1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
/* blz2060.c: Driver for Blizzard 2060 SCSI Controller.
*
* Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk)
*
* This driver is based on the CyberStorm driver, hence the occasional
* reference to CyberStorm.
*/
/* TODO:
*
* 1) Figure out how to make a cleaner merge with the sparc driver with regard
* to the caches and the Sparc MMU mapping.
* 2) Make as few routines required outside the generic driver. A lot of the
* routines in this file used to be inline!
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/interrupt.h>
#include "scsi.h"
#include <scsi/scsi_host.h>
#include "NCR53C9x.h"
#include <linux/zorro.h>
#include <asm/irq.h>
#include <asm/amigaints.h>
#include <asm/amigahw.h>
#include <asm/pgtable.h>
/* The controller registers can be found in the Z2 config area at these
* offsets:
*/
#define BLZ2060_ESP_ADDR 0x1ff00
#define BLZ2060_DMA_ADDR 0x1ffe0
/* The Blizzard 2060 DMA interface
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Only two things can be programmed in the Blizzard DMA:
* 1) The data direction is controlled by the status of bit 31 (1 = write)
* 2) The source/dest address (word aligned, shifted one right) in bits 30-0
*
* Figure out interrupt status by reading the ESP status byte.
*/
struct blz2060_dma_registers {
volatile unsigned char dma_led_ctrl; /* DMA led control [0x000] */
unsigned char dmapad1[0x0f];
volatile unsigned char dma_addr0; /* DMA address (MSB) [0x010] */
unsigned char dmapad2[0x03];
volatile unsigned char dma_addr1; /* DMA address [0x014] */
unsigned char dmapad3[0x03];
volatile unsigned char dma_addr2; /* DMA address [0x018] */
unsigned char dmapad4[0x03];
volatile unsigned char dma_addr3; /* DMA address (LSB) [0x01c] */
};
#define BLZ2060_DMA_WRITE 0x80000000
/* DMA control bits */
#define BLZ2060_DMA_LED 0x02 /* HD led control 1 = off */
static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count);
static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp);
static void dma_dump_state(struct NCR_ESP *esp);
static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length);
static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length);
static void dma_ints_off(struct NCR_ESP *esp);
static void dma_ints_on(struct NCR_ESP *esp);
static int dma_irq_p(struct NCR_ESP *esp);
static void dma_led_off(struct NCR_ESP *esp);
static void dma_led_on(struct NCR_ESP *esp);
static int dma_ports_p(struct NCR_ESP *esp);
static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write);
static volatile unsigned char cmd_buffer[16];
/* This is where all commands are put
* before they are transferred to the ESP chip
* via PIO.
*/
/***************************************************************** Detection */
int __init blz2060_esp_detect(struct scsi_host_template *tpnt)
{
struct NCR_ESP *esp;
struct zorro_dev *z = NULL;
unsigned long address;
if ((z = zorro_find_device(ZORRO_PROD_PHASE5_BLIZZARD_2060, z))) {
unsigned long board = z->resource.start;
if (request_mem_region(board+BLZ2060_ESP_ADDR,
sizeof(struct ESP_regs), "NCR53C9x")) {
esp = esp_allocate(tpnt, (void *)board+BLZ2060_ESP_ADDR);
/* Do command transfer with programmed I/O */
esp->do_pio_cmds = 1;
/* Required functions */
esp->dma_bytes_sent = &dma_bytes_sent;
esp->dma_can_transfer = &dma_can_transfer;
esp->dma_dump_state = &dma_dump_state;
esp->dma_init_read = &dma_init_read;
esp->dma_init_write = &dma_init_write;
esp->dma_ints_off = &dma_ints_off;
esp->dma_ints_on = &dma_ints_on;
esp->dma_irq_p = &dma_irq_p;
esp->dma_ports_p = &dma_ports_p;
esp->dma_setup = &dma_setup;
/* Optional functions */
esp->dma_barrier = 0;
esp->dma_drain = 0;
esp->dma_invalidate = 0;
esp->dma_irq_entry = 0;
esp->dma_irq_exit = 0;
esp->dma_led_on = &dma_led_on;
esp->dma_led_off = &dma_led_off;
esp->dma_poll = 0;
esp->dma_reset = 0;
/* SCSI chip speed */
esp->cfreq = 40000000;
/* The DMA registers on the Blizzard are mapped
* relative to the device (i.e. in the same Zorro
* I/O block).
*/
address = (unsigned long)ZTWO_VADDR(board);
esp->dregs = (void *)(address + BLZ2060_DMA_ADDR);
/* ESP register base */
esp->eregs = (struct ESP_regs *)(address + BLZ2060_ESP_ADDR);
/* Set the command buffer */
esp->esp_command = cmd_buffer;
esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer);
esp->irq = IRQ_AMIGA_PORTS;
request_irq(IRQ_AMIGA_PORTS, esp_intr, SA_SHIRQ,
"Blizzard 2060 SCSI", esp->ehost);
/* Figure out our scsi ID on the bus */
esp->scsi_id = 7;
/* We don't have a differential SCSI-bus. */
esp->diff = 0;
esp_initialize(esp);
printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use);
esps_running = esps_in_use;
return esps_in_use;
}
}
return 0;
}
/************************************************************* DMA Functions */
static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count)
{
/* Since the Blizzard DMA is fully dedicated to the ESP chip,
* the number of bytes sent (to the ESP chip) equals the number
* of bytes in the FIFO - there is no buffering in the DMA controller.
* XXXX Do I read this right? It is from host to ESP, right?
*/
return fifo_count;
}
static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp)
{
/* I don't think there's any limit on the Blizzard DMA. So we use what
* the ESP chip can handle (24 bit).
*/
unsigned long sz = sp->SCp.this_residual;
if(sz > 0x1000000)
sz = 0x1000000;
return sz;
}
static void dma_dump_state(struct NCR_ESP *esp)
{
ESPLOG(("intreq:<%04x>, intena:<%04x>\n",
custom.intreqr, custom.intenar));
}
static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length)
{
struct blz2060_dma_registers *dregs =
(struct blz2060_dma_registers *) (esp->dregs);
cache_clear(addr, length);
addr >>= 1;
addr &= ~(BLZ2060_DMA_WRITE);
dregs->dma_addr3 = (addr ) & 0xff;
dregs->dma_addr2 = (addr >> 8) & 0xff;
dregs->dma_addr1 = (addr >> 16) & 0xff;
dregs->dma_addr0 = (addr >> 24) & 0xff;
}
static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length)
{
struct blz2060_dma_registers *dregs =
(struct blz2060_dma_registers *) (esp->dregs);
cache_push(addr, length);
addr >>= 1;
addr |= BLZ2060_DMA_WRITE;
dregs->dma_addr3 = (addr ) & 0xff;
dregs->dma_addr2 = (addr >> 8) & 0xff;
dregs->dma_addr1 = (addr >> 16) & 0xff;
dregs->dma_addr0 = (addr >> 24) & 0xff;
}
static void dma_ints_off(struct NCR_ESP *esp)
{
disable_irq(esp->irq);
}
static void dma_ints_on(struct NCR_ESP *esp)
{
enable_irq(esp->irq);
}
static int dma_irq_p(struct NCR_ESP *esp)
{
return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR);
}
static void dma_led_off(struct NCR_ESP *esp)
{
((struct blz2060_dma_registers *) (esp->dregs))->dma_led_ctrl =
BLZ2060_DMA_LED;
}
static void dma_led_on(struct NCR_ESP *esp)
{
((struct blz2060_dma_registers *) (esp->dregs))->dma_led_ctrl = 0;
}
static int dma_ports_p(struct NCR_ESP *esp)
{
return ((custom.intenar) & IF_PORTS);
}
static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write)
{
/* On the Sparc, DMA_ST_WRITE means "move data from device to memory"
* so when (write) is true, it actually means READ!
*/
if(write){
dma_init_read(esp, addr, count);
} else {
dma_init_write(esp, addr, count);
}
}
#define HOSTS_C
int blz2060_esp_release(struct Scsi_Host *instance)
{
#ifdef MODULE
unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev;
esp_deallocate((struct NCR_ESP *)instance->hostdata);
esp_release();
release_mem_region(address, sizeof(struct ESP_regs));
free_irq(IRQ_AMIGA_PORTS, esp_intr);
#endif
return 1;
}
static struct scsi_host_template driver_template = {
.proc_name = "esp-blz2060",
.proc_info = esp_proc_info,
.name = "Blizzard2060 SCSI",
.detect = blz2060_esp_detect,
.slave_alloc = esp_slave_alloc,
.slave_destroy = esp_slave_destroy,
.release = blz2060_esp_release,
.queuecommand = esp_queue,
.eh_abort_handler = esp_abort,
.eh_bus_reset_handler = esp_reset,
.can_queue = 7,
.this_id = 7,
.sg_tablesize = SG_ALL,
.cmd_per_lun = 1,
.use_clustering = ENABLE_CLUSTERING
};
#include "scsi_module.c"
MODULE_LICENSE("GPL");
|