino_entry(sbi, inode->i_ino, FLUSH_INO);
sb_start_intwrite(inode->i_sb);
set_inode_flag(inode, FI_NO_ALLOC);
i_size_write(inode, 0);
retry:
if (F2FS_HAS_BLOCKS(inode))
err = f2fs_truncate(inode);
if (time_to_inject(sbi, FAULT_EVICT_INODE)) {
f2fs_show_injection_info(FAULT_EVICT_INODE);
err = -EIO;
}
if (!err) {
f2fs_lock_op(sbi);
err = f2fs_remove_inode_page(inode);
f2fs_unlock_op(sbi);
if (err == -ENOENT)
err = 0;
}
/* give more chances, if ENOMEM case */
if (err == -ENOMEM) {
err = 0;
goto retry;
}
if (err) {
f2fs_update_inode_page(inode);
set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
}
sb_end_intwrite(inode->i_sb);
no_delete:
dquot_drop(inode);
stat_dec_inline_xattr(inode);
stat_dec_inline_dir(inode);
stat_dec_inline_inode(inode);
if (likely(!is_set_ckpt_flags(sbi, CP_ERROR_FLAG) &&
!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
f2fs_bug_on(sbi, is_inode_flag_set(inode, FI_DIRTY_INODE));
else
f2fs_inode_synced(inode);
/* ino == 0, if f2fs_new_inode() was failed t*/
if (inode->i_ino)
invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino,
inode->i_ino);
if (xnid)
invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid);
if (inode->i_nlink) {
if (is_inode_flag_set(inode, FI_APPEND_WRITE))
f2fs_add_ino_entry(sbi, inode->i_ino, APPEND_INO);
if (is_inode_flag_set(inode, FI_UPDATE_WRITE))
f2fs_add_ino_entry(sbi, inode->i_ino, UPDATE_INO);
}
if (is_inode_flag_set(inode, FI_FREE_NID)) {
f2fs_alloc_nid_failed(sbi, inode->i_ino);
clear_inode_flag(inode, FI_FREE_NID);
} else {
/*
* If xattr nid is corrupted, we can reach out error condition,
* err & !f2fs_exist_written_data(sbi, inode->i_ino, ORPHAN_INO)).
* In that case, f2fs_check_nid_range() is enough to give a clue.
*/
}
out_clear:
fscrypt_put_encryption_info(inode);
clear_inode(inode);
}
/* caller should call f2fs_lock_op() */
void f2fs_handle_failed_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct node_info ni;
int err;
/*
* clear nlink of inode in order to release resource of inode
* immediately.
*/
clear_nlink(inode);
/*
* we must call this to avoid inode being remained as dirty, resulting
* in a panic when flushing dirty inodes in gdirty_list.
*/
f2fs_update_inode_page(inode);
f2fs_inode_synced(inode);
/* don't make bad inode, since it becomes a regular file. */
unlock_new_inode(inode);
/*
* Note: we should add inode to orphan list before f2fs_unlock_op()
* so we can prevent losing this orphan when encoutering checkpoint
* and following suddenly power-off.
*/
err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
if (err) {
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_warn(sbi, "May loss orphan inode, run fsck to fix.");
goto out;
}
if (ni.blk_addr != NULL_ADDR) {
err = f2fs_acquire_orphan_inode(sbi);
if (err) {
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_warn(sbi, "Too many orphan inodes, run fsck to fix.");
} else {
f2fs_add_orphan_inode(inode);
}
f2fs_alloc_nid_done(sbi, inode->i_ino);
} else {
set_inode_flag(inode, FI_FREE_NID);
}
out:
f2fs_unlock_op(sbi);
/* iput will drop the inode object */
iput(inode);
}
|