summaryrefslogtreecommitdiff
path: root/drivers/pwm/pwm-sl28cpld.c
blob: 5046b6b7fd35be4ef06a9cf3e24b2c0a46ce5026 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
// SPDX-License-Identifier: GPL-2.0-only
/*
 * sl28cpld PWM driver
 *
 * Copyright (c) 2020 Michael Walle <michael@walle.cc>
 *
 * There is no public datasheet available for this PWM core. But it is easy
 * enough to be briefly explained. It consists of one 8-bit counter. The PWM
 * supports four distinct frequencies by selecting when to reset the counter.
 * With the prescaler setting you can select which bit of the counter is used
 * to reset it. This implies that the higher the frequency the less remaining
 * bits are available for the actual counter.
 *
 * Let cnt[7:0] be the counter, clocked at 32kHz:
 * +-----------+--------+--------------+-----------+---------------+
 * | prescaler |  reset | counter bits | frequency | period length |
 * +-----------+--------+--------------+-----------+---------------+
 * |         0 | cnt[7] |     cnt[6:0] |    250 Hz |    4000000 ns |
 * |         1 | cnt[6] |     cnt[5:0] |    500 Hz |    2000000 ns |
 * |         2 | cnt[5] |     cnt[4:0] |     1 kHz |    1000000 ns |
 * |         3 | cnt[4] |     cnt[3:0] |     2 kHz |     500000 ns |
 * +-----------+--------+--------------+-----------+---------------+
 *
 * Limitations:
 * - The hardware cannot generate a 100% duty cycle if the prescaler is 0.
 * - The hardware cannot atomically set the prescaler and the counter value,
 *   which might lead to glitches and inconsistent states if a write fails.
 * - The counter is not reset if you switch the prescaler which leads
 *   to glitches, too.
 * - The duty cycle will switch immediately and not after a complete cycle.
 * - Depending on the actual implementation, disabling the PWM might have
 *   side effects. For example, if the output pin is shared with a GPIO pin
 *   it will automatically switch back to GPIO mode.
 */

#include <linux/bitfield.h>
#include <linux/kernel.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#include <linux/regmap.h>

/*
 * PWM timer block registers.
 */
#define SL28CPLD_PWM_CTRL			0x00
#define   SL28CPLD_PWM_CTRL_ENABLE		BIT(7)
#define   SL28CPLD_PWM_CTRL_PRESCALER_MASK	GENMASK(1, 0)
#define SL28CPLD_PWM_CYCLE			0x01
#define   SL28CPLD_PWM_CYCLE_MAX		GENMASK(6, 0)

#define SL28CPLD_PWM_CLK			32000 /* 32 kHz */
#define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)	(1 << (7 - (prescaler)))
#define SL28CPLD_PWM_PERIOD(prescaler) \
	(NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler))

/*
 * We calculate the duty cycle like this:
 *   duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle
 *
 * With
 *   max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC
 *   max_duty_cycle = 1 << (7 - prescaler)
 * this then simplifies to:
 *   duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC
 *                 = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg
 *
 * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing
 * precision by doing the divison first.
 */
#define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \
	(NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg))
#define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \
	(DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK))

#define sl28cpld_pwm_read(priv, reg, val) \
	regmap_read((priv)->regmap, (priv)->offset + (reg), (val))
#define sl28cpld_pwm_write(priv, reg, val) \
	regmap_write((priv)->regmap, (priv)->offset + (reg), (val))

struct sl28cpld_pwm {
	struct pwm_chip pwm_chip;
	struct regmap *regmap;
	u32 offset;
};

static void sl28cpld_pwm_get_state(struct pwm_chip *chip,
				   struct pwm_device *pwm,
				   struct pwm_state *state)
{
	struct sl28cpld_pwm *priv = dev_get_drvdata(chip->dev);
	unsigned int reg;
	int prescaler;

	sl28cpld_pwm_read(priv, SL28CPLD_PWM_CTRL, &reg);

	state->enabled = reg & SL28CPLD_PWM_CTRL_ENABLE;

	prescaler = FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK, reg);
	state->period = SL28CPLD_PWM_PERIOD(prescaler);

	sl28cpld_pwm_read(priv, SL28CPLD_PWM_CYCLE, &reg);
	state->duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE(reg);
	state->polarity = PWM_POLARITY_NORMAL;

	/*
	 * Sanitize values for the PWM core. Depending on the prescaler it
	 * might happen that we calculate a duty_cycle greater than the actual
	 * period. This might happen if someone (e.g. the bootloader) sets an
	 * invalid combination of values. The behavior of the hardware is
	 * undefined in this case. But we need to report sane values back to
	 * the PWM core.
	 */
	state->duty_cycle = min(state->duty_cycle, state->period);
}

static int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
			      const struct pwm_state *state)
{
	struct sl28cpld_pwm *priv = dev_get_drvdata(chip->dev);
	unsigned int cycle, prescaler;
	bool write_duty_cycle_first;
	int ret;
	u8 ctrl;

	/* Polarity inversion is not supported */
	if (state->polarity != PWM_POLARITY_NORMAL)
		return -EINVAL;

	/*
	 * Calculate the prescaler. Pick the biggest period that isn't
	 * bigger than the requested period.
	 */
	prescaler = DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state->period);
	prescaler = order_base_2(prescaler);

	if (prescaler > field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK))
		return -ERANGE;

	ctrl = FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, prescaler);
	if (state->enabled)
		ctrl |= SL28CPLD_PWM_CTRL_ENABLE;

	cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE(state->duty_cycle);
	cycle = min_t(unsigned int, cycle, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler));

	/*
	 * Work around the hardware limitation. See also above. Trap 100% duty
	 * cycle if the prescaler is 0. Set prescaler to 1 instead. We don't
	 * care about the frequency because its "all-one" in either case.
	 *
	 * We don't need to check the actual prescaler setting, because only
	 * if the prescaler is 0 we can have this particular value.
	 */
	if (cycle == SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) {
		ctrl &= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK;
		ctrl |= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, 1);
		cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE(1);
	}

	/*
	 * To avoid glitches when we switch the prescaler, we have to make sure
	 * we have a valid duty cycle for the new mode.
	 *
	 * Take the current prescaler (or the current period length) into
	 * account to decide whether we have to write the duty cycle or the new
	 * prescaler first. If the period length is decreasing we have to
	 * write the duty cycle first.
	 */
	write_duty_cycle_first = pwm->state.period > state->period;

	if (write_duty_cycle_first) {
		ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
		if (ret)
			return ret;
	}

	ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CTRL, ctrl);
	if (ret)
		return ret;

	if (!write_duty_cycle_first) {
		ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
		if (ret)
			return ret;
	}

	return 0;
}

static const struct pwm_ops sl28cpld_pwm_ops = {
	.apply = sl28cpld_pwm_apply,
	.get_state = sl28cpld_pwm_get_state,
	.owner = THIS_MODULE,
};

static int sl28cpld_pwm_probe(struct platform_device *pdev)
{
	struct sl28cpld_pwm *priv;
	struct pwm_chip *chip;
	int ret;

	if (!pdev->dev.parent) {
		dev_err(&pdev->dev, "no parent device\n");
		return -ENODEV;
	}

	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	priv->regmap = dev_get_regmap(pdev->dev.parent, NULL);
	if (!priv->regmap) {
		dev_err(&pdev->dev, "could not get parent regmap\n");
		return -ENODEV;
	}

	ret = device_property_read_u32(&pdev->dev, "reg", &priv->offset);
	if (ret) {
		dev_err(&pdev->dev, "no 'reg' property found (%pe)\n",
			ERR_PTR(ret));
		return -EINVAL;
	}

	/* Initialize the pwm_chip structure */
	chip = &priv->pwm_chip;
	chip->dev = &pdev->dev;
	chip->ops = &sl28cpld_pwm_ops;
	chip->base = -1;
	chip->npwm = 1;

	ret = pwmchip_add(&priv->pwm_chip);
	if (ret) {
		dev_err(&pdev->dev, "failed to add PWM chip (%pe)",
			ERR_PTR(ret));
		return ret;
	}

	platform_set_drvdata(pdev, priv);

	return 0;
}

static int sl28cpld_pwm_remove(struct platform_device *pdev)
{
	struct sl28cpld_pwm *priv = platform_get_drvdata(pdev);

	return pwmchip_remove(&priv->pwm_chip);
}

static const struct of_device_id sl28cpld_pwm_of_match[] = {
	{ .compatible = "kontron,sl28cpld-pwm" },
	{}
};
MODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match);

static struct platform_driver sl28cpld_pwm_driver = {
	.probe = sl28cpld_pwm_probe,
	.remove	= sl28cpld_pwm_remove,
	.driver = {
		.name = "sl28cpld-pwm",
		.of_match_table = sl28cpld_pwm_of_match,
	},
};
module_platform_driver(sl28cpld_pwm_driver);

MODULE_DESCRIPTION("sl28cpld PWM Driver");
MODULE_AUTHOR("Michael Walle <michael@walle.cc>");
MODULE_LICENSE("GPL");