1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
/*
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <opendla.h>
#include <dla_debug.h>
#include <dla_err.h>
#include <dla_interface.h>
#include "common.h"
#include "dla_engine_internal.h"
#include "engine_debug.h"
static uint8_t map_rubik_mode[] = {
FIELD_ENUM(RBK_D_MISC_CFG_0, RUBIK_MODE, CONTRACT),
FIELD_ENUM(RBK_D_MISC_CFG_0, RUBIK_MODE, SPLIT),
FIELD_ENUM(RBK_D_MISC_CFG_0, RUBIK_MODE, MERGE),
};
static uint8_t map_ram_type[] = {
FIELD_ENUM(RBK_D_DAIN_RAM_TYPE_0, DATAIN_RAM_TYPE, MCIF),
FIELD_ENUM(RBK_D_DAIN_RAM_TYPE_0, DATAIN_RAM_TYPE, CVIF),
};
static uint8_t map_precision[] = {
FIELD_ENUM(RBK_D_MISC_CFG_0, IN_PRECISION, INT8),
FIELD_ENUM(RBK_D_MISC_CFG_0, IN_PRECISION, INT16),
FIELD_ENUM(RBK_D_MISC_CFG_0, IN_PRECISION, FP16),
};
static uint8_t map_bpe[] = {
BPE_PRECISION_INT8,
BPE_PRECISION_INT16,
BPE_PRECISION_FP16,
};
#if STAT_ENABLE
void
dla_rubik_stat_data(struct dla_processor *processor,
struct dla_processor_group *group)
{
uint64_t end_time = 0;
struct dla_rubik_stat_desc *rubik_stat;
rubik_stat = &processor->stat_data_desc->rubik_stat;
end_time = dla_get_time_us();
rubik_stat->read_stall = rubik_reg_read(D_PERF_READ_STALL);
rubik_stat->write_stall = rubik_reg_read(D_PERF_WRITE_STALL);
rubik_stat->runtime = (uint32_t)(end_time - group->start_time);
}
void
dla_rubik_dump_stat(struct dla_processor *processor)
{
struct dla_rubik_stat_desc *rubik_stat;
rubik_stat = &processor->stat_data_desc->rubik_stat;
dla_debug_rubik_stats(rubik_stat);
}
#endif /* STAT_ENABLE */
void
dla_rubik_set_producer(int32_t group_id, int32_t __unused)
{
uint32_t reg;
/**
* set producer pointer for all sub-modules
*/
reg = group_id << SHIFT(RBK_S_POINTER_0, PRODUCER);
rubik_reg_write(S_POINTER, reg);
}
int
dla_rubik_enable(struct dla_processor_group *group)
{
uint32_t reg;
struct dla_engine *engine = dla_get_engine();
dla_trace("Enter: %s", __func__);
if (engine->stat_enable == (uint32_t)1) {
rubik_reg_write(D_PERF_ENABLE, 1);
group->start_time = dla_get_time_us();
}
/**
* enable all sub-modules
*/
reg = FIELD_ENUM(RBK_D_OP_ENABLE_0, OP_EN, ENABLE);
rubik_reg_write(D_OP_ENABLE, reg);
dla_trace("Exit: %s", __func__);
RETURN(0);
}
void
dla_rubik_rdma_check(struct dla_processor_group *group)
{
group->is_rdma_needed = 0;
}
static int32_t
processor_rubik_program(struct dla_processor_group *group)
{
int32_t ret = 0;
uint32_t reg, high, low;
uint64_t input_address = 0;
uint64_t output_address = 0;
struct dla_engine *engine = dla_get_engine();
struct dla_rubik_op_desc *rubik_op;
struct dla_rubik_surface_desc *rubik_surface;
dla_trace("Enter: %s", __func__);
rubik_op = &group->operation_desc->rubik_op;
rubik_surface = &group->surface_desc->rubik_surface;
/* Argument check */
ASSERT_GOTO((rubik_surface->src_data.type != DLA_MEM_HW),
ret, ERR(INVALID_INPUT), exit);
ASSERT_GOTO((rubik_surface->dst_data.type != DLA_MEM_HW),
ret, ERR(INVALID_INPUT), exit);
/* get the addresses from task descriptor */
ret = dla_read_input_address(&rubik_surface->src_data,
&input_address,
group->op_desc->index,
group->roi_index,
1);
if (ret)
goto exit;
dla_get_dma_cube_address(engine->driver_context,
engine->task->task_data,
rubik_surface->dst_data.address,
rubik_surface->dst_data.offset,
(void *)&output_address,
DESTINATION_DMA);
/* config rubik */
reg = (((uint32_t)map_rubik_mode[rubik_op->mode]) <<
SHIFT(RBK_D_MISC_CFG_0, RUBIK_MODE)) |
(((uint32_t)map_precision[rubik_op->precision]) <<
SHIFT(RBK_D_MISC_CFG_0, IN_PRECISION));
rubik_reg_write(D_MISC_CFG, reg);
reg = (((uint32_t)map_ram_type[rubik_surface->src_data.type]) <<
SHIFT(RBK_D_DAIN_RAM_TYPE_0, DATAIN_RAM_TYPE));
rubik_reg_write(D_DAIN_RAM_TYPE, reg);
reg = ((rubik_surface->src_data.width-1) <<
SHIFT(RBK_D_DATAIN_SIZE_0_0, DATAIN_WIDTH)) |
((rubik_surface->src_data.height-1) <<
SHIFT(RBK_D_DATAIN_SIZE_0_0, DATAIN_HEIGHT));
rubik_reg_write(D_DATAIN_SIZE_0, reg);
reg = ((rubik_surface->src_data.channel-1) <<
SHIFT(RBK_D_DATAIN_SIZE_1_0, DATAIN_CHANNEL));
rubik_reg_write(D_DATAIN_SIZE_1, reg);
high = HIGH32BITS(input_address);
low = LOW32BITS(input_address);
rubik_reg_write(D_DAIN_ADDR_LOW, low);
rubik_reg_write(D_DAIN_ADDR_HIGH, high);
if (rubik_op->mode == RUBIK_MODE_MERGE) {
ASSERT_GOTO((rubik_surface->src_data.plane_stride != 0),
ret, ERR(INVALID_INPUT), exit);
ASSERT_GOTO(((rubik_surface->src_data.plane_stride&0x1F) == 0),
ret, ERR(INVALID_INPUT), exit);
rubik_reg_write(D_DAIN_PLANAR_STRIDE,
rubik_surface->src_data.plane_stride);
} else {
rubik_reg_write(D_DAIN_SURF_STRIDE,
rubik_surface->src_data.surf_stride);
}
rubik_reg_write(D_DAIN_LINE_STRIDE,
rubik_surface->src_data.line_stride);
reg = (((uint32_t)map_ram_type[rubik_surface->dst_data.type]) <<
SHIFT(RBK_D_DAOUT_RAM_TYPE_0, DATAOUT_RAM_TYPE));
rubik_reg_write(D_DAOUT_RAM_TYPE, reg);
reg = ((rubik_surface->dst_data.channel-1) <<
SHIFT(RBK_D_DATAOUT_SIZE_1_0, DATAOUT_CHANNEL));
rubik_reg_write(D_DATAOUT_SIZE_1, reg);
high = HIGH32BITS(output_address);
low = LOW32BITS(output_address);
rubik_reg_write(D_DAOUT_ADDR_LOW, low);
rubik_reg_write(D_DAOUT_ADDR_HIGH, high);
rubik_reg_write(D_DAOUT_LINE_STRIDE,
rubik_surface->dst_data.line_stride);
if (rubik_op->mode != RUBIK_MODE_SPLIT) {
rubik_reg_write(D_DAOUT_SURF_STRIDE,
rubik_surface->dst_data.surf_stride);
if (rubik_op->mode == RUBIK_MODE_CONTRACT) {
reg = ((rubik_surface->dst_data.channel *
map_bpe[rubik_op->precision] + 31) >> 5) *
rubik_surface->src_data.surf_stride;
rubik_reg_write(D_CONTRACT_STRIDE_0, reg);
reg = rubik_op->stride_y *
rubik_surface->dst_data.line_stride;
rubik_reg_write(D_CONTRACT_STRIDE_1, reg);
reg = (((uint32_t)(rubik_op->stride_x-1)) <<
SHIFT(RBK_D_DECONV_STRIDE_0, DECONV_X_STRIDE)) |
(((uint32_t)(rubik_op->stride_y-1)) <<
SHIFT(RBK_D_DECONV_STRIDE_0, DECONV_Y_STRIDE));
rubik_reg_write(D_DECONV_STRIDE, reg);
}
} else {
rubik_reg_write(D_DAOUT_PLANAR_STRIDE,
rubik_surface->dst_data.plane_stride);
}
exit:
dla_trace("Exit: %s", __func__);
RETURN(ret);
}
int
dla_rubik_is_ready(struct dla_processor *processor,
struct dla_processor_group *group)
{
return 1;
}
void
dla_rubik_dump_config(struct dla_processor_group *group)
{
struct dla_rubik_op_desc *rubik_op;
struct dla_rubik_surface_desc *rubik_surface;
rubik_surface = &group->surface_desc->rubik_surface;
rubik_op = &group->operation_desc->rubik_op;
dla_debug_rubik_surface_desc(rubik_surface, group->roi_index);
dla_debug_rubik_op_desc(rubik_op, group->roi_index);
}
int
dla_rubik_program(struct dla_processor_group *group)
{
int32_t ret = 0;
struct dla_engine *engine = dla_get_engine();
dla_trace("Enter: %s", __func__);
if (!engine->config_data->rubik_enable) {
dla_error("RUBIK is not supported for this configuration\n");
ret = ERR(INVALID_INPUT);
goto exit;
}
dla_enable_intr(MASK(GLB_S_INTR_MASK_0, RUBIK_DONE_MASK1) |
MASK(GLB_S_INTR_MASK_0, RUBIK_DONE_MASK0));
ret = processor_rubik_program(group);
if (ret)
goto exit;
exit:
dla_trace("Exit: %s", __func__);
RETURN(ret);
}
|