1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
|
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/* Copyright(c) 2018-2019 Realtek Corporation
*/
#include <linux/module.h>
#include <linux/pci.h>
#include "main.h"
#include "pci.h"
#include "reg.h"
#include "tx.h"
#include "rx.h"
#include "fw.h"
#include "ps.h"
#include "debug.h"
static bool rtw_disable_msi;
static bool rtw_pci_disable_aspm;
module_param_named(disable_msi, rtw_disable_msi, bool, 0644);
module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644);
MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support");
MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support");
static u32 rtw_pci_tx_queue_idx_addr[] = {
[RTW_TX_QUEUE_BK] = RTK_PCI_TXBD_IDX_BKQ,
[RTW_TX_QUEUE_BE] = RTK_PCI_TXBD_IDX_BEQ,
[RTW_TX_QUEUE_VI] = RTK_PCI_TXBD_IDX_VIQ,
[RTW_TX_QUEUE_VO] = RTK_PCI_TXBD_IDX_VOQ,
[RTW_TX_QUEUE_MGMT] = RTK_PCI_TXBD_IDX_MGMTQ,
[RTW_TX_QUEUE_HI0] = RTK_PCI_TXBD_IDX_HI0Q,
[RTW_TX_QUEUE_H2C] = RTK_PCI_TXBD_IDX_H2CQ,
};
static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb, u8 queue)
{
switch (queue) {
case RTW_TX_QUEUE_BCN:
return TX_DESC_QSEL_BEACON;
case RTW_TX_QUEUE_H2C:
return TX_DESC_QSEL_H2C;
case RTW_TX_QUEUE_MGMT:
return TX_DESC_QSEL_MGMT;
case RTW_TX_QUEUE_HI0:
return TX_DESC_QSEL_HIGH;
default:
return skb->priority;
}
};
static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
return readb(rtwpci->mmap + addr);
}
static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
return readw(rtwpci->mmap + addr);
}
static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
return readl(rtwpci->mmap + addr);
}
static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
writeb(val, rtwpci->mmap + addr);
}
static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
writew(val, rtwpci->mmap + addr);
}
static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
writel(val, rtwpci->mmap + addr);
}
static inline void *rtw_pci_get_tx_desc(struct rtw_pci_tx_ring *tx_ring, u8 idx)
{
int offset = tx_ring->r.desc_size * idx;
return tx_ring->r.head + offset;
}
static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev,
struct rtw_pci_tx_ring *tx_ring)
{
struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
struct rtw_pci_tx_data *tx_data;
struct sk_buff *skb, *tmp;
dma_addr_t dma;
/* free every skb remained in tx list */
skb_queue_walk_safe(&tx_ring->queue, skb, tmp) {
__skb_unlink(skb, &tx_ring->queue);
tx_data = rtw_pci_get_tx_data(skb);
dma = tx_data->dma;
dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE);
dev_kfree_skb_any(skb);
}
}
static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev,
struct rtw_pci_tx_ring *tx_ring)
{
struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
u8 *head = tx_ring->r.head;
u32 len = tx_ring->r.len;
int ring_sz = len * tx_ring->r.desc_size;
rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
/* free the ring itself */
dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma);
tx_ring->r.head = NULL;
}
static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev,
struct rtw_pci_rx_ring *rx_ring)
{
struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
struct sk_buff *skb;
int buf_sz = RTK_PCI_RX_BUF_SIZE;
dma_addr_t dma;
int i;
for (i = 0; i < rx_ring->r.len; i++) {
skb = rx_ring->buf[i];
if (!skb)
continue;
dma = *((dma_addr_t *)skb->cb);
dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
dev_kfree_skb(skb);
rx_ring->buf[i] = NULL;
}
}
static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev,
struct rtw_pci_rx_ring *rx_ring)
{
struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
u8 *head = rx_ring->r.head;
int ring_sz = rx_ring->r.desc_size * rx_ring->r.len;
rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring);
dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma);
}
static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
struct rtw_pci_tx_ring *tx_ring;
struct rtw_pci_rx_ring *rx_ring;
int i;
for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
tx_ring = &rtwpci->tx_rings[i];
rtw_pci_free_tx_ring(rtwdev, tx_ring);
}
for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) {
rx_ring = &rtwpci->rx_rings[i];
rtw_pci_free_rx_ring(rtwdev, rx_ring);
}
}
static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev,
struct rtw_pci_tx_ring *tx_ring,
u8 desc_size, u32 len)
{
struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
int ring_sz = desc_size * len;
dma_addr_t dma;
u8 *head;
if (len > TRX_BD_IDX_MASK) {
rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len);
return -EINVAL;
}
head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
if (!head) {
rtw_err(rtwdev, "failed to allocate tx ring\n");
return -ENOMEM;
}
skb_queue_head_init(&tx_ring->queue);
tx_ring->r.head = head;
tx_ring->r.dma = dma;
tx_ring->r.len = len;
tx_ring->r.desc_size = desc_size;
tx_ring->r.wp = 0;
tx_ring->r.rp = 0;
return 0;
}
static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb,
struct rtw_pci_rx_ring *rx_ring,
u32 idx, u32 desc_sz)
{
struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
struct rtw_pci_rx_buffer_desc *buf_desc;
int buf_sz = RTK_PCI_RX_BUF_SIZE;
dma_addr_t dma;
if (!skb)
return -EINVAL;
dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev, dma))
return -EBUSY;
*((dma_addr_t *)skb->cb) = dma;
buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
idx * desc_sz);
memset(buf_desc, 0, sizeof(*buf_desc));
buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
buf_desc->dma = cpu_to_le32(dma);
return 0;
}
static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma,
struct rtw_pci_rx_ring *rx_ring,
u32 idx, u32 desc_sz)
{
struct device *dev = rtwdev->dev;
struct rtw_pci_rx_buffer_desc *buf_desc;
int buf_sz = RTK_PCI_RX_BUF_SIZE;
dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE);
buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
idx * desc_sz);
memset(buf_desc, 0, sizeof(*buf_desc));
buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
buf_desc->dma = cpu_to_le32(dma);
}
static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev,
struct rtw_pci_rx_ring *rx_ring,
u8 desc_size, u32 len)
{
struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
struct sk_buff *skb = NULL;
dma_addr_t dma;
u8 *head;
int ring_sz = desc_size * len;
int buf_sz = RTK_PCI_RX_BUF_SIZE;
int i, allocated;
int ret = 0;
if (len > TRX_BD_IDX_MASK) {
rtw_err(rtwdev, "len %d exceeds maximum RX entries\n", len);
return -EINVAL;
}
head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
if (!head) {
rtw_err(rtwdev, "failed to allocate rx ring\n");
return -ENOMEM;
}
rx_ring->r.head = head;
for (i = 0; i < len; i++) {
skb = dev_alloc_skb(buf_sz);
if (!skb) {
allocated = i;
ret = -ENOMEM;
goto err_out;
}
memset(skb->data, 0, buf_sz);
rx_ring->buf[i] = skb;
ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size);
if (ret) {
allocated = i;
dev_kfree_skb_any(skb);
goto err_out;
}
}
rx_ring->r.dma = dma;
rx_ring->r.len = len;
rx_ring->r.desc_size = desc_size;
rx_ring->r.wp = 0;
rx_ring->r.rp = 0;
return 0;
err_out:
for (i = 0; i < allocated; i++) {
skb = rx_ring->buf[i];
if (!skb)
continue;
dma = *((dma_addr_t *)skb->cb);
dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
rx_ring->buf[i] = NULL;
}
dma_free_coherent(&pdev->dev, ring_sz, head, dma);
rtw_err(rtwdev, "failed to init rx buffer\n");
return ret;
}
static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
struct rtw_pci_tx_ring *tx_ring;
struct rtw_pci_rx_ring *rx_ring;
struct rtw_chip_info *chip = rtwdev->chip;
int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0;
int tx_desc_size, rx_desc_size;
u32 len;
int ret;
tx_desc_size = chip->tx_buf_desc_sz;
for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
tx_ring = &rtwpci->tx_rings[i];
len = max_num_of_tx_queue(i);
ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len);
if (ret)
goto out;
}
rx_desc_size = chip->rx_buf_desc_sz;
for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) {
rx_ring = &rtwpci->rx_rings[j];
ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size,
RTK_MAX_RX_DESC_NUM);
if (ret)
goto out;
}
return 0;
out:
tx_alloced = i;
for (i = 0; i < tx_alloced; i++) {
tx_ring = &rtwpci->tx_rings[i];
rtw_pci_free_tx_ring(rtwdev, tx_ring);
}
rx_alloced = j;
for (j = 0; j < rx_alloced; j++) {
rx_ring = &rtwpci->rx_rings[j];
rtw_pci_free_rx_ring(rtwdev, rx_ring);
}
return ret;
}
static void rtw_pci_deinit(struct rtw_dev *rtwdev)
{
rtw_pci_free_trx_ring(rtwdev);
}
static int rtw_pci_init(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
int ret = 0;
rtwpci->irq_mask[0] = IMR_HIGHDOK |
IMR_MGNTDOK |
IMR_BKDOK |
IMR_BEDOK |
IMR_VIDOK |
IMR_VODOK |
IMR_ROK |
IMR_BCNDMAINT_E |
IMR_C2HCMD |
0;
rtwpci->irq_mask[1] = IMR_TXFOVW |
0;
rtwpci->irq_mask[3] = IMR_H2CDOK |
0;
spin_lock_init(&rtwpci->irq_lock);
spin_lock_init(&rtwpci->hwirq_lock);
ret = rtw_pci_init_trx_ring(rtwdev);
return ret;
}
static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
u32 len;
u8 tmp;
dma_addr_t dma;
tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3);
rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7);
dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma;
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma);
if (!rtw_chip_wcpu_11n(rtwdev)) {
len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len;
dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma;
rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0;
rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0;
rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK);
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma);
}
len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len;
dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma;
rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0;
rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0;
rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK);
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma);
len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len;
dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma;
rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0;
rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0;
rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK);
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma);
len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len;
dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma;
rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0;
rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0;
rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK);
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma);
len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len;
dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma;
rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0;
rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0;
rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK);
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma);
len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len;
dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma;
rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0;
rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0;
rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK);
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma);
len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len;
dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma;
rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0;
rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0;
rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK);
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma);
len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len;
dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma;
rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0;
rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0;
rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK);
rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma);
/* reset read/write point */
rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff);
/* reset H2C Queue index in a single write */
if (rtw_chip_wcpu_11ac(rtwdev))
rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR,
BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX);
}
static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev)
{
rtw_pci_reset_buf_desc(rtwdev);
}
static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev,
struct rtw_pci *rtwpci, bool exclude_rx)
{
unsigned long flags;
u32 imr0_unmask = exclude_rx ? IMR_ROK : 0;
spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask);
rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]);
if (rtw_chip_wcpu_11ac(rtwdev))
rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]);
rtwpci->irq_enabled = true;
spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
}
static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev,
struct rtw_pci *rtwpci)
{
unsigned long flags;
spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
if (!rtwpci->irq_enabled)
goto out;
rtw_write32(rtwdev, RTK_PCI_HIMR0, 0);
rtw_write32(rtwdev, RTK_PCI_HIMR1, 0);
if (rtw_chip_wcpu_11ac(rtwdev))
rtw_write32(rtwdev, RTK_PCI_HIMR3, 0);
rtwpci->irq_enabled = false;
out:
spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
}
static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
{
/* reset dma and rx tag */
rtw_write32_set(rtwdev, RTK_PCI_CTRL,
BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN);
rtwpci->rx_tag = 0;
}
static int rtw_pci_setup(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
rtw_pci_reset_trx_ring(rtwdev);
rtw_pci_dma_reset(rtwdev, rtwpci);
return 0;
}
static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
{
struct rtw_pci_tx_ring *tx_ring;
u8 queue;
rtw_pci_reset_trx_ring(rtwdev);
for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
tx_ring = &rtwpci->tx_rings[queue];
rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
}
}
static void rtw_pci_napi_start(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
return;
napi_enable(&rtwpci->napi);
}
static void rtw_pci_napi_stop(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
return;
napi_synchronize(&rtwpci->napi);
napi_disable(&rtwpci->napi);
}
static int rtw_pci_start(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
rtw_pci_napi_start(rtwdev);
spin_lock_bh(&rtwpci->irq_lock);
rtwpci->running = true;
rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
spin_unlock_bh(&rtwpci->irq_lock);
return 0;
}
static void rtw_pci_stop(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
struct pci_dev *pdev = rtwpci->pdev;
spin_lock_bh(&rtwpci->irq_lock);
rtwpci->running = false;
rtw_pci_disable_interrupt(rtwdev, rtwpci);
spin_unlock_bh(&rtwpci->irq_lock);
synchronize_irq(pdev->irq);
rtw_pci_napi_stop(rtwdev);
spin_lock_bh(&rtwpci->irq_lock);
rtw_pci_dma_release(rtwdev, rtwpci);
spin_unlock_bh(&rtwpci->irq_lock);
}
static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
struct rtw_pci_tx_ring *tx_ring;
bool tx_empty = true;
u8 queue;
lockdep_assert_held(&rtwpci->irq_lock);
/* Deep PS state is not allowed to TX-DMA */
for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
/* BCN queue is rsvd page, does not have DMA interrupt
* H2C queue is managed by firmware
*/
if (queue == RTW_TX_QUEUE_BCN ||
queue == RTW_TX_QUEUE_H2C)
continue;
tx_ring = &rtwpci->tx_rings[queue];
/* check if there is any skb DMAing */
if (skb_queue_len(&tx_ring->queue)) {
tx_empty = false;
break;
}
}
if (!tx_empty) {
rtw_dbg(rtwdev, RTW_DBG_PS,
"TX path not empty, cannot enter deep power save state\n");
return;
}
set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags);
rtw_power_mode_change(rtwdev, true);
}
static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
lockdep_assert_held(&rtwpci->irq_lock);
if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
rtw_power_mode_change(rtwdev, false);
}
static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
spin_lock_bh(&rtwpci->irq_lock);
if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
rtw_pci_deep_ps_enter(rtwdev);
if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
rtw_pci_deep_ps_leave(rtwdev);
spin_unlock_bh(&rtwpci->irq_lock);
}
static u8 ac_to_hwq[] = {
[IEEE80211_AC_VO] = RTW_TX_QUEUE_VO,
[IEEE80211_AC_VI] = RTW_TX_QUEUE_VI,
[IEEE80211_AC_BE] = RTW_TX_QUEUE_BE,
[IEEE80211_AC_BK] = RTW_TX_QUEUE_BK,
};
static_assert(ARRAY_SIZE(ac_to_hwq) == IEEE80211_NUM_ACS);
static u8 rtw_hw_queue_mapping(struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
__le16 fc = hdr->frame_control;
u8 q_mapping = skb_get_queue_mapping(skb);
u8 queue;
if (unlikely(ieee80211_is_beacon(fc)))
queue = RTW_TX_QUEUE_BCN;
else if (unlikely(ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)))
queue = RTW_TX_QUEUE_MGMT;
else if (WARN_ON_ONCE(q_mapping >= ARRAY_SIZE(ac_to_hwq)))
queue = ac_to_hwq[IEEE80211_AC_BE];
else
queue = ac_to_hwq[q_mapping];
return queue;
}
static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci,
struct rtw_pci_tx_ring *ring)
{
struct sk_buff *prev = skb_dequeue(&ring->queue);
struct rtw_pci_tx_data *tx_data;
dma_addr_t dma;
if (!prev)
return;
tx_data = rtw_pci_get_tx_data(prev);
dma = tx_data->dma;
dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE);
dev_kfree_skb_any(prev);
}
static void rtw_pci_dma_check(struct rtw_dev *rtwdev,
struct rtw_pci_rx_ring *rx_ring,
u32 idx)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_pci_rx_buffer_desc *buf_desc;
u32 desc_sz = chip->rx_buf_desc_sz;
u16 total_pkt_size;
buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
idx * desc_sz);
total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size);
/* rx tag mismatch, throw a warning */
if (total_pkt_size != rtwpci->rx_tag)
rtw_warn(rtwdev, "pci bus timeout, check dma status\n");
rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX;
}
static u32 __pci_get_hw_tx_ring_rp(struct rtw_dev *rtwdev, u8 pci_q)
{
u32 bd_idx_addr = rtw_pci_tx_queue_idx_addr[pci_q];
u32 bd_idx = rtw_read16(rtwdev, bd_idx_addr + 2);
return FIELD_GET(TRX_BD_IDX_MASK, bd_idx);
}
static void __pci_flush_queue(struct rtw_dev *rtwdev, u8 pci_q, bool drop)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
struct rtw_pci_tx_ring *ring = &rtwpci->tx_rings[pci_q];
u32 cur_rp;
u8 i;
/* Because the time taked by the I/O in __pci_get_hw_tx_ring_rp is a
* bit dynamic, it's hard to define a reasonable fixed total timeout to
* use read_poll_timeout* helper. Instead, we can ensure a reasonable
* polling times, so we just use for loop with udelay here.
*/
for (i = 0; i < 30; i++) {
cur_rp = __pci_get_hw_tx_ring_rp(rtwdev, pci_q);
if (cur_rp == ring->r.wp)
return;
udelay(1);
}
if (!drop)
rtw_warn(rtwdev, "timed out to flush pci tx ring[%d]\n", pci_q);
}
static void __rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 pci_queues,
bool drop)
{
u8 q;
for (q = 0; q < RTK_MAX_TX_QUEUE_NUM; q++) {
/* It may be not necessary to flush BCN and H2C tx queues. */
if (q == RTW_TX_QUEUE_BCN || q == RTW_TX_QUEUE_H2C)
continue;
if (pci_queues & BIT(q))
__pci_flush_queue(rtwdev, q, drop);
}
}
static void rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 queues, bool drop)
{
u32 pci_queues = 0;
u8 i;
/* If all of the hardware queues are requested to flush,
* flush all of the pci queues.
*/
if (queues == BIT(rtwdev->hw->queues) - 1) {
pci_queues = BIT(RTK_MAX_TX_QUEUE_NUM) - 1;
} else {
for (i = 0; i < rtwdev->hw->queues; i++)
if (queues & BIT(i))
pci_queues |= BIT(ac_to_hwq[i]);
}
__rtw_pci_flush_queues(rtwdev, pci_queues, drop);
}
static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev, u8 queue)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
struct rtw_pci_tx_ring *ring;
u32 bd_idx;
ring = &rtwpci->tx_rings[queue];
bd_idx = rtw_pci_tx_queue_idx_addr[queue];
spin_lock_bh(&rtwpci->irq_lock);
rtw_pci_deep_ps_leave(rtwdev);
rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK);
spin_unlock_bh(&rtwpci->irq_lock);
}
static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
u8 queue;
for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++)
if (test_and_clear_bit(queue, rtwpci->tx_queued))
rtw_pci_tx_kick_off_queue(rtwdev, queue);
}
static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev,
struct rtw_tx_pkt_info *pkt_info,
struct sk_buff *skb, u8 queue)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_pci_tx_ring *ring;
struct rtw_pci_tx_data *tx_data;
dma_addr_t dma;
u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz;
u32 tx_buf_desc_sz = chip->tx_buf_desc_sz;
u32 size;
u32 psb_len;
u8 *pkt_desc;
struct rtw_pci_tx_buffer_desc *buf_desc;
ring = &rtwpci->tx_rings[queue];
size = skb->len;
if (queue == RTW_TX_QUEUE_BCN)
rtw_pci_release_rsvd_page(rtwpci, ring);
else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len))
return -ENOSPC;
pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz);
memset(pkt_desc, 0, tx_pkt_desc_sz);
pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue);
rtw_tx_fill_tx_desc(pkt_info, skb);
dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len,
DMA_TO_DEVICE);
if (dma_mapping_error(&rtwpci->pdev->dev, dma))
return -EBUSY;
/* after this we got dma mapped, there is no way back */
buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz);
memset(buf_desc, 0, tx_buf_desc_sz);
psb_len = (skb->len - 1) / 128 + 1;
if (queue == RTW_TX_QUEUE_BCN)
psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET;
buf_desc[0].psb_len = cpu_to_le16(psb_len);
buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz);
buf_desc[0].dma = cpu_to_le32(dma);
buf_desc[1].buf_size = cpu_to_le16(size);
buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz);
tx_data = rtw_pci_get_tx_data(skb);
tx_data->dma = dma;
tx_data->sn = pkt_info->sn;
spin_lock_bh(&rtwpci->irq_lock);
skb_queue_tail(&ring->queue, skb);
if (queue == RTW_TX_QUEUE_BCN)
goto out_unlock;
/* update write-index, and kick it off later */
set_bit(queue, rtwpci->tx_queued);
if (++ring->r.wp >= ring->r.len)
ring->r.wp = 0;
out_unlock:
spin_unlock_bh(&rtwpci->irq_lock);
return 0;
}
static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf,
u32 size)
{
struct sk_buff *skb;
struct rtw_tx_pkt_info pkt_info = {0};
u8 reg_bcn_work;
int ret;
skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size);
if (!skb)
return -ENOMEM;
ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN);
if (ret) {
rtw_err(rtwdev, "failed to write rsvd page data\n");
return ret;
}
/* reserved pages go through beacon queue */
reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK);
reg_bcn_work |= BIT_PCI_BCNQ_FLAG;
rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work);
return 0;
}
static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size)
{
struct sk_buff *skb;
struct rtw_tx_pkt_info pkt_info = {0};
int ret;
skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size);
if (!skb)
return -ENOMEM;
ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C);
if (ret) {
rtw_err(rtwdev, "failed to write h2c data\n");
return ret;
}
rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C);
return 0;
}
static int rtw_pci_tx_write(struct rtw_dev *rtwdev,
struct rtw_tx_pkt_info *pkt_info,
struct sk_buff *skb)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
struct rtw_pci_tx_ring *ring;
u8 queue = rtw_hw_queue_mapping(skb);
int ret;
ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue);
if (ret)
return ret;
ring = &rtwpci->tx_rings[queue];
spin_lock_bh(&rtwpci->irq_lock);
if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) {
ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb));
ring->queue_stopped = true;
}
spin_unlock_bh(&rtwpci->irq_lock);
return 0;
}
static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
u8 hw_queue)
{
struct ieee80211_hw *hw = rtwdev->hw;
struct ieee80211_tx_info *info;
struct rtw_pci_tx_ring *ring;
struct rtw_pci_tx_data *tx_data;
struct sk_buff *skb;
u32 count;
u32 bd_idx_addr;
u32 bd_idx, cur_rp, rp_idx;
u16 q_map;
ring = &rtwpci->tx_rings[hw_queue];
bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue];
bd_idx = rtw_read32(rtwdev, bd_idx_addr);
cur_rp = bd_idx >> 16;
cur_rp &= TRX_BD_IDX_MASK;
rp_idx = ring->r.rp;
if (cur_rp >= ring->r.rp)
count = cur_rp - ring->r.rp;
else
count = ring->r.len - (ring->r.rp - cur_rp);
while (count--) {
skb = skb_dequeue(&ring->queue);
if (!skb) {
rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n",
count, hw_queue, bd_idx, ring->r.rp, cur_rp);
break;
}
tx_data = rtw_pci_get_tx_data(skb);
dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len,
DMA_TO_DEVICE);
/* just free command packets from host to card */
if (hw_queue == RTW_TX_QUEUE_H2C) {
dev_kfree_skb_irq(skb);
continue;
}
if (ring->queue_stopped &&
avail_desc(ring->r.wp, rp_idx, ring->r.len) > 4) {
q_map = skb_get_queue_mapping(skb);
ieee80211_wake_queue(hw, q_map);
ring->queue_stopped = false;
}
if (++rp_idx >= ring->r.len)
rp_idx = 0;
skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz);
info = IEEE80211_SKB_CB(skb);
/* enqueue to wait for tx report */
if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn);
continue;
}
/* always ACK for others, then they won't be marked as drop */
if (info->flags & IEEE80211_TX_CTL_NO_ACK)
info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
else
info->flags |= IEEE80211_TX_STAT_ACK;
ieee80211_tx_info_clear_status(info);
ieee80211_tx_status_irqsafe(hw, skb);
}
ring->r.rp = cur_rp;
}
static void rtw_pci_rx_isr(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
struct napi_struct *napi = &rtwpci->napi;
napi_schedule(napi);
}
static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev,
struct rtw_pci *rtwpci)
{
struct rtw_pci_rx_ring *ring;
int count = 0;
u32 tmp, cur_wp;
ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ);
cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK);
if (cur_wp >= ring->r.wp)
count = cur_wp - ring->r.wp;
else
count = ring->r.len - (ring->r.wp - cur_wp);
return count;
}
static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
u8 hw_queue, u32 limit)
{
struct rtw_chip_info *chip = rtwdev->chip;
struct napi_struct *napi = &rtwpci->napi;
struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
struct rtw_rx_pkt_stat pkt_stat;
struct ieee80211_rx_status rx_status;
struct sk_buff *skb, *new;
u32 cur_rp = ring->r.rp;
u32 count, rx_done = 0;
u32 pkt_offset;
u32 pkt_desc_sz = chip->rx_pkt_desc_sz;
u32 buf_desc_sz = chip->rx_buf_desc_sz;
u32 new_len;
u8 *rx_desc;
dma_addr_t dma;
count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci);
count = min(count, limit);
while (count--) {
rtw_pci_dma_check(rtwdev, ring, cur_rp);
skb = ring->buf[cur_rp];
dma = *((dma_addr_t *)skb->cb);
dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE,
DMA_FROM_DEVICE);
rx_desc = skb->data;
chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status);
/* offset from rx_desc to payload */
pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz +
pkt_stat.shift;
/* allocate a new skb for this frame,
* discard the frame if none available
*/
new_len = pkt_stat.pkt_len + pkt_offset;
new = dev_alloc_skb(new_len);
if (WARN_ONCE(!new, "rx routine starvation\n"))
goto next_rp;
/* put the DMA data including rx_desc from phy to new skb */
skb_put_data(new, skb->data, new_len);
if (pkt_stat.is_c2h) {
rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new);
} else {
/* remove rx_desc */
skb_pull(new, pkt_offset);
rtw_rx_stats(rtwdev, pkt_stat.vif, new);
memcpy(new->cb, &rx_status, sizeof(rx_status));
ieee80211_rx_napi(rtwdev->hw, NULL, new, napi);
rx_done++;
}
next_rp:
/* new skb delivered to mac80211, re-enable original skb DMA */
rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp,
buf_desc_sz);
/* host read next element in ring */
if (++cur_rp >= ring->r.len)
cur_rp = 0;
}
ring->r.rp = cur_rp;
/* 'rp', the last position we have read, is seen as previous posistion
* of 'wp' that is used to calculate 'count' next time.
*/
ring->r.wp = cur_rp;
rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp);
return rx_done;
}
static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev,
struct rtw_pci *rtwpci, u32 *irq_status)
{
unsigned long flags;
spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0);
irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1);
if (rtw_chip_wcpu_11ac(rtwdev))
irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3);
else
irq_status[3] = 0;
irq_status[0] &= rtwpci->irq_mask[0];
irq_status[1] &= rtwpci->irq_mask[1];
irq_status[3] &= rtwpci->irq_mask[3];
rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]);
rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]);
if (rtw_chip_wcpu_11ac(rtwdev))
rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]);
spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
}
static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev)
{
struct rtw_dev *rtwdev = dev;
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
/* disable RTW PCI interrupt to avoid more interrupts before the end of
* thread function
*
* disable HIMR here to also avoid new HISR flag being raised before
* the HISRs have been Write-1-cleared for MSI. If not all of the HISRs
* are cleared, the edge-triggered interrupt will not be generated when
* a new HISR flag is set.
*/
rtw_pci_disable_interrupt(rtwdev, rtwpci);
return IRQ_WAKE_THREAD;
}
static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev)
{
struct rtw_dev *rtwdev = dev;
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
u32 irq_status[4];
bool rx = false;
spin_lock_bh(&rtwpci->irq_lock);
rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status);
if (irq_status[0] & IMR_MGNTDOK)
rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT);
if (irq_status[0] & IMR_HIGHDOK)
rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0);
if (irq_status[0] & IMR_BEDOK)
rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE);
if (irq_status[0] & IMR_BKDOK)
rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK);
if (irq_status[0] & IMR_VODOK)
rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO);
if (irq_status[0] & IMR_VIDOK)
rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI);
if (irq_status[3] & IMR_H2CDOK)
rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C);
if (irq_status[0] & IMR_ROK) {
rtw_pci_rx_isr(rtwdev);
rx = true;
}
if (unlikely(irq_status[0] & IMR_C2HCMD))
rtw_fw_c2h_cmd_isr(rtwdev);
/* all of the jobs for this interrupt have been done */
if (rtwpci->running)
rtw_pci_enable_interrupt(rtwdev, rtwpci, rx);
spin_unlock_bh(&rtwpci->irq_lock);
return IRQ_HANDLED;
}
static int rtw_pci_io_mapping(struct rtw_dev *rtwdev,
struct pci_dev *pdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
unsigned long len;
u8 bar_id = 2;
int ret;
ret = pci_request_regions(pdev, KBUILD_MODNAME);
if (ret) {
rtw_err(rtwdev, "failed to request pci regions\n");
return ret;
}
len = pci_resource_len(pdev, bar_id);
rtwpci->mmap = pci_iomap(pdev, bar_id, len);
if (!rtwpci->mmap) {
pci_release_regions(pdev);
rtw_err(rtwdev, "failed to map pci memory\n");
return -ENOMEM;
}
return 0;
}
static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev,
struct pci_dev *pdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
if (rtwpci->mmap) {
pci_iounmap(pdev, rtwpci->mmap);
pci_release_regions(pdev);
}
}
static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data)
{
u16 write_addr;
u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK);
u8 flag;
u8 cnt;
write_addr = addr & BITS_DBI_ADDR_MASK;
write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN);
rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data);
rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr);
rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16);
for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
if (flag == 0)
return;
udelay(10);
}
WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr);
}
static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value)
{
u16 read_addr = addr & BITS_DBI_ADDR_MASK;
u8 flag;
u8 cnt;
rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr);
rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16);
for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
if (flag == 0) {
read_addr = REG_DBI_RDATA_V1 + (addr & 3);
*value = rtw_read8(rtwdev, read_addr);
return 0;
}
udelay(10);
}
WARN(1, "failed to read DBI register, addr=0x%04x\n", addr);
return -EIO;
}
static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1)
{
u8 page;
u8 wflag;
u8 cnt;
rtw_write16(rtwdev, REG_MDIO_V1, data);
page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1;
page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2;
rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK);
rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page);
rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1);
for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG,
BIT_MDIO_WFLAG_V1);
if (wflag == 0)
return;
udelay(10);
}
WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr);
}
static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable)
{
u8 value;
int ret;
if (rtw_pci_disable_aspm)
return;
ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
if (ret) {
rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
return;
}
if (enable)
value |= BIT_CLKREQ_SW_EN;
else
value &= ~BIT_CLKREQ_SW_EN;
rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
}
static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable)
{
u8 value;
int ret;
if (rtw_pci_disable_aspm)
return;
ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
if (ret) {
rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret);
return;
}
if (enable)
value |= BIT_L1_SW_EN;
else
value &= ~BIT_L1_SW_EN;
rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
}
static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
/* Like CLKREQ, ASPM is also implemented by two HW modules, and can
* only be enabled when host supports it.
*
* And ASPM mechanism should be enabled when driver/firmware enters
* power save mode, without having heavy traffic. Because we've
* experienced some inter-operability issues that the link tends
* to enter L1 state on the fly even when driver is having high
* throughput. This is probably because the ASPM behavior slightly
* varies from different SOC.
*/
if (rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1)
rtw_pci_aspm_set(rtwdev, enter);
}
static void rtw_pci_link_cfg(struct rtw_dev *rtwdev)
{
struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
struct pci_dev *pdev = rtwpci->pdev;
u16 link_ctrl;
int ret;
/* RTL8822CE has enabled REFCLK auto calibration, it does not need
* to add clock delay to cover the REFCLK timing gap.
*/
if (chip->id == RTW_CHIP_TYPE_8822C)
rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0);
/* Though there is standard PCIE configuration space to set the
* link control register, but by Realtek's design, driver should
* check if host supports CLKREQ/ASPM to enable the HW module.
*
* These functions are implemented by two HW modules associated,
* one is responsible to access PCIE configuration space to
* follow the host settings, and another is in charge of doing
* CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes
* the host does not support it, and due to some reasons or wrong
* settings (ex. CLKREQ# not Bi-Direction), it could lead to device
* loss if HW misbehaves on the link.
*
* Hence it's designed that driver should first check the PCIE
* configuration space is sync'ed and enabled, then driver can turn
* on the other module that is actually working on the mechanism.
*/
ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl);
if (ret) {
rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret);
return;
}
if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN)
rtw_pci_clkreq_set(rtwdev, true);
rtwpci->link_ctrl = link_ctrl;
}
static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev)
{
struct rtw_chip_info *chip = rtwdev->chip;
switch (chip->id) {
case RTW_CHIP_TYPE_8822C:
if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D)
rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG,
BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1);
break;
default:
break;
}
}
static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev)
{
struct rtw_chip_info *chip = rtwdev->chip;
const struct rtw_intf_phy_para *para;
u16 cut;
u16 value;
u16 offset;
int i;
cut = BIT(0) << rtwdev->hal.cut_version;
for (i = 0; i < chip->intf_table->n_gen1_para; i++) {
para = &chip->intf_table->gen1_para[i];
if (!(para->cut_mask & cut))
continue;
if (para->offset == 0xffff)
break;
offset = para->offset;
value = para->value;
if (para->ip_sel == RTW_IP_SEL_PHY)
rtw_mdio_write(rtwdev, offset, value, true);
else
rtw_dbi_write8(rtwdev, offset, value);
}
for (i = 0; i < chip->intf_table->n_gen2_para; i++) {
para = &chip->intf_table->gen2_para[i];
if (!(para->cut_mask & cut))
continue;
if (para->offset == 0xffff)
break;
offset = para->offset;
value = para->value;
if (para->ip_sel == RTW_IP_SEL_PHY)
rtw_mdio_write(rtwdev, offset, value, false);
else
rtw_dbi_write8(rtwdev, offset, value);
}
rtw_pci_link_cfg(rtwdev);
}
static int __maybe_unused rtw_pci_suspend(struct device *dev)
{
return 0;
}
static int __maybe_unused rtw_pci_resume(struct device *dev)
{
return 0;
}
SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume);
EXPORT_SYMBOL(rtw_pm_ops);
static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
{
int ret;
ret = pci_enable_device(pdev);
if (ret) {
rtw_err(rtwdev, "failed to enable pci device\n");
return ret;
}
pci_set_master(pdev);
pci_set_drvdata(pdev, rtwdev->hw);
SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev);
return 0;
}
static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
{
pci_clear_master(pdev);
pci_disable_device(pdev);
}
static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev)
{
struct rtw_pci *rtwpci;
int ret;
rtwpci = (struct rtw_pci *)rtwdev->priv;
rtwpci->pdev = pdev;
/* after this driver can access to hw registers */
ret = rtw_pci_io_mapping(rtwdev, pdev);
if (ret) {
rtw_err(rtwdev, "failed to request pci io region\n");
goto err_out;
}
ret = rtw_pci_init(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to allocate pci resources\n");
goto err_io_unmap;
}
return 0;
err_io_unmap:
rtw_pci_io_unmapping(rtwdev, pdev);
err_out:
return ret;
}
static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev)
{
rtw_pci_deinit(rtwdev);
rtw_pci_io_unmapping(rtwdev, pdev);
}
static struct rtw_hci_ops rtw_pci_ops = {
.tx_write = rtw_pci_tx_write,
.tx_kick_off = rtw_pci_tx_kick_off,
.flush_queues = rtw_pci_flush_queues,
.setup = rtw_pci_setup,
.start = rtw_pci_start,
.stop = rtw_pci_stop,
.deep_ps = rtw_pci_deep_ps,
.link_ps = rtw_pci_link_ps,
.interface_cfg = rtw_pci_interface_cfg,
.read8 = rtw_pci_read8,
.read16 = rtw_pci_read16,
.read32 = rtw_pci_read32,
.write8 = rtw_pci_write8,
.write16 = rtw_pci_write16,
.write32 = rtw_pci_write32,
.write_data_rsvd_page = rtw_pci_write_data_rsvd_page,
.write_data_h2c = rtw_pci_write_data_h2c,
};
static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
{
unsigned int flags = PCI_IRQ_LEGACY;
int ret;
if (!rtw_disable_msi)
flags |= PCI_IRQ_MSI;
ret = pci_alloc_irq_vectors(pdev, 1, 1, flags);
if (ret < 0) {
rtw_err(rtwdev, "failed to alloc PCI irq vectors\n");
return ret;
}
ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq,
rtw_pci_interrupt_handler,
rtw_pci_interrupt_threadfn,
IRQF_SHARED, KBUILD_MODNAME, rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to request irq %d\n", ret);
pci_free_irq_vectors(pdev);
}
return ret;
}
static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
{
devm_free_irq(rtwdev->dev, pdev->irq, rtwdev);
pci_free_irq_vectors(pdev);
}
static int rtw_pci_napi_poll(struct napi_struct *napi, int budget)
{
struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi);
struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev,
priv);
int work_done = 0;
while (work_done < budget) {
u32 work_done_once;
work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU,
budget - work_done);
if (work_done_once == 0)
break;
work_done += work_done_once;
}
if (work_done < budget) {
napi_complete_done(napi, work_done);
spin_lock_bh(&rtwpci->irq_lock);
if (rtwpci->running)
rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
spin_unlock_bh(&rtwpci->irq_lock);
/* When ISR happens during polling and before napi_complete
* while no further data is received. Data on the dma_ring will
* not be processed immediately. Check whether dma ring is
* empty and perform napi_schedule accordingly.
*/
if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci))
napi_schedule(napi);
}
return work_done;
}
static void rtw_pci_napi_init(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
init_dummy_netdev(&rtwpci->netdev);
netif_napi_add(&rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll,
RTW_NAPI_WEIGHT_NUM);
}
static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev)
{
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
rtw_pci_napi_stop(rtwdev);
netif_napi_del(&rtwpci->napi);
}
int rtw_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct ieee80211_hw *hw;
struct rtw_dev *rtwdev;
int drv_data_size;
int ret;
drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci);
hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops);
if (!hw) {
dev_err(&pdev->dev, "failed to allocate hw\n");
return -ENOMEM;
}
rtwdev = hw->priv;
rtwdev->hw = hw;
rtwdev->dev = &pdev->dev;
rtwdev->chip = (struct rtw_chip_info *)id->driver_data;
rtwdev->hci.ops = &rtw_pci_ops;
rtwdev->hci.type = RTW_HCI_TYPE_PCIE;
ret = rtw_core_init(rtwdev);
if (ret)
goto err_release_hw;
rtw_dbg(rtwdev, RTW_DBG_PCI,
"rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n",
pdev->vendor, pdev->device, pdev->revision);
ret = rtw_pci_claim(rtwdev, pdev);
if (ret) {
rtw_err(rtwdev, "failed to claim pci device\n");
goto err_deinit_core;
}
ret = rtw_pci_setup_resource(rtwdev, pdev);
if (ret) {
rtw_err(rtwdev, "failed to setup pci resources\n");
goto err_pci_declaim;
}
rtw_pci_napi_init(rtwdev);
ret = rtw_chip_info_setup(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to setup chip information\n");
goto err_destroy_pci;
}
rtw_pci_phy_cfg(rtwdev);
ret = rtw_register_hw(rtwdev, hw);
if (ret) {
rtw_err(rtwdev, "failed to register hw\n");
goto err_destroy_pci;
}
ret = rtw_pci_request_irq(rtwdev, pdev);
if (ret) {
ieee80211_unregister_hw(hw);
goto err_destroy_pci;
}
return 0;
err_destroy_pci:
rtw_pci_napi_deinit(rtwdev);
rtw_pci_destroy(rtwdev, pdev);
err_pci_declaim:
rtw_pci_declaim(rtwdev, pdev);
err_deinit_core:
rtw_core_deinit(rtwdev);
err_release_hw:
ieee80211_free_hw(hw);
return ret;
}
EXPORT_SYMBOL(rtw_pci_probe);
void rtw_pci_remove(struct pci_dev *pdev)
{
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
struct rtw_dev *rtwdev;
struct rtw_pci *rtwpci;
if (!hw)
return;
rtwdev = hw->priv;
rtwpci = (struct rtw_pci *)rtwdev->priv;
rtw_unregister_hw(rtwdev, hw);
rtw_pci_disable_interrupt(rtwdev, rtwpci);
rtw_pci_napi_deinit(rtwdev);
rtw_pci_destroy(rtwdev, pdev);
rtw_pci_declaim(rtwdev, pdev);
rtw_pci_free_irq(rtwdev, pdev);
rtw_core_deinit(rtwdev);
ieee80211_free_hw(hw);
}
EXPORT_SYMBOL(rtw_pci_remove);
void rtw_pci_shutdown(struct pci_dev *pdev)
{
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
struct rtw_dev *rtwdev;
struct rtw_chip_info *chip;
if (!hw)
return;
rtwdev = hw->priv;
chip = rtwdev->chip;
if (chip->ops->shutdown)
chip->ops->shutdown(rtwdev);
pci_set_power_state(pdev, PCI_D3hot);
}
EXPORT_SYMBOL(rtw_pci_shutdown);
MODULE_AUTHOR("Realtek Corporation");
MODULE_DESCRIPTION("Realtek 802.11ac wireless PCI driver");
MODULE_LICENSE("Dual BSD/GPL");
|