summaryrefslogtreecommitdiff
path: root/fs/btrfs/tests/extent-io-tests.c
blob: 865d4af4b30356898acbe587ac0844956f836a57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2013 Fusion IO.  All rights reserved.
 */

#include <linux/pagemap.h>
#include <linux/pagevec.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/sizes.h>
#include "btrfs-tests.h"
#include "../ctree.h"
#include "../extent_io.h"
#include "../disk-io.h"
#include "../btrfs_inode.h"

#define PROCESS_UNLOCK		(1 << 0)
#define PROCESS_RELEASE		(1 << 1)
#define PROCESS_TEST_LOCKED	(1 << 2)

static noinline int process_page_range(struct inode *inode, u64 start, u64 end,
				       unsigned long flags)
{
	int ret;
	struct folio_batch fbatch;
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
	int i;
	int count = 0;
	int loops = 0;

	folio_batch_init(&fbatch);

	while (index <= end_index) {
		ret = filemap_get_folios_contig(inode->i_mapping, &index,
				end_index, &fbatch);
		for (i = 0; i < ret; i++) {
			struct folio *folio = fbatch.folios[i];

			if (flags & PROCESS_TEST_LOCKED &&
			    !folio_test_locked(folio))
				count++;
			if (flags & PROCESS_UNLOCK && folio_test_locked(folio))
				folio_unlock(folio);
			if (flags & PROCESS_RELEASE)
				folio_put(folio);
		}
		folio_batch_release(&fbatch);
		cond_resched();
		loops++;
		if (loops > 100000) {
			printk(KERN_ERR
		"stuck in a loop, start %llu, end %llu, ret %d\n",
				start, end, ret);
			break;
		}
	}

	return count;
}

#define STATE_FLAG_STR_LEN			256

#define PRINT_ONE_FLAG(state, dest, cur, name)				\
({									\
	if (state->state & EXTENT_##name)				\
		cur += scnprintf(dest + cur, STATE_FLAG_STR_LEN - cur,	\
				 "%s" #name, cur == 0 ? "" : "|");	\
})

static void extent_flag_to_str(const struct extent_state *state, char *dest)
{
	int cur = 0;

	dest[0] = 0;
	PRINT_ONE_FLAG(state, dest, cur, DIRTY);
	PRINT_ONE_FLAG(state, dest, cur, UPTODATE);
	PRINT_ONE_FLAG(state, dest, cur, LOCKED);
	PRINT_ONE_FLAG(state, dest, cur, NEW);
	PRINT_ONE_FLAG(state, dest, cur, DELALLOC);
	PRINT_ONE_FLAG(state, dest, cur, DEFRAG);
	PRINT_ONE_FLAG(state, dest, cur, BOUNDARY);
	PRINT_ONE_FLAG(state, dest, cur, NODATASUM);
	PRINT_ONE_FLAG(state, dest, cur, CLEAR_META_RESV);
	PRINT_ONE_FLAG(state, dest, cur, NEED_WAIT);
	PRINT_ONE_FLAG(state, dest, cur, NORESERVE);
	PRINT_ONE_FLAG(state, dest, cur, QGROUP_RESERVED);
	PRINT_ONE_FLAG(state, dest, cur, CLEAR_DATA_RESV);
}

static void dump_extent_io_tree(const struct extent_io_tree *tree)
{
	struct rb_node *node;
	char flags_str[STATE_FLAG_STR_LEN];

	node = rb_first(&tree->state);
	test_msg("io tree content:");
	while (node) {
		struct extent_state *state;

		state = rb_entry(node, struct extent_state, rb_node);
		extent_flag_to_str(state, flags_str);
		test_msg("  start=%llu len=%llu flags=%s", state->start,
			 state->end + 1 - state->start, flags_str);
		node = rb_next(node);
	}
}

static int test_find_delalloc(u32 sectorsize, u32 nodesize)
{
	struct btrfs_fs_info *fs_info;
	struct btrfs_root *root = NULL;
	struct inode *inode = NULL;
	struct extent_io_tree *tmp;
	struct page *page;
	struct page *locked_page = NULL;
	unsigned long index = 0;
	/* In this test we need at least 2 file extents at its maximum size */
	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
	u64 total_dirty = 2 * max_bytes;
	u64 start, end, test_start;
	bool found;
	int ret = -EINVAL;

	test_msg("running find delalloc tests");

	fs_info = btrfs_alloc_dummy_fs_info(nodesize, sectorsize);
	if (!fs_info) {
		test_std_err(TEST_ALLOC_FS_INFO);
		return -ENOMEM;
	}

	root = btrfs_alloc_dummy_root(fs_info);
	if (IS_ERR(root)) {
		test_std_err(TEST_ALLOC_ROOT);
		ret = PTR_ERR(root);
		goto out;
	}

	inode = btrfs_new_test_inode();
	if (!inode) {
		test_std_err(TEST_ALLOC_INODE);
		ret = -ENOMEM;
		goto out;
	}
	tmp = &BTRFS_I(inode)->io_tree;
	BTRFS_I(inode)->root = root;

	/*
	 * Passing NULL as we don't have fs_info but tracepoints are not used
	 * at this point
	 */
	extent_io_tree_init(NULL, tmp, IO_TREE_SELFTEST);

	/*
	 * First go through and create and mark all of our pages dirty, we pin
	 * everything to make sure our pages don't get evicted and screw up our
	 * test.
	 */
	for (index = 0; index < (total_dirty >> PAGE_SHIFT); index++) {
		page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
		if (!page) {
			test_err("failed to allocate test page");
			ret = -ENOMEM;
			goto out;
		}
		SetPageDirty(page);
		if (index) {
			unlock_page(page);
		} else {
			get_page(page);
			locked_page = page;
		}
	}

	/* Test this scenario
	 * |--- delalloc ---|
	 * |---  search  ---|
	 */
	set_extent_bit(tmp, 0, sectorsize - 1, EXTENT_DELALLOC, NULL);
	start = 0;
	end = start + PAGE_SIZE - 1;
	found = find_lock_delalloc_range(inode, locked_page, &start,
					 &end);
	if (!found) {
		test_err("should have found at least one delalloc");
		goto out_bits;
	}
	if (start != 0 || end != (sectorsize - 1)) {
		test_err("expected start 0 end %u, got start %llu end %llu",
			sectorsize - 1, start, end);
		goto out_bits;
	}
	unlock_extent(tmp, start, end, NULL);
	unlock_page(locked_page);
	put_page(locked_page);

	/*
	 * Test this scenario
	 *
	 * |--- delalloc ---|
	 *           |--- search ---|
	 */
	test_start = SZ_64M;
	locked_page = find_lock_page(inode->i_mapping,
				     test_start >> PAGE_SHIFT);
	if (!locked_page) {
		test_err("couldn't find the locked page");
		goto out_bits;
	}
	set_extent_bit(tmp, sectorsize, max_bytes - 1, EXTENT_DELALLOC, NULL);
	start = test_start;
	end = start + PAGE_SIZE - 1;
	found = find_lock_delalloc_range(inode, locked_page, &start,
					 &end);
	if (!found) {
		test_err("couldn't find delalloc in our range");
		goto out_bits;
	}
	if (start != test_start || end != max_bytes - 1) {
		test_err("expected start %llu end %llu, got start %llu, end %llu",
				test_start, max_bytes - 1, start, end);
		goto out_bits;
	}
	if (process_page_range(inode, start, end,
			       PROCESS_TEST_LOCKED | PROCESS_UNLOCK)) {
		test_err("there were unlocked pages in the range");
		goto out_bits;
	}
	unlock_extent(tmp, start, end, NULL);
	/* locked_page was unlocked above */
	put_page(locked_page);

	/*
	 * Test this scenario
	 * |--- delalloc ---|
	 *                    |--- search ---|
	 */
	test_start = max_bytes + sectorsize;
	locked_page = find_lock_page(inode->i_mapping, test_start >>
				     PAGE_SHIFT);
	if (!locked_page) {
		test_err("couldn't find the locked page");
		goto out_bits;
	}
	start = test_start;
	end = start + PAGE_SIZE - 1;
	found = find_lock_delalloc_range(inode, locked_page, &start,
					 &end);
	if (found) {
		test_err("found range when we shouldn't have");
		goto out_bits;
	}
	if (end != test_start + PAGE_SIZE - 1) {
		test_err("did not return the proper end offset");
		goto out_bits;
	}

	/*
	 * Test this scenario
	 * [------- delalloc -------|
	 * [max_bytes]|-- search--|
	 *
	 * We are re-using our test_start from above since it works out well.
	 */
	set_extent_bit(tmp, max_bytes, total_dirty - 1, EXTENT_DELALLOC, NULL);
	start = test_start;
	end = start + PAGE_SIZE - 1;
	found = find_lock_delalloc_range(inode, locked_page, &start,
					 &end);
	if (!found) {
		test_err("didn't find our range");
		goto out_bits;
	}
	if (start != test_start || end != total_dirty - 1) {
		test_err("expected start %llu end %llu, got start %llu end %llu",
			 test_start, total_dirty - 1, start, end);
		goto out_bits;
	}
	if (process_page_range(inode, start, end,
			       PROCESS_TEST_LOCKED | PROCESS_UNLOCK)) {
		test_err("pages in range were not all locked");
		goto out_bits;
	}
	unlock_extent(tmp, start, end, NULL);

	/*
	 * Now to test where we run into a page that is no longer dirty in the
	 * range we want to find.
	 */
	page = find_get_page(inode->i_mapping,
			     (max_bytes + SZ_1M) >> PAGE_SHIFT);
	if (!page) {
		test_err("couldn't find our page");
		goto out_bits;
	}
	ClearPageDirty(page);
	put_page(page);

	/* We unlocked it in the previous test */
	lock_page(locked_page);
	start = test_start;
	end = start + PAGE_SIZE - 1;
	/*
	 * Currently if we fail to find dirty pages in the delalloc range we
	 * will adjust max_bytes down to PAGE_SIZE and then re-search.  If
	 * this changes at any point in the future we will need to fix this
	 * tests expected behavior.
	 */
	found = find_lock_delalloc_range(inode, locked_page, &start,
					 &end);
	if (!found) {
		test_err("didn't find our range");
		goto out_bits;
	}
	if (start != test_start && end != test_start + PAGE_SIZE - 1) {
		test_err("expected start %llu end %llu, got start %llu end %llu",
			 test_start, test_start + PAGE_SIZE - 1, start, end);
		goto out_bits;
	}
	if (process_page_range(inode, start, end, PROCESS_TEST_LOCKED |
			       PROCESS_UNLOCK)) {
		test_err("pages in range were not all locked");
		goto out_bits;
	}
	ret = 0;
out_bits:
	if (ret)
		dump_extent_io_tree(tmp);
	clear_extent_bits(tmp, 0, total_dirty - 1, (unsigned)-1);
out:
	if (locked_page)
		put_page(locked_page);
	process_page_range(inode, 0, total_dirty - 1,
			   PROCESS_UNLOCK | PROCESS_RELEASE);
	iput(inode);
	btrfs_free_dummy_root(root);
	btrfs_free_dummy_fs_info(fs_info);
	return ret;
}

static int check_eb_bitmap(unsigned long *bitmap, struct extent_buffer *eb)
{
	unsigned long i;

	for (i = 0; i < eb->len * BITS_PER_BYTE; i++) {
		int bit, bit1;

		bit = !!test_bit(i, bitmap);
		bit1 = !!extent_buffer_test_bit(eb, 0, i);
		if (bit1 != bit) {
			u8 has;
			u8 expect;

			read_extent_buffer(eb, &has, i / BITS_PER_BYTE, 1);
			expect = bitmap_get_value8(bitmap, ALIGN(i, BITS_PER_BYTE));

			test_err(
		"bits do not match, start byte 0 bit %lu, byte %lu has 0x%02x expect 0x%02x",
				 i, i / BITS_PER_BYTE, has, expect);
			return -EINVAL;
		}

		bit1 = !!extent_buffer_test_bit(eb, i / BITS_PER_BYTE,
						i % BITS_PER_BYTE);
		if (bit1 != bit) {
			u8 has;
			u8 expect;

			read_extent_buffer(eb, &has, i / BITS_PER_BYTE, 1);
			expect = bitmap_get_value8(bitmap, ALIGN(i, BITS_PER_BYTE));

			test_err(
		"bits do not match, start byte %lu bit %lu, byte %lu has 0x%02x expect 0x%02x",
				 i / BITS_PER_BYTE, i % BITS_PER_BYTE,
				 i / BITS_PER_BYTE, has, expect);
			return -EINVAL;
		}
	}
	return 0;
}

static int test_bitmap_set(const char *name, unsigned long *bitmap,
			   struct extent_buffer *eb,
			   unsigned long byte_start, unsigned long bit_start,
			   unsigned long bit_len)
{
	int ret;

	bitmap_set(bitmap, byte_start * BITS_PER_BYTE + bit_start, bit_len);
	extent_buffer_bitmap_set(eb, byte_start, bit_start, bit_len);
	ret = check_eb_bitmap(bitmap, eb);
	if (ret < 0)
		test_err("%s test failed", name);
	return ret;
}

static int test_bitmap_clear(const char *name, unsigned long *bitmap,
			     struct extent_buffer *eb,
			     unsigned long byte_start, unsigned long bit_start,
			     unsigned long bit_len)
{
	int ret;

	bitmap_clear(bitmap, byte_start * BITS_PER_BYTE + bit_start, bit_len);
	extent_buffer_bitmap_clear(eb, byte_start, bit_start, bit_len);
	ret = check_eb_bitmap(bitmap, eb);
	if (ret < 0)
		test_err("%s test failed", name);
	return ret;
}
static int __test_eb_bitmaps(unsigned long *bitmap, struct extent_buffer *eb)
{
	unsigned long i, j;
	unsigned long byte_len = eb->len;
	u32 x;
	int ret;

	ret = test_bitmap_clear("clear all run 1", bitmap, eb, 0, 0,
				byte_len * BITS_PER_BYTE);
	if (ret < 0)
		return ret;

	ret = test_bitmap_set("set all", bitmap, eb, 0, 0, byte_len * BITS_PER_BYTE);
	if (ret < 0)
		return ret;

	ret = test_bitmap_clear("clear all run 2", bitmap, eb, 0, 0,
				byte_len * BITS_PER_BYTE);
	if (ret < 0)
		return ret;

	ret = test_bitmap_set("same byte set", bitmap, eb, 0, 2, 4);
	if (ret < 0)
		return ret;

	ret = test_bitmap_clear("same byte partial clear", bitmap, eb, 0, 4, 1);
	if (ret < 0)
		return ret;

	ret = test_bitmap_set("cross byte set", bitmap, eb, 2, 4, 8);
	if (ret < 0)
		return ret;

	ret = test_bitmap_set("cross multi byte set", bitmap, eb, 4, 4, 24);
	if (ret < 0)
		return ret;

	ret = test_bitmap_clear("cross byte clear", bitmap, eb, 2, 6, 4);
	if (ret < 0)
		return ret;

	ret = test_bitmap_clear("cross multi byte clear", bitmap, eb, 4, 6, 20);
	if (ret < 0)
		return ret;

	/* Straddling pages test */
	if (byte_len > PAGE_SIZE) {
		ret = test_bitmap_set("cross page set", bitmap, eb,
				      PAGE_SIZE - sizeof(long) / 2, 0,
				      sizeof(long) * BITS_PER_BYTE);
		if (ret < 0)
			return ret;

		ret = test_bitmap_set("cross page set all", bitmap, eb, 0, 0,
				      byte_len * BITS_PER_BYTE);
		if (ret < 0)
			return ret;

		ret = test_bitmap_clear("cross page clear", bitmap, eb,
					PAGE_SIZE - sizeof(long) / 2, 0,
					sizeof(long) * BITS_PER_BYTE);
		if (ret < 0)
			return ret;
	}

	/*
	 * Generate a wonky pseudo-random bit pattern for the sake of not using
	 * something repetitive that could miss some hypothetical off-by-n bug.
	 */
	x = 0;
	ret = test_bitmap_clear("clear all run 3", bitmap, eb, 0, 0,
				byte_len * BITS_PER_BYTE);
	if (ret < 0)
		return ret;

	for (i = 0; i < byte_len * BITS_PER_BYTE / 32; i++) {
		x = (0x19660dULL * (u64)x + 0x3c6ef35fULL) & 0xffffffffU;
		for (j = 0; j < 32; j++) {
			if (x & (1U << j)) {
				bitmap_set(bitmap, i * 32 + j, 1);
				extent_buffer_bitmap_set(eb, 0, i * 32 + j, 1);
			}
		}
	}

	ret = check_eb_bitmap(bitmap, eb);
	if (ret) {
		test_err("random bit pattern failed");
		return ret;
	}

	return 0;
}

static int test_eb_bitmaps(u32 sectorsize, u32 nodesize)
{
	struct btrfs_fs_info *fs_info;
	unsigned long *bitmap = NULL;
	struct extent_buffer *eb = NULL;
	int ret;

	test_msg("running extent buffer bitmap tests");

	fs_info = btrfs_alloc_dummy_fs_info(nodesize, sectorsize);
	if (!fs_info) {
		test_std_err(TEST_ALLOC_FS_INFO);
		return -ENOMEM;
	}

	bitmap = kmalloc(nodesize, GFP_KERNEL);
	if (!bitmap) {
		test_err("couldn't allocate test bitmap");
		ret = -ENOMEM;
		goto out;
	}

	eb = __alloc_dummy_extent_buffer(fs_info, 0, nodesize);
	if (!eb) {
		test_std_err(TEST_ALLOC_ROOT);
		ret = -ENOMEM;
		goto out;
	}

	ret = __test_eb_bitmaps(bitmap, eb);
	if (ret)
		goto out;

	free_extent_buffer(eb);

	/*
	 * Test again for case where the tree block is sectorsize aligned but
	 * not nodesize aligned.
	 */
	eb = __alloc_dummy_extent_buffer(fs_info, sectorsize, nodesize);
	if (!eb) {
		test_std_err(TEST_ALLOC_ROOT);
		ret = -ENOMEM;
		goto out;
	}

	ret = __test_eb_bitmaps(bitmap, eb);
out:
	free_extent_buffer(eb);
	kfree(bitmap);
	btrfs_free_dummy_fs_info(fs_info);
	return ret;
}

static int test_find_first_clear_extent_bit(void)
{
	struct extent_io_tree tree;
	u64 start, end;
	int ret = -EINVAL;

	test_msg("running find_first_clear_extent_bit test");

	extent_io_tree_init(NULL, &tree, IO_TREE_SELFTEST);

	/* Test correct handling of empty tree */
	find_first_clear_extent_bit(&tree, 0, &start, &end, CHUNK_TRIMMED);
	if (start != 0 || end != -1) {
		test_err(
	"error getting a range from completely empty tree: start %llu end %llu",
			 start, end);
		goto out;
	}
	/*
	 * Set 1M-4M alloc/discard and 32M-64M thus leaving a hole between
	 * 4M-32M
	 */
	set_extent_bit(&tree, SZ_1M, SZ_4M - 1,
		       CHUNK_TRIMMED | CHUNK_ALLOCATED, NULL);

	find_first_clear_extent_bit(&tree, SZ_512K, &start, &end,
				    CHUNK_TRIMMED | CHUNK_ALLOCATED);

	if (start != 0 || end != SZ_1M - 1) {
		test_err("error finding beginning range: start %llu end %llu",
			 start, end);
		goto out;
	}

	/* Now add 32M-64M so that we have a hole between 4M-32M */
	set_extent_bit(&tree, SZ_32M, SZ_64M - 1,
		       CHUNK_TRIMMED | CHUNK_ALLOCATED, NULL);

	/*
	 * Request first hole starting at 12M, we should get 4M-32M
	 */
	find_first_clear_extent_bit(&tree, 12 * SZ_1M, &start, &end,
				    CHUNK_TRIMMED | CHUNK_ALLOCATED);

	if (start != SZ_4M || end != SZ_32M - 1) {
		test_err("error finding trimmed range: start %llu end %llu",
			 start, end);
		goto out;
	}

	/*
	 * Search in the middle of allocated range, should get the next one
	 * available, which happens to be unallocated -> 4M-32M
	 */
	find_first_clear_extent_bit(&tree, SZ_2M, &start, &end,
				    CHUNK_TRIMMED | CHUNK_ALLOCATED);

	if (start != SZ_4M || end != SZ_32M - 1) {
		test_err("error finding next unalloc range: start %llu end %llu",
			 start, end);
		goto out;
	}

	/*
	 * Set 64M-72M with CHUNK_ALLOC flag, then search for CHUNK_TRIMMED flag
	 * being unset in this range, we should get the entry in range 64M-72M
	 */
	set_extent_bit(&tree, SZ_64M, SZ_64M + SZ_8M - 1, CHUNK_ALLOCATED, NULL);
	find_first_clear_extent_bit(&tree, SZ_64M + SZ_1M, &start, &end,
				    CHUNK_TRIMMED);

	if (start != SZ_64M || end != SZ_64M + SZ_8M - 1) {
		test_err("error finding exact range: start %llu end %llu",
			 start, end);
		goto out;
	}

	find_first_clear_extent_bit(&tree, SZ_64M - SZ_8M, &start, &end,
				    CHUNK_TRIMMED);

	/*
	 * Search in the middle of set range whose immediate neighbour doesn't
	 * have the bits set so it must be returned
	 */
	if (start != SZ_64M || end != SZ_64M + SZ_8M - 1) {
		test_err("error finding next alloc range: start %llu end %llu",
			 start, end);
		goto out;
	}

	/*
	 * Search beyond any known range, shall return after last known range
	 * and end should be -1
	 */
	find_first_clear_extent_bit(&tree, -1, &start, &end, CHUNK_TRIMMED);
	if (start != SZ_64M + SZ_8M || end != -1) {
		test_err(
		"error handling beyond end of range search: start %llu end %llu",
			start, end);
		goto out;
	}

	ret = 0;
out:
	if (ret)
		dump_extent_io_tree(&tree);
	clear_extent_bits(&tree, 0, (u64)-1, CHUNK_TRIMMED | CHUNK_ALLOCATED);

	return ret;
}

static void dump_eb_and_memory_contents(struct extent_buffer *eb, void *memory,
					const char *test_name)
{
	for (int i = 0; i < eb->len; i++) {
		struct page *page = folio_page(eb->folios[i >> PAGE_SHIFT], 0);
		void *addr = page_address(page) + offset_in_page(i);

		if (memcmp(addr, memory + i, 1) != 0) {
			test_err("%s failed", test_name);
			test_err("eb and memory diffs at byte %u, eb has 0x%02x memory has 0x%02x",
				 i, *(u8 *)addr, *(u8 *)(memory + i));
			return;
		}
	}
}

static int verify_eb_and_memory(struct extent_buffer *eb, void *memory,
				const char *test_name)
{
	for (int i = 0; i < (eb->len >> PAGE_SHIFT); i++) {
		void *eb_addr = folio_address(eb->folios[i]);

		if (memcmp(memory + (i << PAGE_SHIFT), eb_addr, PAGE_SIZE) != 0) {
			dump_eb_and_memory_contents(eb, memory, test_name);
			return -EUCLEAN;
		}
	}
	return 0;
}

/*
 * Init both memory and extent buffer contents to the same randomly generated
 * contents.
 */
static void init_eb_and_memory(struct extent_buffer *eb, void *memory)
{
	get_random_bytes(memory, eb->len);
	write_extent_buffer(eb, memory, 0, eb->len);
}

static int test_eb_mem_ops(u32 sectorsize, u32 nodesize)
{
	struct btrfs_fs_info *fs_info;
	struct extent_buffer *eb = NULL;
	void *memory = NULL;
	int ret;

	test_msg("running extent buffer memory operation tests");

	fs_info = btrfs_alloc_dummy_fs_info(nodesize, sectorsize);
	if (!fs_info) {
		test_std_err(TEST_ALLOC_FS_INFO);
		return -ENOMEM;
	}

	memory = kvzalloc(nodesize, GFP_KERNEL);
	if (!memory) {
		test_err("failed to allocate memory");
		ret = -ENOMEM;
		goto out;
	}

	eb = __alloc_dummy_extent_buffer(fs_info, SZ_1M, nodesize);
	if (!eb) {
		test_std_err(TEST_ALLOC_EXTENT_BUFFER);
		ret = -ENOMEM;
		goto out;
	}

	init_eb_and_memory(eb, memory);
	ret = verify_eb_and_memory(eb, memory, "full eb write");
	if (ret < 0)
		goto out;

	memcpy(memory, memory + 16, 16);
	memcpy_extent_buffer(eb, 0, 16, 16);
	ret = verify_eb_and_memory(eb, memory, "same page non-overlapping memcpy 1");
	if (ret < 0)
		goto out;

	memcpy(memory, memory + 2048, 16);
	memcpy_extent_buffer(eb, 0, 2048, 16);
	ret = verify_eb_and_memory(eb, memory, "same page non-overlapping memcpy 2");
	if (ret < 0)
		goto out;
	memcpy(memory, memory + 2048, 2048);
	memcpy_extent_buffer(eb, 0, 2048, 2048);
	ret = verify_eb_and_memory(eb, memory, "same page non-overlapping memcpy 3");
	if (ret < 0)
		goto out;

	memmove(memory + 512, memory + 256, 512);
	memmove_extent_buffer(eb, 512, 256, 512);
	ret = verify_eb_and_memory(eb, memory, "same page overlapping memcpy 1");
	if (ret < 0)
		goto out;

	memmove(memory + 2048, memory + 512, 2048);
	memmove_extent_buffer(eb, 2048, 512, 2048);
	ret = verify_eb_and_memory(eb, memory, "same page overlapping memcpy 2");
	if (ret < 0)
		goto out;
	memmove(memory + 512, memory + 2048, 2048);
	memmove_extent_buffer(eb, 512, 2048, 2048);
	ret = verify_eb_and_memory(eb, memory, "same page overlapping memcpy 3");
	if (ret < 0)
		goto out;

	if (nodesize > PAGE_SIZE) {
		memcpy(memory, memory + 4096 - 128, 256);
		memcpy_extent_buffer(eb, 0, 4096 - 128, 256);
		ret = verify_eb_and_memory(eb, memory, "cross page non-overlapping memcpy 1");
		if (ret < 0)
			goto out;

		memcpy(memory + 4096 - 128, memory + 4096 + 128, 256);
		memcpy_extent_buffer(eb, 4096 - 128, 4096 + 128, 256);
		ret = verify_eb_and_memory(eb, memory, "cross page non-overlapping memcpy 2");
		if (ret < 0)
			goto out;

		memmove(memory + 4096 - 128, memory + 4096 - 64, 256);
		memmove_extent_buffer(eb, 4096 - 128, 4096 - 64, 256);
		ret = verify_eb_and_memory(eb, memory, "cross page overlapping memcpy 1");
		if (ret < 0)
			goto out;

		memmove(memory + 4096 - 64, memory + 4096 - 128, 256);
		memmove_extent_buffer(eb, 4096 - 64, 4096 - 128, 256);
		ret = verify_eb_and_memory(eb, memory, "cross page overlapping memcpy 2");
		if (ret < 0)
			goto out;
	}
out:
	free_extent_buffer(eb);
	kvfree(memory);
	btrfs_free_dummy_fs_info(fs_info);
	return ret;
}

int btrfs_test_extent_io(u32 sectorsize, u32 nodesize)
{
	int ret;

	test_msg("running extent I/O tests");

	ret = test_find_delalloc(sectorsize, nodesize);
	if (ret)
		goto out;

	ret = test_find_first_clear_extent_bit();
	if (ret)
		goto out;

	ret = test_eb_bitmaps(sectorsize, nodesize);
	if (ret)
		goto out;

	ret = test_eb_mem_ops(sectorsize, nodesize);
out:
	return ret;
}