1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
|
// SPDX-License-Identifier: GPL-2.0
/*
* Endpoint Function Driver to implement Non-Transparent Bridge functionality
*
* Copyright (C) 2020 Texas Instruments
* Author: Kishon Vijay Abraham I <kishon@ti.com>
*/
/*
* The PCI NTB function driver configures the SoC with multiple PCIe Endpoint
* (EP) controller instances (see diagram below) in such a way that
* transactions from one EP controller are routed to the other EP controller.
* Once PCI NTB function driver configures the SoC with multiple EP instances,
* HOST1 and HOST2 can communicate with each other using SoC as a bridge.
*
* +-------------+ +-------------+
* | | | |
* | HOST1 | | HOST2 |
* | | | |
* +------^------+ +------^------+
* | |
* | |
* +---------|-------------------------------------------------|---------+
* | +------v------+ +------v------+ |
* | | | | | |
* | | EP | | EP | |
* | | CONTROLLER1 | | CONTROLLER2 | |
* | | <-----------------------------------> | |
* | | | | | |
* | | | | | |
* | | | SoC With Multiple EP Instances | | |
* | | | (Configured using NTB Function) | | |
* | +-------------+ +-------------+ |
* +---------------------------------------------------------------------+
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/pci-epc.h>
#include <linux/pci-epf.h>
static struct workqueue_struct *kpcintb_workqueue;
#define COMMAND_CONFIGURE_DOORBELL 1
#define COMMAND_TEARDOWN_DOORBELL 2
#define COMMAND_CONFIGURE_MW 3
#define COMMAND_TEARDOWN_MW 4
#define COMMAND_LINK_UP 5
#define COMMAND_LINK_DOWN 6
#define COMMAND_STATUS_OK 1
#define COMMAND_STATUS_ERROR 2
#define LINK_STATUS_UP BIT(0)
#define SPAD_COUNT 64
#define DB_COUNT 4
#define NTB_MW_OFFSET 2
#define DB_COUNT_MASK GENMASK(15, 0)
#define MSIX_ENABLE BIT(16)
#define MAX_DB_COUNT 32
#define MAX_MW 4
enum epf_ntb_bar {
BAR_CONFIG,
BAR_PEER_SPAD,
BAR_DB_MW1,
BAR_MW2,
BAR_MW3,
BAR_MW4,
};
struct epf_ntb {
u32 num_mws;
u32 db_count;
u32 spad_count;
struct pci_epf *epf;
u64 mws_size[MAX_MW];
struct config_group group;
struct epf_ntb_epc *epc[2];
};
#define to_epf_ntb(epf_group) container_of((epf_group), struct epf_ntb, group)
struct epf_ntb_epc {
u8 func_no;
bool linkup;
bool is_msix;
int msix_bar;
u32 spad_size;
struct pci_epc *epc;
struct epf_ntb *epf_ntb;
void __iomem *mw_addr[6];
size_t msix_table_offset;
struct epf_ntb_ctrl *reg;
struct pci_epf_bar *epf_bar;
enum pci_barno epf_ntb_bar[6];
struct delayed_work cmd_handler;
enum pci_epc_interface_type type;
const struct pci_epc_features *epc_features;
};
struct epf_ntb_ctrl {
u32 command;
u32 argument;
u16 command_status;
u16 link_status;
u32 topology;
u64 addr;
u64 size;
u32 num_mws;
u32 mw1_offset;
u32 spad_offset;
u32 spad_count;
u32 db_entry_size;
u32 db_data[MAX_DB_COUNT];
u32 db_offset[MAX_DB_COUNT];
} __packed;
static struct pci_epf_header epf_ntb_header = {
.vendorid = PCI_ANY_ID,
.deviceid = PCI_ANY_ID,
.baseclass_code = PCI_BASE_CLASS_MEMORY,
.interrupt_pin = PCI_INTERRUPT_INTA,
};
/**
* epf_ntb_link_up() - Raise link_up interrupt to both the hosts
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @link_up: true or false indicating Link is UP or Down
*
* Once NTB function in HOST1 and the NTB function in HOST2 invoke
* ntb_link_enable(), this NTB function driver will trigger a link event to
* the NTB client in both the hosts.
*/
static int epf_ntb_link_up(struct epf_ntb *ntb, bool link_up)
{
enum pci_epc_interface_type type;
enum pci_epc_irq_type irq_type;
struct epf_ntb_epc *ntb_epc;
struct epf_ntb_ctrl *ctrl;
struct pci_epc *epc;
bool is_msix;
u8 func_no;
int ret;
for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
ntb_epc = ntb->epc[type];
epc = ntb_epc->epc;
func_no = ntb_epc->func_no;
is_msix = ntb_epc->is_msix;
ctrl = ntb_epc->reg;
if (link_up)
ctrl->link_status |= LINK_STATUS_UP;
else
ctrl->link_status &= ~LINK_STATUS_UP;
irq_type = is_msix ? PCI_EPC_IRQ_MSIX : PCI_EPC_IRQ_MSI;
ret = pci_epc_raise_irq(epc, func_no, irq_type, 1);
if (ret) {
dev_err(&epc->dev,
"%s intf: Failed to raise Link Up IRQ\n",
pci_epc_interface_string(type));
return ret;
}
}
return 0;
}
/**
* epf_ntb_configure_mw() - Configure the Outbound Address Space for one host
* to access the memory window of other host
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
* @mw: Index of the memory window (either 0, 1, 2 or 3)
*
* +-----------------+ +---->+----------------+-----------+-----------------+
* | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 |
* +-----------------+ | +----------------+ +-----------------+
* | BAR1 | | | Doorbell 2 +---------+ | |
* +-----------------+----+ +----------------+ | | |
* | BAR2 | | Doorbell 3 +-------+ | +-----------------+
* +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 |
* | BAR3 | | | Doorbell 4 +-----+ | +-----------------+
* +-----------------+ | |----------------+ | | | |
* | BAR4 | | | | | | +-----------------+
* +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3||
* | BAR5 | | | | | | +-----------------+
* +-----------------+ +---->-----------------+ | | | |
* EP CONTROLLER 1 | | | | +-----------------+
* | | | +---->+ MSI|X ADDRESS 4 |
* +----------------+ | +-----------------+
* (A) EP CONTROLLER 2 | | |
* (OB SPACE) | | |
* +-------> MW1 |
* | |
* | |
* (B) +-----------------+
* | |
* | |
* | |
* | |
* | |
* +-----------------+
* PCI Address Space
* (Managed by HOST2)
*
* This function performs stage (B) in the above diagram (see MW1) i.e., map OB
* address space of memory window to PCI address space.
*
* This operation requires 3 parameters
* 1) Address in the outbound address space
* 2) Address in the PCI Address space
* 3) Size of the address region to be mapped
*
* The address in the outbound address space (for MW1, MW2, MW3 and MW4) is
* stored in epf_bar corresponding to BAR_DB_MW1 for MW1 and BAR_MW2, BAR_MW3
* BAR_MW4 for rest of the BARs of epf_ntb_epc that is connected to HOST1. This
* is populated in epf_ntb_alloc_peer_mem() in this driver.
*
* The address and size of the PCI address region that has to be mapped would
* be provided by HOST2 in ctrl->addr and ctrl->size of epf_ntb_epc that is
* connected to HOST2.
*
* Please note Memory window1 (MW1) and Doorbell registers together will be
* mapped to a single BAR (BAR2) above for 32-bit BARs. The exact BAR that's
* used for Memory window (MW) can be obtained from epf_ntb_bar[BAR_DB_MW1],
* epf_ntb_bar[BAR_MW2], epf_ntb_bar[BAR_MW2], epf_ntb_bar[BAR_MW2].
*/
static int epf_ntb_configure_mw(struct epf_ntb *ntb,
enum pci_epc_interface_type type, u32 mw)
{
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
struct pci_epf_bar *peer_epf_bar;
enum pci_barno peer_barno;
struct epf_ntb_ctrl *ctrl;
phys_addr_t phys_addr;
struct pci_epc *epc;
u64 addr, size;
int ret = 0;
u8 func_no;
ntb_epc = ntb->epc[type];
epc = ntb_epc->epc;
peer_ntb_epc = ntb->epc[!type];
peer_barno = peer_ntb_epc->epf_ntb_bar[mw + NTB_MW_OFFSET];
peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
phys_addr = peer_epf_bar->phys_addr;
ctrl = ntb_epc->reg;
addr = ctrl->addr;
size = ctrl->size;
if (mw + NTB_MW_OFFSET == BAR_DB_MW1)
phys_addr += ctrl->mw1_offset;
if (size > ntb->mws_size[mw]) {
dev_err(&epc->dev,
"%s intf: MW: %d Req Sz:%llxx > Supported Sz:%llx\n",
pci_epc_interface_string(type), mw, size,
ntb->mws_size[mw]);
ret = -EINVAL;
goto err_invalid_size;
}
func_no = ntb_epc->func_no;
ret = pci_epc_map_addr(epc, func_no, phys_addr, addr, size);
if (ret)
dev_err(&epc->dev,
"%s intf: Failed to map memory window %d address\n",
pci_epc_interface_string(type), mw);
err_invalid_size:
return ret;
}
/**
* epf_ntb_teardown_mw() - Teardown the configured OB ATU
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
* @mw: Index of the memory window (either 0, 1, 2 or 3)
*
* Teardown the configured OB ATU configured in epf_ntb_configure_mw() using
* pci_epc_unmap_addr()
*/
static void epf_ntb_teardown_mw(struct epf_ntb *ntb,
enum pci_epc_interface_type type, u32 mw)
{
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
struct pci_epf_bar *peer_epf_bar;
enum pci_barno peer_barno;
struct epf_ntb_ctrl *ctrl;
phys_addr_t phys_addr;
struct pci_epc *epc;
u8 func_no;
ntb_epc = ntb->epc[type];
epc = ntb_epc->epc;
peer_ntb_epc = ntb->epc[!type];
peer_barno = peer_ntb_epc->epf_ntb_bar[mw + NTB_MW_OFFSET];
peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
phys_addr = peer_epf_bar->phys_addr;
ctrl = ntb_epc->reg;
if (mw + NTB_MW_OFFSET == BAR_DB_MW1)
phys_addr += ctrl->mw1_offset;
func_no = ntb_epc->func_no;
pci_epc_unmap_addr(epc, func_no, phys_addr);
}
/**
* epf_ntb_configure_msi() - Map OB address space to MSI address
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
* @db_count: Number of doorbell interrupts to map
*
*+-----------------+ +----->+----------------+-----------+-----------------+
*| BAR0 | | | Doorbell 1 +---+-------> MSI ADDRESS |
*+-----------------+ | +----------------+ | +-----------------+
*| BAR1 | | | Doorbell 2 +---+ | |
*+-----------------+----+ +----------------+ | | |
*| BAR2 | | Doorbell 3 +---+ | |
*+-----------------+----+ +----------------+ | | |
*| BAR3 | | | Doorbell 4 +---+ | |
*+-----------------+ | |----------------+ | |
*| BAR4 | | | | | |
*+-----------------+ | | MW1 | | |
*| BAR5 | | | | | |
*+-----------------+ +----->-----------------+ | |
* EP CONTROLLER 1 | | | |
* | | | |
* +----------------+ +-----------------+
* (A) EP CONTROLLER 2 | |
* (OB SPACE) | |
* | MW1 |
* | |
* | |
* (B) +-----------------+
* | |
* | |
* | |
* | |
* | |
* +-----------------+
* PCI Address Space
* (Managed by HOST2)
*
*
* This function performs stage (B) in the above diagram (see Doorbell 1,
* Doorbell 2, Doorbell 3, Doorbell 4) i.e map OB address space corresponding to
* doorbell to MSI address in PCI address space.
*
* This operation requires 3 parameters
* 1) Address reserved for doorbell in the outbound address space
* 2) MSI-X address in the PCIe Address space
* 3) Number of MSI-X interrupts that has to be configured
*
* The address in the outbound address space (for the Doorbell) is stored in
* epf_bar corresponding to BAR_DB_MW1 of epf_ntb_epc that is connected to
* HOST1. This is populated in epf_ntb_alloc_peer_mem() in this driver along
* with address for MW1.
*
* pci_epc_map_msi_irq() takes the MSI address from MSI capability register
* and maps the OB address (obtained in epf_ntb_alloc_peer_mem()) to the MSI
* address.
*
* epf_ntb_configure_msi() also stores the MSI data to raise each interrupt
* in db_data of the peer's control region. This helps the peer to raise
* doorbell of the other host by writing db_data to the BAR corresponding to
* BAR_DB_MW1.
*/
static int epf_ntb_configure_msi(struct epf_ntb *ntb,
enum pci_epc_interface_type type, u16 db_count)
{
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
u32 db_entry_size, db_data, db_offset;
struct pci_epf_bar *peer_epf_bar;
struct epf_ntb_ctrl *peer_ctrl;
enum pci_barno peer_barno;
phys_addr_t phys_addr;
struct pci_epc *epc;
u8 func_no;
int ret, i;
ntb_epc = ntb->epc[type];
epc = ntb_epc->epc;
peer_ntb_epc = ntb->epc[!type];
peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1];
peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
peer_ctrl = peer_ntb_epc->reg;
db_entry_size = peer_ctrl->db_entry_size;
phys_addr = peer_epf_bar->phys_addr;
func_no = ntb_epc->func_no;
ret = pci_epc_map_msi_irq(epc, func_no, phys_addr, db_count,
db_entry_size, &db_data, &db_offset);
if (ret) {
dev_err(&epc->dev, "%s intf: Failed to map MSI IRQ\n",
pci_epc_interface_string(type));
return ret;
}
for (i = 0; i < db_count; i++) {
peer_ctrl->db_data[i] = db_data | i;
peer_ctrl->db_offset[i] = db_offset;
}
return 0;
}
/**
* epf_ntb_configure_msix() - Map OB address space to MSI-X address
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
* @db_count: Number of doorbell interrupts to map
*
*+-----------------+ +----->+----------------+-----------+-----------------+
*| BAR0 | | | Doorbell 1 +-----------> MSI-X ADDRESS 1 |
*+-----------------+ | +----------------+ +-----------------+
*| BAR1 | | | Doorbell 2 +---------+ | |
*+-----------------+----+ +----------------+ | | |
*| BAR2 | | Doorbell 3 +-------+ | +-----------------+
*+-----------------+----+ +----------------+ | +-> MSI-X ADDRESS 2 |
*| BAR3 | | | Doorbell 4 +-----+ | +-----------------+
*+-----------------+ | |----------------+ | | | |
*| BAR4 | | | | | | +-----------------+
*+-----------------+ | | MW1 + | +-->+ MSI-X ADDRESS 3||
*| BAR5 | | | | | +-----------------+
*+-----------------+ +----->-----------------+ | | |
* EP CONTROLLER 1 | | | +-----------------+
* | | +---->+ MSI-X ADDRESS 4 |
* +----------------+ +-----------------+
* (A) EP CONTROLLER 2 | |
* (OB SPACE) | |
* | MW1 |
* | |
* | |
* (B) +-----------------+
* | |
* | |
* | |
* | |
* | |
* +-----------------+
* PCI Address Space
* (Managed by HOST2)
*
* This function performs stage (B) in the above diagram (see Doorbell 1,
* Doorbell 2, Doorbell 3, Doorbell 4) i.e map OB address space corresponding to
* doorbell to MSI-X address in PCI address space.
*
* This operation requires 3 parameters
* 1) Address reserved for doorbell in the outbound address space
* 2) MSI-X address in the PCIe Address space
* 3) Number of MSI-X interrupts that has to be configured
*
* The address in the outbound address space (for the Doorbell) is stored in
* epf_bar corresponding to BAR_DB_MW1 of epf_ntb_epc that is connected to
* HOST1. This is populated in epf_ntb_alloc_peer_mem() in this driver along
* with address for MW1.
*
* The MSI-X address is in the MSI-X table of EP CONTROLLER 2 and
* the count of doorbell is in ctrl->argument of epf_ntb_epc that is connected
* to HOST2. MSI-X table is stored memory mapped to ntb_epc->msix_bar and the
* offset is in ntb_epc->msix_table_offset. From this epf_ntb_configure_msix()
* gets the MSI-X address and data.
*
* epf_ntb_configure_msix() also stores the MSI-X data to raise each interrupt
* in db_data of the peer's control region. This helps the peer to raise
* doorbell of the other host by writing db_data to the BAR corresponding to
* BAR_DB_MW1.
*/
static int epf_ntb_configure_msix(struct epf_ntb *ntb,
enum pci_epc_interface_type type,
u16 db_count)
{
const struct pci_epc_features *epc_features;
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
struct pci_epf_bar *peer_epf_bar, *epf_bar;
struct pci_epf_msix_tbl *msix_tbl;
struct epf_ntb_ctrl *peer_ctrl;
u32 db_entry_size, msg_data;
enum pci_barno peer_barno;
phys_addr_t phys_addr;
struct pci_epc *epc;
size_t align;
u64 msg_addr;
u8 func_no;
int ret, i;
ntb_epc = ntb->epc[type];
epc = ntb_epc->epc;
epf_bar = &ntb_epc->epf_bar[ntb_epc->msix_bar];
msix_tbl = epf_bar->addr + ntb_epc->msix_table_offset;
peer_ntb_epc = ntb->epc[!type];
peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1];
peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
phys_addr = peer_epf_bar->phys_addr;
peer_ctrl = peer_ntb_epc->reg;
epc_features = ntb_epc->epc_features;
align = epc_features->align;
func_no = ntb_epc->func_no;
db_entry_size = peer_ctrl->db_entry_size;
for (i = 0; i < db_count; i++) {
msg_addr = ALIGN_DOWN(msix_tbl[i].msg_addr, align);
msg_data = msix_tbl[i].msg_data;
ret = pci_epc_map_addr(epc, func_no, phys_addr, msg_addr,
db_entry_size);
if (ret) {
dev_err(&epc->dev,
"%s intf: Failed to configure MSI-X IRQ\n",
pci_epc_interface_string(type));
return ret;
}
phys_addr = phys_addr + db_entry_size;
peer_ctrl->db_data[i] = msg_data;
peer_ctrl->db_offset[i] = msix_tbl[i].msg_addr & (align - 1);
}
ntb_epc->is_msix = true;
return 0;
}
/**
* epf_ntb_configure_db() - Configure the Outbound Address Space for one host
* to ring the doorbell of other host
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
* @db_count: Count of the number of doorbells that has to be configured
* @msix: Indicates whether MSI-X or MSI should be used
*
* Invokes epf_ntb_configure_msix() or epf_ntb_configure_msi() required for
* one HOST to ring the doorbell of other HOST.
*/
static int epf_ntb_configure_db(struct epf_ntb *ntb,
enum pci_epc_interface_type type,
u16 db_count, bool msix)
{
struct epf_ntb_epc *ntb_epc;
struct pci_epc *epc;
int ret;
if (db_count > MAX_DB_COUNT)
return -EINVAL;
ntb_epc = ntb->epc[type];
epc = ntb_epc->epc;
if (msix)
ret = epf_ntb_configure_msix(ntb, type, db_count);
else
ret = epf_ntb_configure_msi(ntb, type, db_count);
if (ret)
dev_err(&epc->dev, "%s intf: Failed to configure DB\n",
pci_epc_interface_string(type));
return ret;
}
/**
* epf_ntb_teardown_db() - Unmap address in OB address space to MSI/MSI-X
* address
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
*
* Invoke pci_epc_unmap_addr() to unmap OB address to MSI/MSI-X address.
*/
static void
epf_ntb_teardown_db(struct epf_ntb *ntb, enum pci_epc_interface_type type)
{
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
struct pci_epf_bar *peer_epf_bar;
enum pci_barno peer_barno;
phys_addr_t phys_addr;
struct pci_epc *epc;
u8 func_no;
ntb_epc = ntb->epc[type];
epc = ntb_epc->epc;
peer_ntb_epc = ntb->epc[!type];
peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1];
peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
phys_addr = peer_epf_bar->phys_addr;
func_no = ntb_epc->func_no;
pci_epc_unmap_addr(epc, func_no, phys_addr);
}
/**
* epf_ntb_cmd_handler() - Handle commands provided by the NTB Host
* @work: work_struct for the two epf_ntb_epc (PRIMARY and SECONDARY)
*
* Workqueue function that gets invoked for the two epf_ntb_epc
* periodically (once every 5ms) to see if it has received any commands
* from NTB host. The host can send commands to configure doorbell or
* configure memory window or to update link status.
*/
static void epf_ntb_cmd_handler(struct work_struct *work)
{
enum pci_epc_interface_type type;
struct epf_ntb_epc *ntb_epc;
struct epf_ntb_ctrl *ctrl;
u32 command, argument;
struct epf_ntb *ntb;
struct device *dev;
u16 db_count;
bool is_msix;
int ret;
ntb_epc = container_of(work, struct epf_ntb_epc, cmd_handler.work);
ctrl = ntb_epc->reg;
command = ctrl->command;
if (!command)
goto reset_handler;
argument = ctrl->argument;
ctrl->command = 0;
ctrl->argument = 0;
ctrl = ntb_epc->reg;
type = ntb_epc->type;
ntb = ntb_epc->epf_ntb;
dev = &ntb->epf->dev;
switch (command) {
case COMMAND_CONFIGURE_DOORBELL:
db_count = argument & DB_COUNT_MASK;
is_msix = argument & MSIX_ENABLE;
ret = epf_ntb_configure_db(ntb, type, db_count, is_msix);
if (ret < 0)
ctrl->command_status = COMMAND_STATUS_ERROR;
else
ctrl->command_status = COMMAND_STATUS_OK;
break;
case COMMAND_TEARDOWN_DOORBELL:
epf_ntb_teardown_db(ntb, type);
ctrl->command_status = COMMAND_STATUS_OK;
break;
case COMMAND_CONFIGURE_MW:
ret = epf_ntb_configure_mw(ntb, type, argument);
if (ret < 0)
ctrl->command_status = COMMAND_STATUS_ERROR;
else
ctrl->command_status = COMMAND_STATUS_OK;
break;
case COMMAND_TEARDOWN_MW:
epf_ntb_teardown_mw(ntb, type, argument);
ctrl->command_status = COMMAND_STATUS_OK;
break;
case COMMAND_LINK_UP:
ntb_epc->linkup = true;
if (ntb->epc[PRIMARY_INTERFACE]->linkup &&
ntb->epc[SECONDARY_INTERFACE]->linkup) {
ret = epf_ntb_link_up(ntb, true);
if (ret < 0)
ctrl->command_status = COMMAND_STATUS_ERROR;
else
ctrl->command_status = COMMAND_STATUS_OK;
goto reset_handler;
}
ctrl->command_status = COMMAND_STATUS_OK;
break;
case COMMAND_LINK_DOWN:
ntb_epc->linkup = false;
ret = epf_ntb_link_up(ntb, false);
if (ret < 0)
ctrl->command_status = COMMAND_STATUS_ERROR;
else
ctrl->command_status = COMMAND_STATUS_OK;
break;
default:
dev_err(dev, "%s intf UNKNOWN command: %d\n",
pci_epc_interface_string(type), command);
break;
}
reset_handler:
queue_delayed_work(kpcintb_workqueue, &ntb_epc->cmd_handler,
msecs_to_jiffies(5));
}
/**
* epf_ntb_peer_spad_bar_clear() - Clear Peer Scratchpad BAR
* @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
* address.
*
*+-----------------+------->+------------------+ +-----------------+
*| BAR0 | | CONFIG REGION | | BAR0 |
*+-----------------+----+ +------------------+<-------+-----------------+
*| BAR1 | | |SCRATCHPAD REGION | | BAR1 |
*+-----------------+ +-->+------------------+<-------+-----------------+
*| BAR2 | Local Memory | BAR2 |
*+-----------------+ +-----------------+
*| BAR3 | | BAR3 |
*+-----------------+ +-----------------+
*| BAR4 | | BAR4 |
*+-----------------+ +-----------------+
*| BAR5 | | BAR5 |
*+-----------------+ +-----------------+
* EP CONTROLLER 1 EP CONTROLLER 2
*
* Clear BAR1 of EP CONTROLLER 2 which contains the HOST2's peer scratchpad
* region. While BAR1 is the default peer scratchpad BAR, an NTB could have
* other BARs for peer scratchpad (because of 64-bit BARs or reserved BARs).
* This function can get the exact BAR used for peer scratchpad from
* epf_ntb_bar[BAR_PEER_SPAD].
*
* Since HOST2's peer scratchpad is also HOST1's self scratchpad, this function
* gets the address of peer scratchpad from
* peer_ntb_epc->epf_ntb_bar[BAR_CONFIG].
*/
static void epf_ntb_peer_spad_bar_clear(struct epf_ntb_epc *ntb_epc)
{
struct pci_epf_bar *epf_bar;
enum pci_barno barno;
struct pci_epc *epc;
u8 func_no;
epc = ntb_epc->epc;
func_no = ntb_epc->func_no;
barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD];
epf_bar = &ntb_epc->epf_bar[barno];
pci_epc_clear_bar(epc, func_no, epf_bar);
}
/**
* epf_ntb_peer_spad_bar_set() - Set peer scratchpad BAR
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
*
*+-----------------+------->+------------------+ +-----------------+
*| BAR0 | | CONFIG REGION | | BAR0 |
*+-----------------+----+ +------------------+<-------+-----------------+
*| BAR1 | | |SCRATCHPAD REGION | | BAR1 |
*+-----------------+ +-->+------------------+<-------+-----------------+
*| BAR2 | Local Memory | BAR2 |
*+-----------------+ +-----------------+
*| BAR3 | | BAR3 |
*+-----------------+ +-----------------+
*| BAR4 | | BAR4 |
*+-----------------+ +-----------------+
*| BAR5 | | BAR5 |
*+-----------------+ +-----------------+
* EP CONTROLLER 1 EP CONTROLLER 2
*
* Set BAR1 of EP CONTROLLER 2 which contains the HOST2's peer scratchpad
* region. While BAR1 is the default peer scratchpad BAR, an NTB could have
* other BARs for peer scratchpad (because of 64-bit BARs or reserved BARs).
* This function can get the exact BAR used for peer scratchpad from
* epf_ntb_bar[BAR_PEER_SPAD].
*
* Since HOST2's peer scratchpad is also HOST1's self scratchpad, this function
* gets the address of peer scratchpad from
* peer_ntb_epc->epf_ntb_bar[BAR_CONFIG].
*/
static int epf_ntb_peer_spad_bar_set(struct epf_ntb *ntb,
enum pci_epc_interface_type type)
{
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
struct pci_epf_bar *peer_epf_bar, *epf_bar;
enum pci_barno peer_barno, barno;
u32 peer_spad_offset;
struct pci_epc *epc;
struct device *dev;
u8 func_no;
int ret;
dev = &ntb->epf->dev;
peer_ntb_epc = ntb->epc[!type];
peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_CONFIG];
peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
ntb_epc = ntb->epc[type];
barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD];
epf_bar = &ntb_epc->epf_bar[barno];
func_no = ntb_epc->func_no;
epc = ntb_epc->epc;
peer_spad_offset = peer_ntb_epc->reg->spad_offset;
epf_bar->phys_addr = peer_epf_bar->phys_addr + peer_spad_offset;
epf_bar->size = peer_ntb_epc->spad_size;
epf_bar->barno = barno;
epf_bar->flags = PCI_BASE_ADDRESS_MEM_TYPE_32;
ret = pci_epc_set_bar(epc, func_no, epf_bar);
if (ret) {
dev_err(dev, "%s intf: peer SPAD BAR set failed\n",
pci_epc_interface_string(type));
return ret;
}
return 0;
}
/**
* epf_ntb_config_sspad_bar_clear() - Clear Config + Self scratchpad BAR
* @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
* address.
*
* +-----------------+------->+------------------+ +-----------------+
* | BAR0 | | CONFIG REGION | | BAR0 |
* +-----------------+----+ +------------------+<-------+-----------------+
* | BAR1 | | |SCRATCHPAD REGION | | BAR1 |
* +-----------------+ +-->+------------------+<-------+-----------------+
* | BAR2 | Local Memory | BAR2 |
* +-----------------+ +-----------------+
* | BAR3 | | BAR3 |
* +-----------------+ +-----------------+
* | BAR4 | | BAR4 |
* +-----------------+ +-----------------+
* | BAR5 | | BAR5 |
* +-----------------+ +-----------------+
* EP CONTROLLER 1 EP CONTROLLER 2
*
* Clear BAR0 of EP CONTROLLER 1 which contains the HOST1's config and
* self scratchpad region (removes inbound ATU configuration). While BAR0 is
* the default self scratchpad BAR, an NTB could have other BARs for self
* scratchpad (because of reserved BARs). This function can get the exact BAR
* used for self scratchpad from epf_ntb_bar[BAR_CONFIG].
*
* Please note the self scratchpad region and config region is combined to
* a single region and mapped using the same BAR. Also note HOST2's peer
* scratchpad is HOST1's self scratchpad.
*/
static void epf_ntb_config_sspad_bar_clear(struct epf_ntb_epc *ntb_epc)
{
struct pci_epf_bar *epf_bar;
enum pci_barno barno;
struct pci_epc *epc;
u8 func_no;
epc = ntb_epc->epc;
func_no = ntb_epc->func_no;
barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
epf_bar = &ntb_epc->epf_bar[barno];
pci_epc_clear_bar(epc, func_no, epf_bar);
}
/**
* epf_ntb_config_sspad_bar_set() - Set Config + Self scratchpad BAR
* @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
* address.
*
* +-----------------+------->+------------------+ +-----------------+
* | BAR0 | | CONFIG REGION | | BAR0 |
* +-----------------+----+ +------------------+<-------+-----------------+
* | BAR1 | | |SCRATCHPAD REGION | | BAR1 |
* +-----------------+ +-->+------------------+<-------+-----------------+
* | BAR2 | Local Memory | BAR2 |
* +-----------------+ +-----------------+
* | BAR3 | | BAR3 |
* +-----------------+ +-----------------+
* | BAR4 | | BAR4 |
* +-----------------+ +-----------------+
* | BAR5 | | BAR5 |
* +-----------------+ +-----------------+
* EP CONTROLLER 1 EP CONTROLLER 2
*
* Map BAR0 of EP CONTROLLER 1 which contains the HOST1's config and
* self scratchpad region. While BAR0 is the default self scratchpad BAR, an
* NTB could have other BARs for self scratchpad (because of reserved BARs).
* This function can get the exact BAR used for self scratchpad from
* epf_ntb_bar[BAR_CONFIG].
*
* Please note the self scratchpad region and config region is combined to
* a single region and mapped using the same BAR. Also note HOST2's peer
* scratchpad is HOST1's self scratchpad.
*/
static int epf_ntb_config_sspad_bar_set(struct epf_ntb_epc *ntb_epc)
{
struct pci_epf_bar *epf_bar;
enum pci_barno barno;
struct epf_ntb *ntb;
struct pci_epc *epc;
struct device *dev;
u8 func_no;
int ret;
ntb = ntb_epc->epf_ntb;
dev = &ntb->epf->dev;
epc = ntb_epc->epc;
func_no = ntb_epc->func_no;
barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
epf_bar = &ntb_epc->epf_bar[barno];
ret = pci_epc_set_bar(epc, func_no, epf_bar);
if (ret) {
dev_err(dev, "%s inft: Config/Status/SPAD BAR set failed\n",
pci_epc_interface_string(ntb_epc->type));
return ret;
}
return 0;
}
/**
* epf_ntb_config_spad_bar_free() - Free the physical memory associated with
* config + scratchpad region
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
*
* +-----------------+------->+------------------+ +-----------------+
* | BAR0 | | CONFIG REGION | | BAR0 |
* +-----------------+----+ +------------------+<-------+-----------------+
* | BAR1 | | |SCRATCHPAD REGION | | BAR1 |
* +-----------------+ +-->+------------------+<-------+-----------------+
* | BAR2 | Local Memory | BAR2 |
* +-----------------+ +-----------------+
* | BAR3 | | BAR3 |
* +-----------------+ +-----------------+
* | BAR4 | | BAR4 |
* +-----------------+ +-----------------+
* | BAR5 | | BAR5 |
* +-----------------+ +-----------------+
* EP CONTROLLER 1 EP CONTROLLER 2
*
* Free the Local Memory mentioned in the above diagram. After invoking this
* function, any of config + self scratchpad region of HOST1 or peer scratchpad
* region of HOST2 should not be accessed.
*/
static void epf_ntb_config_spad_bar_free(struct epf_ntb *ntb)
{
enum pci_epc_interface_type type;
struct epf_ntb_epc *ntb_epc;
enum pci_barno barno;
struct pci_epf *epf;
epf = ntb->epf;
for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
ntb_epc = ntb->epc[type];
barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
if (ntb_epc->reg)
pci_epf_free_space(epf, ntb_epc->reg, barno, type);
}
}
/**
* epf_ntb_config_spad_bar_alloc() - Allocate memory for config + scratchpad
* region
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
*
* +-----------------+------->+------------------+ +-----------------+
* | BAR0 | | CONFIG REGION | | BAR0 |
* +-----------------+----+ +------------------+<-------+-----------------+
* | BAR1 | | |SCRATCHPAD REGION | | BAR1 |
* +-----------------+ +-->+------------------+<-------+-----------------+
* | BAR2 | Local Memory | BAR2 |
* +-----------------+ +-----------------+
* | BAR3 | | BAR3 |
* +-----------------+ +-----------------+
* | BAR4 | | BAR4 |
* +-----------------+ +-----------------+
* | BAR5 | | BAR5 |
* +-----------------+ +-----------------+
* EP CONTROLLER 1 EP CONTROLLER 2
*
* Allocate the Local Memory mentioned in the above diagram. The size of
* CONFIG REGION is sizeof(struct epf_ntb_ctrl) and size of SCRATCHPAD REGION
* is obtained from "spad-count" configfs entry.
*
* The size of both config region and scratchpad region has to be aligned,
* since the scratchpad region will also be mapped as PEER SCRATCHPAD of
* other host using a separate BAR.
*/
static int epf_ntb_config_spad_bar_alloc(struct epf_ntb *ntb,
enum pci_epc_interface_type type)
{
const struct pci_epc_features *peer_epc_features, *epc_features;
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
size_t msix_table_size, pba_size, align;
enum pci_barno peer_barno, barno;
struct epf_ntb_ctrl *ctrl;
u32 spad_size, ctrl_size;
u64 size, peer_size;
struct pci_epf *epf;
struct device *dev;
bool msix_capable;
u32 spad_count;
void *base;
epf = ntb->epf;
dev = &epf->dev;
ntb_epc = ntb->epc[type];
epc_features = ntb_epc->epc_features;
barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
size = epc_features->bar_fixed_size[barno];
align = epc_features->align;
peer_ntb_epc = ntb->epc[!type];
peer_epc_features = peer_ntb_epc->epc_features;
peer_barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD];
peer_size = peer_epc_features->bar_fixed_size[peer_barno];
/* Check if epc_features is populated incorrectly */
if ((!IS_ALIGNED(size, align)))
return -EINVAL;
spad_count = ntb->spad_count;
ctrl_size = sizeof(struct epf_ntb_ctrl);
spad_size = spad_count * 4;
msix_capable = epc_features->msix_capable;
if (msix_capable) {
msix_table_size = PCI_MSIX_ENTRY_SIZE * ntb->db_count;
ctrl_size = ALIGN(ctrl_size, 8);
ntb_epc->msix_table_offset = ctrl_size;
ntb_epc->msix_bar = barno;
/* Align to QWORD or 8 Bytes */
pba_size = ALIGN(DIV_ROUND_UP(ntb->db_count, 8), 8);
ctrl_size = ctrl_size + msix_table_size + pba_size;
}
if (!align) {
ctrl_size = roundup_pow_of_two(ctrl_size);
spad_size = roundup_pow_of_two(spad_size);
} else {
ctrl_size = ALIGN(ctrl_size, align);
spad_size = ALIGN(spad_size, align);
}
if (peer_size) {
if (peer_size < spad_size)
spad_count = peer_size / 4;
spad_size = peer_size;
}
/*
* In order to make sure SPAD offset is aligned to its size,
* expand control region size to the size of SPAD if SPAD size
* is greater than control region size.
*/
if (spad_size > ctrl_size)
ctrl_size = spad_size;
if (!size)
size = ctrl_size + spad_size;
else if (size < ctrl_size + spad_size)
return -EINVAL;
base = pci_epf_alloc_space(epf, size, barno, align, type);
if (!base) {
dev_err(dev, "%s intf: Config/Status/SPAD alloc region fail\n",
pci_epc_interface_string(type));
return -ENOMEM;
}
ntb_epc->reg = base;
ctrl = ntb_epc->reg;
ctrl->spad_offset = ctrl_size;
ctrl->spad_count = spad_count;
ctrl->num_mws = ntb->num_mws;
ctrl->db_entry_size = align ? align : 4;
ntb_epc->spad_size = spad_size;
return 0;
}
/**
* epf_ntb_config_spad_bar_alloc_interface() - Allocate memory for config +
* scratchpad region for each of PRIMARY and SECONDARY interface
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
*
* Wrapper for epf_ntb_config_spad_bar_alloc() which allocates memory for
* config + scratchpad region for a specific interface
*/
static int epf_ntb_config_spad_bar_alloc_interface(struct epf_ntb *ntb)
{
enum pci_epc_interface_type type;
struct device *dev;
int ret;
dev = &ntb->epf->dev;
for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
ret = epf_ntb_config_spad_bar_alloc(ntb, type);
if (ret) {
dev_err(dev, "%s intf: Config/SPAD BAR alloc failed\n",
pci_epc_interface_string(type));
return ret;
}
}
return 0;
}
/**
* epf_ntb_free_peer_mem() - Free memory allocated in peers outbound address
* space
* @ntb_epc: EPC associated with one of the HOST which holds peers outbound
* address regions
*
* +-----------------+ +---->+----------------+-----------+-----------------+
* | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 |
* +-----------------+ | +----------------+ +-----------------+
* | BAR1 | | | Doorbell 2 +---------+ | |
* +-----------------+----+ +----------------+ | | |
* | BAR2 | | Doorbell 3 +-------+ | +-----------------+
* +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 |
* | BAR3 | | | Doorbell 4 +-----+ | +-----------------+
* +-----------------+ | |----------------+ | | | |
* | BAR4 | | | | | | +-----------------+
* +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3||
* | BAR5 | | | | | | +-----------------+
* +-----------------+ +---->-----------------+ | | | |
* EP CONTROLLER 1 | | | | +-----------------+
* | | | +---->+ MSI|X ADDRESS 4 |
* +----------------+ | +-----------------+
* (A) EP CONTROLLER 2 | | |
* (OB SPACE) | | |
* +-------> MW1 |
* | |
* | |
* (B) +-----------------+
* | |
* | |
* | |
* | |
* | |
* +-----------------+
* PCI Address Space
* (Managed by HOST2)
*
* Free memory allocated in EP CONTROLLER 2 (OB SPACE) in the above diagram.
* It'll free Doorbell 1, Doorbell 2, Doorbell 3, Doorbell 4, MW1 (and MW2, MW3,
* MW4).
*/
static void epf_ntb_free_peer_mem(struct epf_ntb_epc *ntb_epc)
{
struct pci_epf_bar *epf_bar;
void __iomem *mw_addr;
phys_addr_t phys_addr;
enum epf_ntb_bar bar;
enum pci_barno barno;
struct pci_epc *epc;
size_t size;
epc = ntb_epc->epc;
for (bar = BAR_DB_MW1; bar < BAR_MW4; bar++) {
barno = ntb_epc->epf_ntb_bar[bar];
mw_addr = ntb_epc->mw_addr[barno];
epf_bar = &ntb_epc->epf_bar[barno];
phys_addr = epf_bar->phys_addr;
size = epf_bar->size;
if (mw_addr) {
pci_epc_mem_free_addr(epc, phys_addr, mw_addr, size);
ntb_epc->mw_addr[barno] = NULL;
}
}
}
/**
* epf_ntb_db_mw_bar_clear() - Clear doorbell and memory BAR
* @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
* address
*
* +-----------------+ +---->+----------------+-----------+-----------------+
* | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 |
* +-----------------+ | +----------------+ +-----------------+
* | BAR1 | | | Doorbell 2 +---------+ | |
* +-----------------+----+ +----------------+ | | |
* | BAR2 | | Doorbell 3 +-------+ | +-----------------+
* +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 |
* | BAR3 | | | Doorbell 4 +-----+ | +-----------------+
* +-----------------+ | |----------------+ | | | |
* | BAR4 | | | | | | +-----------------+
* +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3||
* | BAR5 | | | | | | +-----------------+
* +-----------------+ +---->-----------------+ | | | |
* EP CONTROLLER 1 | | | | +-----------------+
* | | | +---->+ MSI|X ADDRESS 4 |
* +----------------+ | +-----------------+
* (A) EP CONTROLLER 2 | | |
* (OB SPACE) | | |
* +-------> MW1 |
* | |
* | |
* (B) +-----------------+
* | |
* | |
* | |
* | |
* | |
* +-----------------+
* PCI Address Space
* (Managed by HOST2)
*
* Clear doorbell and memory BARs (remove inbound ATU configuration). In the above
* diagram it clears BAR2 TO BAR5 of EP CONTROLLER 1 (Doorbell BAR, MW1 BAR, MW2
* BAR, MW3 BAR and MW4 BAR).
*/
static void epf_ntb_db_mw_bar_clear(struct epf_ntb_epc *ntb_epc)
{
struct pci_epf_bar *epf_bar;
enum epf_ntb_bar bar;
enum pci_barno barno;
struct pci_epc *epc;
u8 func_no;
epc = ntb_epc->epc;
func_no = ntb_epc->func_no;
for (bar = BAR_DB_MW1; bar < BAR_MW4; bar++) {
barno = ntb_epc->epf_ntb_bar[bar];
epf_bar = &ntb_epc->epf_bar[barno];
pci_epc_clear_bar(epc, func_no, epf_bar);
}
}
/**
* epf_ntb_db_mw_bar_cleanup() - Clear doorbell/memory BAR and free memory
* allocated in peers outbound address space
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
*
* Wrapper for epf_ntb_db_mw_bar_clear() to clear HOST1's BAR and
* epf_ntb_free_peer_mem() which frees up HOST2 outbound memory.
*/
static void epf_ntb_db_mw_bar_cleanup(struct epf_ntb *ntb,
enum pci_epc_interface_type type)
{
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
ntb_epc = ntb->epc[type];
peer_ntb_epc = ntb->epc[!type];
epf_ntb_db_mw_bar_clear(ntb_epc);
epf_ntb_free_peer_mem(peer_ntb_epc);
}
/**
* epf_ntb_configure_interrupt() - Configure MSI/MSI-X capaiblity
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
*
* Configure MSI/MSI-X capability for each interface with number of
* interrupts equal to "db_count" configfs entry.
*/
static int epf_ntb_configure_interrupt(struct epf_ntb *ntb,
enum pci_epc_interface_type type)
{
const struct pci_epc_features *epc_features;
bool msix_capable, msi_capable;
struct epf_ntb_epc *ntb_epc;
struct pci_epc *epc;
struct device *dev;
u32 db_count;
u8 func_no;
int ret;
ntb_epc = ntb->epc[type];
dev = &ntb->epf->dev;
epc_features = ntb_epc->epc_features;
msix_capable = epc_features->msix_capable;
msi_capable = epc_features->msi_capable;
if (!(msix_capable || msi_capable)) {
dev_err(dev, "MSI or MSI-X is required for doorbell\n");
return -EINVAL;
}
func_no = ntb_epc->func_no;
db_count = ntb->db_count;
if (db_count > MAX_DB_COUNT) {
dev_err(dev, "DB count cannot be more than %d\n", MAX_DB_COUNT);
return -EINVAL;
}
ntb->db_count = db_count;
epc = ntb_epc->epc;
if (msi_capable) {
ret = pci_epc_set_msi(epc, func_no, db_count);
if (ret) {
dev_err(dev, "%s intf: MSI configuration failed\n",
pci_epc_interface_string(type));
return ret;
}
}
if (msix_capable) {
ret = pci_epc_set_msix(epc, func_no, db_count,
ntb_epc->msix_bar,
ntb_epc->msix_table_offset);
if (ret) {
dev_err(dev, "MSI configuration failed\n");
return ret;
}
}
return 0;
}
/**
* epf_ntb_alloc_peer_mem() - Allocate memory in peer's outbound address space
* @dev: The PCI device.
* @ntb_epc: EPC associated with one of the HOST whose BAR holds peer's outbound
* address
* @bar: BAR of @ntb_epc in for which memory has to be allocated (could be
* BAR_DB_MW1, BAR_MW2, BAR_MW3, BAR_MW4)
* @peer_ntb_epc: EPC associated with HOST whose outbound address space is
* used by @ntb_epc
* @size: Size of the address region that has to be allocated in peers OB SPACE
*
*
* +-----------------+ +---->+----------------+-----------+-----------------+
* | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 |
* +-----------------+ | +----------------+ +-----------------+
* | BAR1 | | | Doorbell 2 +---------+ | |
* +-----------------+----+ +----------------+ | | |
* | BAR2 | | Doorbell 3 +-------+ | +-----------------+
* +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 |
* | BAR3 | | | Doorbell 4 +-----+ | +-----------------+
* +-----------------+ | |----------------+ | | | |
* | BAR4 | | | | | | +-----------------+
* +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3||
* | BAR5 | | | | | | +-----------------+
* +-----------------+ +---->-----------------+ | | | |
* EP CONTROLLER 1 | | | | +-----------------+
* | | | +---->+ MSI|X ADDRESS 4 |
* +----------------+ | +-----------------+
* (A) EP CONTROLLER 2 | | |
* (OB SPACE) | | |
* +-------> MW1 |
* | |
* | |
* (B) +-----------------+
* | |
* | |
* | |
* | |
* | |
* +-----------------+
* PCI Address Space
* (Managed by HOST2)
*
* Allocate memory in OB space of EP CONTROLLER 2 in the above diagram. Allocate
* for Doorbell 1, Doorbell 2, Doorbell 3, Doorbell 4, MW1 (and MW2, MW3, MW4).
*/
static int epf_ntb_alloc_peer_mem(struct device *dev,
struct epf_ntb_epc *ntb_epc,
enum epf_ntb_bar bar,
struct epf_ntb_epc *peer_ntb_epc,
size_t size)
{
const struct pci_epc_features *epc_features;
struct pci_epf_bar *epf_bar;
struct pci_epc *peer_epc;
phys_addr_t phys_addr;
void __iomem *mw_addr;
enum pci_barno barno;
size_t align;
epc_features = ntb_epc->epc_features;
align = epc_features->align;
if (size < 128)
size = 128;
if (align)
size = ALIGN(size, align);
else
size = roundup_pow_of_two(size);
peer_epc = peer_ntb_epc->epc;
mw_addr = pci_epc_mem_alloc_addr(peer_epc, &phys_addr, size);
if (!mw_addr) {
dev_err(dev, "%s intf: Failed to allocate OB address\n",
pci_epc_interface_string(peer_ntb_epc->type));
return -ENOMEM;
}
barno = ntb_epc->epf_ntb_bar[bar];
epf_bar = &ntb_epc->epf_bar[barno];
ntb_epc->mw_addr[barno] = mw_addr;
epf_bar->phys_addr = phys_addr;
epf_bar->size = size;
epf_bar->barno = barno;
epf_bar->flags = PCI_BASE_ADDRESS_MEM_TYPE_32;
return 0;
}
/**
* epf_ntb_db_mw_bar_init() - Configure Doorbell and Memory window BARs
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
*
* Wrapper for epf_ntb_alloc_peer_mem() and pci_epc_set_bar() that allocates
* memory in OB address space of HOST2 and configures BAR of HOST1
*/
static int epf_ntb_db_mw_bar_init(struct epf_ntb *ntb,
enum pci_epc_interface_type type)
{
const struct pci_epc_features *epc_features;
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
struct pci_epf_bar *epf_bar;
struct epf_ntb_ctrl *ctrl;
u32 num_mws, db_count;
enum epf_ntb_bar bar;
enum pci_barno barno;
struct pci_epc *epc;
struct device *dev;
size_t align;
int ret, i;
u8 func_no;
u64 size;
ntb_epc = ntb->epc[type];
peer_ntb_epc = ntb->epc[!type];
dev = &ntb->epf->dev;
epc_features = ntb_epc->epc_features;
align = epc_features->align;
func_no = ntb_epc->func_no;
epc = ntb_epc->epc;
num_mws = ntb->num_mws;
db_count = ntb->db_count;
for (bar = BAR_DB_MW1, i = 0; i < num_mws; bar++, i++) {
if (bar == BAR_DB_MW1) {
align = align ? align : 4;
size = db_count * align;
size = ALIGN(size, ntb->mws_size[i]);
ctrl = ntb_epc->reg;
ctrl->mw1_offset = size;
size += ntb->mws_size[i];
} else {
size = ntb->mws_size[i];
}
ret = epf_ntb_alloc_peer_mem(dev, ntb_epc, bar,
peer_ntb_epc, size);
if (ret) {
dev_err(dev, "%s intf: DoorBell mem alloc failed\n",
pci_epc_interface_string(type));
goto err_alloc_peer_mem;
}
barno = ntb_epc->epf_ntb_bar[bar];
epf_bar = &ntb_epc->epf_bar[barno];
ret = pci_epc_set_bar(epc, func_no, epf_bar);
if (ret) {
dev_err(dev, "%s intf: DoorBell BAR set failed\n",
pci_epc_interface_string(type));
goto err_alloc_peer_mem;
}
}
return 0;
err_alloc_peer_mem:
epf_ntb_db_mw_bar_cleanup(ntb, type);
return ret;
}
/**
* epf_ntb_epc_destroy_interface() - Cleanup NTB EPC interface
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
*
* Unbind NTB function device from EPC and relinquish reference to pci_epc
* for each of the interface.
*/
static void epf_ntb_epc_destroy_interface(struct epf_ntb *ntb,
enum pci_epc_interface_type type)
{
struct epf_ntb_epc *ntb_epc;
struct pci_epc *epc;
struct pci_epf *epf;
if (type < 0)
return;
epf = ntb->epf;
ntb_epc = ntb->epc[type];
if (!ntb_epc)
return;
epc = ntb_epc->epc;
pci_epc_remove_epf(epc, epf, type);
pci_epc_put(epc);
}
/**
* epf_ntb_epc_destroy() - Cleanup NTB EPC interface
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
*
* Wrapper for epf_ntb_epc_destroy_interface() to cleanup all the NTB interfaces
*/
static void epf_ntb_epc_destroy(struct epf_ntb *ntb)
{
enum pci_epc_interface_type type;
for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++)
epf_ntb_epc_destroy_interface(ntb, type);
}
/**
* epf_ntb_epc_create_interface() - Create and initialize NTB EPC interface
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @epc: struct pci_epc to which a particular NTB interface should be associated
* @type: PRIMARY interface or SECONDARY interface
*
* Allocate memory for NTB EPC interface and initialize it.
*/
static int epf_ntb_epc_create_interface(struct epf_ntb *ntb,
struct pci_epc *epc,
enum pci_epc_interface_type type)
{
const struct pci_epc_features *epc_features;
struct pci_epf_bar *epf_bar;
struct epf_ntb_epc *ntb_epc;
struct pci_epf *epf;
struct device *dev;
u8 func_no;
dev = &ntb->epf->dev;
ntb_epc = devm_kzalloc(dev, sizeof(*ntb_epc), GFP_KERNEL);
if (!ntb_epc)
return -ENOMEM;
epf = ntb->epf;
if (type == PRIMARY_INTERFACE) {
func_no = epf->func_no;
epf_bar = epf->bar;
} else {
func_no = epf->sec_epc_func_no;
epf_bar = epf->sec_epc_bar;
}
ntb_epc->linkup = false;
ntb_epc->epc = epc;
ntb_epc->func_no = func_no;
ntb_epc->type = type;
ntb_epc->epf_bar = epf_bar;
ntb_epc->epf_ntb = ntb;
epc_features = pci_epc_get_features(epc, func_no);
if (!epc_features)
return -EINVAL;
ntb_epc->epc_features = epc_features;
ntb->epc[type] = ntb_epc;
return 0;
}
/**
* epf_ntb_epc_create() - Create and initialize NTB EPC interface
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
*
* Get a reference to EPC device and bind NTB function device to that EPC
* for each of the interface. It is also a wrapper to
* epf_ntb_epc_create_interface() to allocate memory for NTB EPC interface
* and initialize it
*/
static int epf_ntb_epc_create(struct epf_ntb *ntb)
{
struct pci_epf *epf;
struct device *dev;
int ret;
epf = ntb->epf;
dev = &epf->dev;
ret = epf_ntb_epc_create_interface(ntb, epf->epc, PRIMARY_INTERFACE);
if (ret) {
dev_err(dev, "PRIMARY intf: Fail to create NTB EPC\n");
return ret;
}
ret = epf_ntb_epc_create_interface(ntb, epf->sec_epc,
SECONDARY_INTERFACE);
if (ret) {
dev_err(dev, "SECONDARY intf: Fail to create NTB EPC\n");
goto err_epc_create;
}
return 0;
err_epc_create:
epf_ntb_epc_destroy_interface(ntb, PRIMARY_INTERFACE);
return ret;
}
/**
* epf_ntb_init_epc_bar_interface() - Identify BARs to be used for each of
* the NTB constructs (scratchpad region, doorbell, memorywindow)
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
*
* Identify the free BARs to be used for each of BAR_CONFIG, BAR_PEER_SPAD,
* BAR_DB_MW1, BAR_MW2, BAR_MW3 and BAR_MW4.
*/
static int epf_ntb_init_epc_bar_interface(struct epf_ntb *ntb,
enum pci_epc_interface_type type)
{
const struct pci_epc_features *epc_features;
struct epf_ntb_epc *ntb_epc;
enum pci_barno barno;
enum epf_ntb_bar bar;
struct device *dev;
u32 num_mws;
int i;
barno = BAR_0;
ntb_epc = ntb->epc[type];
num_mws = ntb->num_mws;
dev = &ntb->epf->dev;
epc_features = ntb_epc->epc_features;
/* These are required BARs which are mandatory for NTB functionality */
for (bar = BAR_CONFIG; bar <= BAR_DB_MW1; bar++, barno++) {
barno = pci_epc_get_next_free_bar(epc_features, barno);
if (barno < 0) {
dev_err(dev, "%s intf: Fail to get NTB function BAR\n",
pci_epc_interface_string(type));
return barno;
}
ntb_epc->epf_ntb_bar[bar] = barno;
}
/* These are optional BARs which don't impact NTB functionality */
for (bar = BAR_MW2, i = 1; i < num_mws; bar++, barno++, i++) {
barno = pci_epc_get_next_free_bar(epc_features, barno);
if (barno < 0) {
ntb->num_mws = i;
dev_dbg(dev, "BAR not available for > MW%d\n", i + 1);
}
ntb_epc->epf_ntb_bar[bar] = barno;
}
return 0;
}
/**
* epf_ntb_init_epc_bar() - Identify BARs to be used for each of the NTB
* constructs (scratchpad region, doorbell, memorywindow)
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
*
* Wrapper to epf_ntb_init_epc_bar_interface() to identify the free BARs
* to be used for each of BAR_CONFIG, BAR_PEER_SPAD, BAR_DB_MW1, BAR_MW2,
* BAR_MW3 and BAR_MW4 for all the interfaces.
*/
static int epf_ntb_init_epc_bar(struct epf_ntb *ntb)
{
enum pci_epc_interface_type type;
struct device *dev;
int ret;
dev = &ntb->epf->dev;
for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
ret = epf_ntb_init_epc_bar_interface(ntb, type);
if (ret) {
dev_err(dev, "Fail to init EPC bar for %s interface\n",
pci_epc_interface_string(type));
return ret;
}
}
return 0;
}
/**
* epf_ntb_epc_init_interface() - Initialize NTB interface
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
*
* Wrapper to initialize a particular EPC interface and start the workqueue
* to check for commands from host. This function will write to the
* EP controller HW for configuring it.
*/
static int epf_ntb_epc_init_interface(struct epf_ntb *ntb,
enum pci_epc_interface_type type)
{
struct epf_ntb_epc *ntb_epc;
struct pci_epc *epc;
struct pci_epf *epf;
struct device *dev;
u8 func_no;
int ret;
ntb_epc = ntb->epc[type];
epf = ntb->epf;
dev = &epf->dev;
epc = ntb_epc->epc;
func_no = ntb_epc->func_no;
ret = epf_ntb_config_sspad_bar_set(ntb->epc[type]);
if (ret) {
dev_err(dev, "%s intf: Config/self SPAD BAR init failed\n",
pci_epc_interface_string(type));
return ret;
}
ret = epf_ntb_peer_spad_bar_set(ntb, type);
if (ret) {
dev_err(dev, "%s intf: Peer SPAD BAR init failed\n",
pci_epc_interface_string(type));
goto err_peer_spad_bar_init;
}
ret = epf_ntb_configure_interrupt(ntb, type);
if (ret) {
dev_err(dev, "%s intf: Interrupt configuration failed\n",
pci_epc_interface_string(type));
goto err_peer_spad_bar_init;
}
ret = epf_ntb_db_mw_bar_init(ntb, type);
if (ret) {
dev_err(dev, "%s intf: DB/MW BAR init failed\n",
pci_epc_interface_string(type));
goto err_db_mw_bar_init;
}
ret = pci_epc_write_header(epc, func_no, epf->header);
if (ret) {
dev_err(dev, "%s intf: Configuration header write failed\n",
pci_epc_interface_string(type));
goto err_write_header;
}
INIT_DELAYED_WORK(&ntb->epc[type]->cmd_handler, epf_ntb_cmd_handler);
queue_work(kpcintb_workqueue, &ntb->epc[type]->cmd_handler.work);
return 0;
err_write_header:
epf_ntb_db_mw_bar_cleanup(ntb, type);
err_db_mw_bar_init:
epf_ntb_peer_spad_bar_clear(ntb->epc[type]);
err_peer_spad_bar_init:
epf_ntb_config_sspad_bar_clear(ntb->epc[type]);
return ret;
}
/**
* epf_ntb_epc_cleanup_interface() - Cleanup NTB interface
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
*
* Wrapper to cleanup a particular NTB interface.
*/
static void epf_ntb_epc_cleanup_interface(struct epf_ntb *ntb,
enum pci_epc_interface_type type)
{
struct epf_ntb_epc *ntb_epc;
if (type < 0)
return;
ntb_epc = ntb->epc[type];
cancel_delayed_work(&ntb_epc->cmd_handler);
epf_ntb_db_mw_bar_cleanup(ntb, type);
epf_ntb_peer_spad_bar_clear(ntb_epc);
epf_ntb_config_sspad_bar_clear(ntb_epc);
}
/**
* epf_ntb_epc_cleanup() - Cleanup all NTB interfaces
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
*
* Wrapper to cleanup all NTB interfaces.
*/
static void epf_ntb_epc_cleanup(struct epf_ntb *ntb)
{
enum pci_epc_interface_type type;
for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++)
epf_ntb_epc_cleanup_interface(ntb, type);
}
/**
* epf_ntb_epc_init() - Initialize all NTB interfaces
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
*
* Wrapper to initialize all NTB interface and start the workqueue
* to check for commands from host.
*/
static int epf_ntb_epc_init(struct epf_ntb *ntb)
{
enum pci_epc_interface_type type;
struct device *dev;
int ret;
dev = &ntb->epf->dev;
for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
ret = epf_ntb_epc_init_interface(ntb, type);
if (ret) {
dev_err(dev, "%s intf: Failed to initialize\n",
pci_epc_interface_string(type));
goto err_init_type;
}
}
return 0;
err_init_type:
epf_ntb_epc_cleanup_interface(ntb, type - 1);
return ret;
}
/**
* epf_ntb_bind() - Initialize endpoint controller to provide NTB functionality
* @epf: NTB endpoint function device
*
* Initialize both the endpoint controllers associated with NTB function device.
* Invoked when a primary interface or secondary interface is bound to EPC
* device. This function will succeed only when EPC is bound to both the
* interfaces.
*/
static int epf_ntb_bind(struct pci_epf *epf)
{
struct epf_ntb *ntb = epf_get_drvdata(epf);
struct device *dev = &epf->dev;
int ret;
if (!epf->epc) {
dev_dbg(dev, "PRIMARY EPC interface not yet bound\n");
return 0;
}
if (!epf->sec_epc) {
dev_dbg(dev, "SECONDARY EPC interface not yet bound\n");
return 0;
}
ret = epf_ntb_epc_create(ntb);
if (ret) {
dev_err(dev, "Failed to create NTB EPC\n");
return ret;
}
ret = epf_ntb_init_epc_bar(ntb);
if (ret) {
dev_err(dev, "Failed to create NTB EPC\n");
goto err_bar_init;
}
ret = epf_ntb_config_spad_bar_alloc_interface(ntb);
if (ret) {
dev_err(dev, "Failed to allocate BAR memory\n");
goto err_bar_alloc;
}
ret = epf_ntb_epc_init(ntb);
if (ret) {
dev_err(dev, "Failed to initialize EPC\n");
goto err_bar_alloc;
}
epf_set_drvdata(epf, ntb);
return 0;
err_bar_alloc:
epf_ntb_config_spad_bar_free(ntb);
err_bar_init:
epf_ntb_epc_destroy(ntb);
return ret;
}
/**
* epf_ntb_unbind() - Cleanup the initialization from epf_ntb_bind()
* @epf: NTB endpoint function device
*
* Cleanup the initialization from epf_ntb_bind()
*/
static void epf_ntb_unbind(struct pci_epf *epf)
{
struct epf_ntb *ntb = epf_get_drvdata(epf);
epf_ntb_epc_cleanup(ntb);
epf_ntb_config_spad_bar_free(ntb);
epf_ntb_epc_destroy(ntb);
}
#define EPF_NTB_R(_name) \
static ssize_t epf_ntb_##_name##_show(struct config_item *item, \
char *page) \
{ \
struct config_group *group = to_config_group(item); \
struct epf_ntb *ntb = to_epf_ntb(group); \
\
return sprintf(page, "%d\n", ntb->_name); \
}
#define EPF_NTB_W(_name) \
static ssize_t epf_ntb_##_name##_store(struct config_item *item, \
const char *page, size_t len) \
{ \
struct config_group *group = to_config_group(item); \
struct epf_ntb *ntb = to_epf_ntb(group); \
u32 val; \
int ret; \
\
ret = kstrtou32(page, 0, &val); \
if (ret) \
return ret; \
\
ntb->_name = val; \
\
return len; \
}
#define EPF_NTB_MW_R(_name) \
static ssize_t epf_ntb_##_name##_show(struct config_item *item, \
char *page) \
{ \
struct config_group *group = to_config_group(item); \
struct epf_ntb *ntb = to_epf_ntb(group); \
int win_no; \
\
sscanf(#_name, "mw%d", &win_no); \
\
return sprintf(page, "%lld\n", ntb->mws_size[win_no - 1]); \
}
#define EPF_NTB_MW_W(_name) \
static ssize_t epf_ntb_##_name##_store(struct config_item *item, \
const char *page, size_t len) \
{ \
struct config_group *group = to_config_group(item); \
struct epf_ntb *ntb = to_epf_ntb(group); \
struct device *dev = &ntb->epf->dev; \
int win_no; \
u64 val; \
int ret; \
\
ret = kstrtou64(page, 0, &val); \
if (ret) \
return ret; \
\
if (sscanf(#_name, "mw%d", &win_no) != 1) \
return -EINVAL; \
\
if (ntb->num_mws < win_no) { \
dev_err(dev, "Invalid num_nws: %d value\n", ntb->num_mws); \
return -EINVAL; \
} \
\
ntb->mws_size[win_no - 1] = val; \
\
return len; \
}
static ssize_t epf_ntb_num_mws_store(struct config_item *item,
const char *page, size_t len)
{
struct config_group *group = to_config_group(item);
struct epf_ntb *ntb = to_epf_ntb(group);
u32 val;
int ret;
ret = kstrtou32(page, 0, &val);
if (ret)
return ret;
if (val > MAX_MW)
return -EINVAL;
ntb->num_mws = val;
return len;
}
EPF_NTB_R(spad_count)
EPF_NTB_W(spad_count)
EPF_NTB_R(db_count)
EPF_NTB_W(db_count)
EPF_NTB_R(num_mws)
EPF_NTB_MW_R(mw1)
EPF_NTB_MW_W(mw1)
EPF_NTB_MW_R(mw2)
EPF_NTB_MW_W(mw2)
EPF_NTB_MW_R(mw3)
EPF_NTB_MW_W(mw3)
EPF_NTB_MW_R(mw4)
EPF_NTB_MW_W(mw4)
CONFIGFS_ATTR(epf_ntb_, spad_count);
CONFIGFS_ATTR(epf_ntb_, db_count);
CONFIGFS_ATTR(epf_ntb_, num_mws);
CONFIGFS_ATTR(epf_ntb_, mw1);
CONFIGFS_ATTR(epf_ntb_, mw2);
CONFIGFS_ATTR(epf_ntb_, mw3);
CONFIGFS_ATTR(epf_ntb_, mw4);
static struct configfs_attribute *epf_ntb_attrs[] = {
&epf_ntb_attr_spad_count,
&epf_ntb_attr_db_count,
&epf_ntb_attr_num_mws,
&epf_ntb_attr_mw1,
&epf_ntb_attr_mw2,
&epf_ntb_attr_mw3,
&epf_ntb_attr_mw4,
NULL,
};
static const struct config_item_type ntb_group_type = {
.ct_attrs = epf_ntb_attrs,
.ct_owner = THIS_MODULE,
};
/**
* epf_ntb_add_cfs() - Add configfs directory specific to NTB
* @epf: NTB endpoint function device
* @group: A pointer to the config_group structure referencing a group of
* config_items of a specific type that belong to a specific sub-system.
*
* Add configfs directory specific to NTB. This directory will hold
* NTB specific properties like db_count, spad_count, num_mws etc.,
*/
static struct config_group *epf_ntb_add_cfs(struct pci_epf *epf,
struct config_group *group)
{
struct epf_ntb *ntb = epf_get_drvdata(epf);
struct config_group *ntb_group = &ntb->group;
struct device *dev = &epf->dev;
config_group_init_type_name(ntb_group, dev_name(dev), &ntb_group_type);
return ntb_group;
}
/**
* epf_ntb_probe() - Probe NTB function driver
* @epf: NTB endpoint function device
*
* Probe NTB function driver when endpoint function bus detects a NTB
* endpoint function.
*/
static int epf_ntb_probe(struct pci_epf *epf)
{
struct epf_ntb *ntb;
struct device *dev;
dev = &epf->dev;
ntb = devm_kzalloc(dev, sizeof(*ntb), GFP_KERNEL);
if (!ntb)
return -ENOMEM;
epf->header = &epf_ntb_header;
ntb->epf = epf;
epf_set_drvdata(epf, ntb);
return 0;
}
static struct pci_epf_ops epf_ntb_ops = {
.bind = epf_ntb_bind,
.unbind = epf_ntb_unbind,
.add_cfs = epf_ntb_add_cfs,
};
static const struct pci_epf_device_id epf_ntb_ids[] = {
{
.name = "pci_epf_ntb",
},
{},
};
static struct pci_epf_driver epf_ntb_driver = {
.driver.name = "pci_epf_ntb",
.probe = epf_ntb_probe,
.id_table = epf_ntb_ids,
.ops = &epf_ntb_ops,
.owner = THIS_MODULE,
};
static int __init epf_ntb_init(void)
{
int ret;
kpcintb_workqueue = alloc_workqueue("kpcintb", WQ_MEM_RECLAIM |
WQ_HIGHPRI, 0);
ret = pci_epf_register_driver(&epf_ntb_driver);
if (ret) {
destroy_workqueue(kpcintb_workqueue);
pr_err("Failed to register pci epf ntb driver --> %d\n", ret);
return ret;
}
return 0;
}
module_init(epf_ntb_init);
static void __exit epf_ntb_exit(void)
{
pci_epf_unregister_driver(&epf_ntb_driver);
destroy_workqueue(kpcintb_workqueue);
}
module_exit(epf_ntb_exit);
MODULE_DESCRIPTION("PCI EPF NTB DRIVER");
MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
MODULE_LICENSE("GPL v2");
|