summaryrefslogtreecommitdiff
path: root/drivers/ptp/ptp_vclock.c
blob: e0f87c57749a33c39c6e82a8d2413c8487dd250c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * PTP virtual clock driver
 *
 * Copyright 2021 NXP
 */
#include <linux/slab.h>
#include "ptp_private.h"

#define PTP_VCLOCK_CC_SHIFT		31
#define PTP_VCLOCK_CC_MULT		(1 << PTP_VCLOCK_CC_SHIFT)
#define PTP_VCLOCK_FADJ_SHIFT		9
#define PTP_VCLOCK_FADJ_DENOMINATOR	15625ULL
#define PTP_VCLOCK_REFRESH_INTERVAL	(HZ * 2)

static int ptp_vclock_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
	struct ptp_vclock *vclock = info_to_vclock(ptp);
	unsigned long flags;
	s64 adj;

	adj = (s64)scaled_ppm << PTP_VCLOCK_FADJ_SHIFT;
	adj = div_s64(adj, PTP_VCLOCK_FADJ_DENOMINATOR);

	spin_lock_irqsave(&vclock->lock, flags);
	timecounter_read(&vclock->tc);
	vclock->cc.mult = PTP_VCLOCK_CC_MULT + adj;
	spin_unlock_irqrestore(&vclock->lock, flags);

	return 0;
}

static int ptp_vclock_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
	struct ptp_vclock *vclock = info_to_vclock(ptp);
	unsigned long flags;

	spin_lock_irqsave(&vclock->lock, flags);
	timecounter_adjtime(&vclock->tc, delta);
	spin_unlock_irqrestore(&vclock->lock, flags);

	return 0;
}

static int ptp_vclock_gettime(struct ptp_clock_info *ptp,
			      struct timespec64 *ts)
{
	struct ptp_vclock *vclock = info_to_vclock(ptp);
	unsigned long flags;
	u64 ns;

	spin_lock_irqsave(&vclock->lock, flags);
	ns = timecounter_read(&vclock->tc);
	spin_unlock_irqrestore(&vclock->lock, flags);
	*ts = ns_to_timespec64(ns);

	return 0;
}

static int ptp_vclock_settime(struct ptp_clock_info *ptp,
			      const struct timespec64 *ts)
{
	struct ptp_vclock *vclock = info_to_vclock(ptp);
	u64 ns = timespec64_to_ns(ts);
	unsigned long flags;

	spin_lock_irqsave(&vclock->lock, flags);
	timecounter_init(&vclock->tc, &vclock->cc, ns);
	spin_unlock_irqrestore(&vclock->lock, flags);

	return 0;
}

static long ptp_vclock_refresh(struct ptp_clock_info *ptp)
{
	struct ptp_vclock *vclock = info_to_vclock(ptp);
	struct timespec64 ts;

	ptp_vclock_gettime(&vclock->info, &ts);

	return PTP_VCLOCK_REFRESH_INTERVAL;
}

static const struct ptp_clock_info ptp_vclock_info = {
	.owner		= THIS_MODULE,
	.name		= "ptp virtual clock",
	/* The maximum ppb value that long scaled_ppm can support */
	.max_adj	= 32767999,
	.adjfine	= ptp_vclock_adjfine,
	.adjtime	= ptp_vclock_adjtime,
	.gettime64	= ptp_vclock_gettime,
	.settime64	= ptp_vclock_settime,
	.do_aux_work	= ptp_vclock_refresh,
};

static u64 ptp_vclock_read(const struct cyclecounter *cc)
{
	struct ptp_vclock *vclock = cc_to_vclock(cc);
	struct ptp_clock *ptp = vclock->pclock;
	struct timespec64 ts = {};

	if (ptp->info->gettimex64)
		ptp->info->gettimex64(ptp->info, &ts, NULL);
	else
		ptp->info->gettime64(ptp->info, &ts);

	return timespec64_to_ns(&ts);
}

static const struct cyclecounter ptp_vclock_cc = {
	.read	= ptp_vclock_read,
	.mask	= CYCLECOUNTER_MASK(32),
	.mult	= PTP_VCLOCK_CC_MULT,
	.shift	= PTP_VCLOCK_CC_SHIFT,
};

struct ptp_vclock *ptp_vclock_register(struct ptp_clock *pclock)
{
	struct ptp_vclock *vclock;

	vclock = kzalloc(sizeof(*vclock), GFP_KERNEL);
	if (!vclock)
		return NULL;

	vclock->pclock = pclock;
	vclock->info = ptp_vclock_info;
	vclock->cc = ptp_vclock_cc;

	snprintf(vclock->info.name, PTP_CLOCK_NAME_LEN, "ptp%d_virt",
		 pclock->index);

	spin_lock_init(&vclock->lock);

	vclock->clock = ptp_clock_register(&vclock->info, &pclock->dev);
	if (IS_ERR_OR_NULL(vclock->clock)) {
		kfree(vclock);
		return NULL;
	}

	timecounter_init(&vclock->tc, &vclock->cc, 0);
	ptp_schedule_worker(vclock->clock, PTP_VCLOCK_REFRESH_INTERVAL);

	return vclock;
}

void ptp_vclock_unregister(struct ptp_vclock *vclock)
{
	ptp_clock_unregister(vclock->clock);
	kfree(vclock);
}

int ptp_get_vclocks_index(int pclock_index, int **vclock_index)
{
	char name[PTP_CLOCK_NAME_LEN] = "";
	struct ptp_clock *ptp;
	struct device *dev;
	int num = 0;

	if (pclock_index < 0)
		return num;

	snprintf(name, PTP_CLOCK_NAME_LEN, "ptp%d", pclock_index);
	dev = class_find_device_by_name(ptp_class, name);
	if (!dev)
		return num;

	ptp = dev_get_drvdata(dev);

	if (mutex_lock_interruptible(&ptp->n_vclocks_mux)) {
		put_device(dev);
		return num;
	}

	*vclock_index = kzalloc(sizeof(int) * ptp->n_vclocks, GFP_KERNEL);
	if (!(*vclock_index))
		goto out;

	memcpy(*vclock_index, ptp->vclock_index, sizeof(int) * ptp->n_vclocks);
	num = ptp->n_vclocks;
out:
	mutex_unlock(&ptp->n_vclocks_mux);
	put_device(dev);
	return num;
}
EXPORT_SYMBOL(ptp_get_vclocks_index);

void ptp_convert_timestamp(struct skb_shared_hwtstamps *hwtstamps,
			   int vclock_index)
{
	char name[PTP_CLOCK_NAME_LEN] = "";
	struct ptp_vclock *vclock;
	struct ptp_clock *ptp;
	unsigned long flags;
	struct device *dev;
	u64 ns;

	snprintf(name, PTP_CLOCK_NAME_LEN, "ptp%d", vclock_index);
	dev = class_find_device_by_name(ptp_class, name);
	if (!dev)
		return;

	ptp = dev_get_drvdata(dev);
	if (!ptp->is_virtual_clock) {
		put_device(dev);
		return;
	}

	vclock = info_to_vclock(ptp->info);

	ns = ktime_to_ns(hwtstamps->hwtstamp);

	spin_lock_irqsave(&vclock->lock, flags);
	ns = timecounter_cyc2time(&vclock->tc, ns);
	spin_unlock_irqrestore(&vclock->lock, flags);

	put_device(dev);
	hwtstamps->hwtstamp = ns_to_ktime(ns);
}
EXPORT_SYMBOL(ptp_convert_timestamp);