1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
|
// SPDX-License-Identifier: GPL-2.0-only
/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2011-2013 Solarflare Communications Inc.
*/
/* Theory of operation:
*
* PTP support is assisted by firmware running on the MC, which provides
* the hardware timestamping capabilities. Both transmitted and received
* PTP event packets are queued onto internal queues for subsequent processing;
* this is because the MC operations are relatively long and would block
* block NAPI/interrupt operation.
*
* Receive event processing:
* The event contains the packet's UUID and sequence number, together
* with the hardware timestamp. The PTP receive packet queue is searched
* for this UUID/sequence number and, if found, put on a pending queue.
* Packets not matching are delivered without timestamps (MCDI events will
* always arrive after the actual packet).
* It is important for the operation of the PTP protocol that the ordering
* of packets between the event and general port is maintained.
*
* Work queue processing:
* If work waiting, synchronise host/hardware time
*
* Transmit: send packet through MC, which returns the transmission time
* that is converted to an appropriate timestamp.
*
* Receive: the packet's reception time is converted to an appropriate
* timestamp.
*/
#include <linux/ip.h>
#include <linux/udp.h>
#include <linux/time.h>
#include <linux/ktime.h>
#include <linux/module.h>
#include <linux/net_tstamp.h>
#include <linux/pps_kernel.h>
#include <linux/ptp_clock_kernel.h>
#include "net_driver.h"
#include "efx.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
#include "io.h"
#include "farch_regs.h"
#include "nic.h"
/* Maximum number of events expected to make up a PTP event */
#define MAX_EVENT_FRAGS 3
/* Maximum delay, ms, to begin synchronisation */
#define MAX_SYNCHRONISE_WAIT_MS 2
/* How long, at most, to spend synchronising */
#define SYNCHRONISE_PERIOD_NS 250000
/* How often to update the shared memory time */
#define SYNCHRONISATION_GRANULARITY_NS 200
/* Minimum permitted length of a (corrected) synchronisation time */
#define DEFAULT_MIN_SYNCHRONISATION_NS 120
/* Maximum permitted length of a (corrected) synchronisation time */
#define MAX_SYNCHRONISATION_NS 1000
/* How many (MC) receive events that can be queued */
#define MAX_RECEIVE_EVENTS 8
/* Length of (modified) moving average. */
#define AVERAGE_LENGTH 16
/* How long an unmatched event or packet can be held */
#define PKT_EVENT_LIFETIME_MS 10
/* Offsets into PTP packet for identification. These offsets are from the
* start of the IP header, not the MAC header. Note that neither PTP V1 nor
* PTP V2 permit the use of IPV4 options.
*/
#define PTP_DPORT_OFFSET 22
#define PTP_V1_VERSION_LENGTH 2
#define PTP_V1_VERSION_OFFSET 28
#define PTP_V1_UUID_LENGTH 6
#define PTP_V1_UUID_OFFSET 50
#define PTP_V1_SEQUENCE_LENGTH 2
#define PTP_V1_SEQUENCE_OFFSET 58
/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
* includes IP header.
*/
#define PTP_V1_MIN_LENGTH 64
#define PTP_V2_VERSION_LENGTH 1
#define PTP_V2_VERSION_OFFSET 29
#define PTP_V2_UUID_LENGTH 8
#define PTP_V2_UUID_OFFSET 48
/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
* the MC only captures the last six bytes of the clock identity. These values
* reflect those, not the ones used in the standard. The standard permits
* mapping of V1 UUIDs to V2 UUIDs with these same values.
*/
#define PTP_V2_MC_UUID_LENGTH 6
#define PTP_V2_MC_UUID_OFFSET 50
#define PTP_V2_SEQUENCE_LENGTH 2
#define PTP_V2_SEQUENCE_OFFSET 58
/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
* includes IP header.
*/
#define PTP_V2_MIN_LENGTH 63
#define PTP_MIN_LENGTH 63
#define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
#define PTP_EVENT_PORT 319
#define PTP_GENERAL_PORT 320
/* Annoyingly the format of the version numbers are different between
* versions 1 and 2 so it isn't possible to simply look for 1 or 2.
*/
#define PTP_VERSION_V1 1
#define PTP_VERSION_V2 2
#define PTP_VERSION_V2_MASK 0x0f
enum ptp_packet_state {
PTP_PACKET_STATE_UNMATCHED = 0,
PTP_PACKET_STATE_MATCHED,
PTP_PACKET_STATE_TIMED_OUT,
PTP_PACKET_STATE_MATCH_UNWANTED
};
/* NIC synchronised with single word of time only comprising
* partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
*/
#define MC_NANOSECOND_BITS 30
#define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
#define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
/* Maximum parts-per-billion adjustment that is acceptable */
#define MAX_PPB 1000000
/* Precalculate scale word to avoid long long division at runtime */
/* This is equivalent to 2^66 / 10^9. */
#define PPB_SCALE_WORD ((1LL << (57)) / 1953125LL)
/* How much to shift down after scaling to convert to FP40 */
#define PPB_SHIFT_FP40 26
/* ... and FP44. */
#define PPB_SHIFT_FP44 22
#define PTP_SYNC_ATTEMPTS 4
/**
* struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
* @words: UUID and (partial) sequence number
* @expiry: Time after which the packet should be delivered irrespective of
* event arrival.
* @state: The state of the packet - whether it is ready for processing or
* whether that is of no interest.
*/
struct efx_ptp_match {
u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
unsigned long expiry;
enum ptp_packet_state state;
};
/**
* struct efx_ptp_event_rx - A PTP receive event (from MC)
* @seq0: First part of (PTP) UUID
* @seq1: Second part of (PTP) UUID and sequence number
* @hwtimestamp: Event timestamp
*/
struct efx_ptp_event_rx {
struct list_head link;
u32 seq0;
u32 seq1;
ktime_t hwtimestamp;
unsigned long expiry;
};
/**
* struct efx_ptp_timeset - Synchronisation between host and MC
* @host_start: Host time immediately before hardware timestamp taken
* @major: Hardware timestamp, major
* @minor: Hardware timestamp, minor
* @host_end: Host time immediately after hardware timestamp taken
* @wait: Number of NIC clock ticks between hardware timestamp being read and
* host end time being seen
* @window: Difference of host_end and host_start
* @valid: Whether this timeset is valid
*/
struct efx_ptp_timeset {
u32 host_start;
u32 major;
u32 minor;
u32 host_end;
u32 wait;
u32 window; /* Derived: end - start, allowing for wrap */
};
/**
* struct efx_ptp_data - Precision Time Protocol (PTP) state
* @efx: The NIC context
* @channel: The PTP channel (Siena only)
* @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
* separate events)
* @rxq: Receive SKB queue (awaiting timestamps)
* @txq: Transmit SKB queue
* @evt_list: List of MC receive events awaiting packets
* @evt_free_list: List of free events
* @evt_lock: Lock for manipulating evt_list and evt_free_list
* @rx_evts: Instantiated events (on evt_list and evt_free_list)
* @workwq: Work queue for processing pending PTP operations
* @work: Work task
* @reset_required: A serious error has occurred and the PTP task needs to be
* reset (disable, enable).
* @rxfilter_event: Receive filter when operating
* @rxfilter_general: Receive filter when operating
* @config: Current timestamp configuration
* @enabled: PTP operation enabled
* @mode: Mode in which PTP operating (PTP version)
* @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
* @nic_to_kernel_time: Function to convert from NIC to kernel time
* @nic_time.minor_max: Wrap point for NIC minor times
* @nic_time.sync_event_diff_min: Minimum acceptable difference between time
* in packet prefix and last MCDI time sync event i.e. how much earlier than
* the last sync event time a packet timestamp can be.
* @nic_time.sync_event_diff_max: Maximum acceptable difference between time
* in packet prefix and last MCDI time sync event i.e. how much later than
* the last sync event time a packet timestamp can be.
* @nic_time.sync_event_minor_shift: Shift required to make minor time from
* field in MCDI time sync event.
* @min_synchronisation_ns: Minimum acceptable corrected sync window
* @capabilities: Capabilities flags from the NIC
* @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
* timestamps
* @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
* timestamps
* @ts_corrections.pps_out: PPS output error (information only)
* @ts_corrections.pps_in: Required driver correction of PPS input timestamps
* @ts_corrections.general_tx: Required driver correction of general packet
* transmit timestamps
* @ts_corrections.general_rx: Required driver correction of general packet
* receive timestamps
* @evt_frags: Partly assembled PTP events
* @evt_frag_idx: Current fragment number
* @evt_code: Last event code
* @start: Address at which MC indicates ready for synchronisation
* @host_time_pps: Host time at last PPS
* @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
* frequency adjustment into a fixed point fractional nanosecond format.
* @current_adjfreq: Current ppb adjustment.
* @phc_clock: Pointer to registered phc device (if primary function)
* @phc_clock_info: Registration structure for phc device
* @pps_work: pps work task for handling pps events
* @pps_workwq: pps work queue
* @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
* @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
* allocations in main data path).
* @good_syncs: Number of successful synchronisations.
* @fast_syncs: Number of synchronisations requiring short delay
* @bad_syncs: Number of failed synchronisations.
* @sync_timeouts: Number of synchronisation timeouts
* @no_time_syncs: Number of synchronisations with no good times.
* @invalid_sync_windows: Number of sync windows with bad durations.
* @undersize_sync_windows: Number of corrected sync windows that are too small
* @oversize_sync_windows: Number of corrected sync windows that are too large
* @rx_no_timestamp: Number of packets received without a timestamp.
* @timeset: Last set of synchronisation statistics.
* @xmit_skb: Transmit SKB function.
*/
struct efx_ptp_data {
struct efx_nic *efx;
struct efx_channel *channel;
bool rx_ts_inline;
struct sk_buff_head rxq;
struct sk_buff_head txq;
struct list_head evt_list;
struct list_head evt_free_list;
spinlock_t evt_lock;
struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
struct workqueue_struct *workwq;
struct work_struct work;
bool reset_required;
u32 rxfilter_event;
u32 rxfilter_general;
bool rxfilter_installed;
struct hwtstamp_config config;
bool enabled;
unsigned int mode;
void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
s32 correction);
struct {
u32 minor_max;
u32 sync_event_diff_min;
u32 sync_event_diff_max;
unsigned int sync_event_minor_shift;
} nic_time;
unsigned int min_synchronisation_ns;
unsigned int capabilities;
struct {
s32 ptp_tx;
s32 ptp_rx;
s32 pps_out;
s32 pps_in;
s32 general_tx;
s32 general_rx;
} ts_corrections;
efx_qword_t evt_frags[MAX_EVENT_FRAGS];
int evt_frag_idx;
int evt_code;
struct efx_buffer start;
struct pps_event_time host_time_pps;
unsigned int adjfreq_ppb_shift;
s64 current_adjfreq;
struct ptp_clock *phc_clock;
struct ptp_clock_info phc_clock_info;
struct work_struct pps_work;
struct workqueue_struct *pps_workwq;
bool nic_ts_enabled;
_MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
unsigned int good_syncs;
unsigned int fast_syncs;
unsigned int bad_syncs;
unsigned int sync_timeouts;
unsigned int no_time_syncs;
unsigned int invalid_sync_windows;
unsigned int undersize_sync_windows;
unsigned int oversize_sync_windows;
unsigned int rx_no_timestamp;
struct efx_ptp_timeset
timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
};
static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
static int efx_phc_settime(struct ptp_clock_info *ptp,
const struct timespec64 *e_ts);
static int efx_phc_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *request, int on);
bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
return ((efx_nic_rev(efx) >= EFX_REV_HUNT_A0) &&
(nic_data->datapath_caps2 &
(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_MAC_TIMESTAMPING_LBN)
));
}
/* PTP 'extra' channel is still a traffic channel, but we only create TX queues
* if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
*/
static bool efx_ptp_want_txqs(struct efx_channel *channel)
{
return efx_ptp_use_mac_tx_timestamps(channel->efx);
}
#define PTP_SW_STAT(ext_name, field_name) \
{ #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
#define PTP_MC_STAT(ext_name, mcdi_name) \
{ #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
PTP_SW_STAT(ptp_good_syncs, good_syncs),
PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
PTP_MC_STAT(ptp_timestamp_packets, TS),
PTP_MC_STAT(ptp_filter_matches, FM),
PTP_MC_STAT(ptp_non_filter_matches, NFM),
};
#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
static const unsigned long efx_ptp_stat_mask[] = {
[0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
};
size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
{
if (!efx->ptp_data)
return 0;
return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
efx_ptp_stat_mask, strings);
}
size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
size_t i;
int rc;
if (!efx->ptp_data)
return 0;
/* Copy software statistics */
for (i = 0; i < PTP_STAT_COUNT; i++) {
if (efx_ptp_stat_desc[i].dma_width)
continue;
stats[i] = *(unsigned int *)((char *)efx->ptp_data +
efx_ptp_stat_desc[i].offset);
}
/* Fetch MC statistics. We *must* fill in all statistics or
* risk leaking kernel memory to userland, so if the MCDI
* request fails we pretend we got zeroes.
*/
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), NULL);
if (rc)
memset(outbuf, 0, sizeof(outbuf));
efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
efx_ptp_stat_mask,
stats, _MCDI_PTR(outbuf, 0), false);
return PTP_STAT_COUNT;
}
/* For Siena platforms NIC time is s and ns */
static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
{
struct timespec64 ts = ns_to_timespec64(ns);
*nic_major = (u32)ts.tv_sec;
*nic_minor = ts.tv_nsec;
}
static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
s32 correction)
{
ktime_t kt = ktime_set(nic_major, nic_minor);
if (correction >= 0)
kt = ktime_add_ns(kt, (u64)correction);
else
kt = ktime_sub_ns(kt, (u64)-correction);
return kt;
}
/* To convert from s27 format to ns we multiply then divide by a power of 2.
* For the conversion from ns to s27, the operation is also converted to a
* multiply and shift.
*/
#define S27_TO_NS_SHIFT (27)
#define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
#define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
#define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT)
/* For Huntington platforms NIC time is in seconds and fractions of a second
* where the minor register only uses 27 bits in units of 2^-27s.
*/
static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
{
struct timespec64 ts = ns_to_timespec64(ns);
u32 maj = (u32)ts.tv_sec;
u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
(1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
/* The conversion can result in the minor value exceeding the maximum.
* In this case, round up to the next second.
*/
if (min >= S27_MINOR_MAX) {
min -= S27_MINOR_MAX;
maj++;
}
*nic_major = maj;
*nic_minor = min;
}
static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
{
u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
(1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
return ktime_set(nic_major, ns);
}
static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
s32 correction)
{
/* Apply the correction and deal with carry */
nic_minor += correction;
if ((s32)nic_minor < 0) {
nic_minor += S27_MINOR_MAX;
nic_major--;
} else if (nic_minor >= S27_MINOR_MAX) {
nic_minor -= S27_MINOR_MAX;
nic_major++;
}
return efx_ptp_s27_to_ktime(nic_major, nic_minor);
}
/* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
{
struct timespec64 ts = ns_to_timespec64(ns);
*nic_major = (u32)ts.tv_sec;
*nic_minor = ts.tv_nsec * 4;
}
static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
s32 correction)
{
ktime_t kt;
nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
correction = DIV_ROUND_CLOSEST(correction, 4);
kt = ktime_set(nic_major, nic_minor);
if (correction >= 0)
kt = ktime_add_ns(kt, (u64)correction);
else
kt = ktime_sub_ns(kt, (u64)-correction);
return kt;
}
struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
{
return efx->ptp_data ? efx->ptp_data->channel : NULL;
}
static u32 last_sync_timestamp_major(struct efx_nic *efx)
{
struct efx_channel *channel = efx_ptp_channel(efx);
u32 major = 0;
if (channel)
major = channel->sync_timestamp_major;
return major;
}
/* The 8000 series and later can provide the time from the MAC, which is only
* 48 bits long and provides meta-information in the top 2 bits.
*/
static ktime_t
efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
struct efx_ptp_data *ptp,
u32 nic_major, u32 nic_minor,
s32 correction)
{
u32 sync_timestamp;
ktime_t kt = { 0 };
s16 delta;
if (!(nic_major & 0x80000000)) {
WARN_ON_ONCE(nic_major >> 16);
/* Medford provides 48 bits of timestamp, so we must get the top
* 16 bits from the timesync event state.
*
* We only have the lower 16 bits of the time now, but we do
* have a full resolution timestamp at some point in past. As
* long as the difference between the (real) now and the sync
* is less than 2^15, then we can reconstruct the difference
* between those two numbers using only the lower 16 bits of
* each.
*
* Put another way
*
* a - b = ((a mod k) - b) mod k
*
* when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
* (a mod k) and b, so can calculate the delta, a - b.
*
*/
sync_timestamp = last_sync_timestamp_major(efx);
/* Because delta is s16 this does an implicit mask down to
* 16 bits which is what we need, assuming
* MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
* we can deal with the (unlikely) case of sync timestamps
* arriving from the future.
*/
delta = nic_major - sync_timestamp;
/* Recover the fully specified time now, by applying the offset
* to the (fully specified) sync time.
*/
nic_major = sync_timestamp + delta;
kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
correction);
}
return kt;
}
ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
struct efx_ptp_data *ptp = efx->ptp_data;
ktime_t kt;
if (efx_ptp_use_mac_tx_timestamps(efx))
kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
tx_queue->completed_timestamp_major,
tx_queue->completed_timestamp_minor,
ptp->ts_corrections.general_tx);
else
kt = ptp->nic_to_kernel_time(
tx_queue->completed_timestamp_major,
tx_queue->completed_timestamp_minor,
ptp->ts_corrections.general_tx);
return kt;
}
/* Get PTP attributes and set up time conversions */
static int efx_ptp_get_attributes(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
struct efx_ptp_data *ptp = efx->ptp_data;
int rc;
u32 fmt;
size_t out_len;
/* Get the PTP attributes. If the NIC doesn't support the operation we
* use the default format for compatibility with older NICs i.e.
* seconds and nanoseconds.
*/
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &out_len);
if (rc == 0) {
fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
} else if (rc == -EINVAL) {
fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
} else if (rc == -EPERM) {
netif_info(efx, probe, efx->net_dev, "no PTP support\n");
return rc;
} else {
efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
outbuf, sizeof(outbuf), rc);
return rc;
}
switch (fmt) {
case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
ptp->nic_time.minor_max = 1 << 27;
ptp->nic_time.sync_event_minor_shift = 19;
break;
case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
ptp->nic_time.minor_max = 1000000000;
ptp->nic_time.sync_event_minor_shift = 22;
break;
case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
ptp->nic_time.minor_max = 4000000000UL;
ptp->nic_time.sync_event_minor_shift = 24;
break;
default:
return -ERANGE;
}
/* Precalculate acceptable difference between the minor time in the
* packet prefix and the last MCDI time sync event. We expect the
* packet prefix timestamp to be after of sync event by up to one
* sync event interval (0.25s) but we allow it to exceed this by a
* fuzz factor of (0.1s)
*/
ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
- (ptp->nic_time.minor_max / 10);
ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
+ (ptp->nic_time.minor_max / 10);
/* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
* operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
* a value to use for the minimum acceptable corrected synchronization
* window and may return further capabilities.
* If we have the extra information store it. For older firmware that
* does not implement the extended command use the default value.
*/
if (rc == 0 &&
out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
ptp->min_synchronisation_ns =
MCDI_DWORD(outbuf,
PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
else
ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
if (rc == 0 &&
out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
ptp->capabilities = MCDI_DWORD(outbuf,
PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
else
ptp->capabilities = 0;
/* Set up the shift for conversion between frequency
* adjustments in parts-per-billion and the fixed-point
* fractional ns format that the adapter uses.
*/
if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
else
ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
return 0;
}
/* Get PTP timestamp corrections */
static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
int rc;
size_t out_len;
/* Get the timestamp corrections from the NIC. If this operation is
* not supported (older NICs) then no correction is required.
*/
MCDI_SET_DWORD(inbuf, PTP_IN_OP,
MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &out_len);
if (rc == 0) {
efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
outbuf,
PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
outbuf,
PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
} else {
efx->ptp_data->ts_corrections.general_tx =
efx->ptp_data->ts_corrections.ptp_tx;
efx->ptp_data->ts_corrections.general_rx =
efx->ptp_data->ts_corrections.ptp_rx;
}
} else if (rc == -EINVAL) {
efx->ptp_data->ts_corrections.ptp_tx = 0;
efx->ptp_data->ts_corrections.ptp_rx = 0;
efx->ptp_data->ts_corrections.pps_out = 0;
efx->ptp_data->ts_corrections.pps_in = 0;
efx->ptp_data->ts_corrections.general_tx = 0;
efx->ptp_data->ts_corrections.general_rx = 0;
} else {
efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
sizeof(outbuf), rc);
return rc;
}
return 0;
}
/* Enable MCDI PTP support. */
static int efx_ptp_enable(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
MCDI_DECLARE_BUF_ERR(outbuf);
int rc;
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
efx->ptp_data->channel ?
efx->ptp_data->channel->channel : 0);
MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), NULL);
rc = (rc == -EALREADY) ? 0 : rc;
if (rc)
efx_mcdi_display_error(efx, MC_CMD_PTP,
MC_CMD_PTP_IN_ENABLE_LEN,
outbuf, sizeof(outbuf), rc);
return rc;
}
/* Disable MCDI PTP support.
*
* Note that this function should never rely on the presence of ptp_data -
* may be called before that exists.
*/
static int efx_ptp_disable(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
MCDI_DECLARE_BUF_ERR(outbuf);
int rc;
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), NULL);
rc = (rc == -EALREADY) ? 0 : rc;
/* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
* should only have been called during probe.
*/
if (rc == -ENOSYS || rc == -EPERM)
netif_info(efx, probe, efx->net_dev, "no PTP support\n");
else if (rc)
efx_mcdi_display_error(efx, MC_CMD_PTP,
MC_CMD_PTP_IN_DISABLE_LEN,
outbuf, sizeof(outbuf), rc);
return rc;
}
static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
{
struct sk_buff *skb;
while ((skb = skb_dequeue(q))) {
local_bh_disable();
netif_receive_skb(skb);
local_bh_enable();
}
}
static void efx_ptp_handle_no_channel(struct efx_nic *efx)
{
netif_err(efx, drv, efx->net_dev,
"ERROR: PTP requires MSI-X and 1 additional interrupt"
"vector. PTP disabled\n");
}
/* Repeatedly send the host time to the MC which will capture the hardware
* time.
*/
static void efx_ptp_send_times(struct efx_nic *efx,
struct pps_event_time *last_time)
{
struct pps_event_time now;
struct timespec64 limit;
struct efx_ptp_data *ptp = efx->ptp_data;
int *mc_running = ptp->start.addr;
pps_get_ts(&now);
limit = now.ts_real;
timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
/* Write host time for specified period or until MC is done */
while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
READ_ONCE(*mc_running)) {
struct timespec64 update_time;
unsigned int host_time;
/* Don't update continuously to avoid saturating the PCIe bus */
update_time = now.ts_real;
timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
do {
pps_get_ts(&now);
} while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
READ_ONCE(*mc_running));
/* Synchronise NIC with single word of time only */
host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
now.ts_real.tv_nsec);
/* Update host time in NIC memory */
efx->type->ptp_write_host_time(efx, host_time);
}
*last_time = now;
}
/* Read a timeset from the MC's results and partial process. */
static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
struct efx_ptp_timeset *timeset)
{
unsigned start_ns, end_ns;
timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
/* Ignore seconds */
start_ns = timeset->host_start & MC_NANOSECOND_MASK;
end_ns = timeset->host_end & MC_NANOSECOND_MASK;
/* Allow for rollover */
if (end_ns < start_ns)
end_ns += NSEC_PER_SEC;
/* Determine duration of operation */
timeset->window = end_ns - start_ns;
}
/* Process times received from MC.
*
* Extract times from returned results, and establish the minimum value
* seen. The minimum value represents the "best" possible time and events
* too much greater than this are rejected - the machine is, perhaps, too
* busy. A number of readings are taken so that, hopefully, at least one good
* synchronisation will be seen in the results.
*/
static int
efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
size_t response_length,
const struct pps_event_time *last_time)
{
unsigned number_readings =
MCDI_VAR_ARRAY_LEN(response_length,
PTP_OUT_SYNCHRONIZE_TIMESET);
unsigned i;
unsigned ngood = 0;
unsigned last_good = 0;
struct efx_ptp_data *ptp = efx->ptp_data;
u32 last_sec;
u32 start_sec;
struct timespec64 delta;
ktime_t mc_time;
if (number_readings == 0)
return -EAGAIN;
/* Read the set of results and find the last good host-MC
* synchronization result. The MC times when it finishes reading the
* host time so the corrected window time should be fairly constant
* for a given platform. Increment stats for any results that appear
* to be erroneous.
*/
for (i = 0; i < number_readings; i++) {
s32 window, corrected;
struct timespec64 wait;
efx_ptp_read_timeset(
MCDI_ARRAY_STRUCT_PTR(synch_buf,
PTP_OUT_SYNCHRONIZE_TIMESET, i),
&ptp->timeset[i]);
wait = ktime_to_timespec64(
ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
window = ptp->timeset[i].window;
corrected = window - wait.tv_nsec;
/* We expect the uncorrected synchronization window to be at
* least as large as the interval between host start and end
* times. If it is smaller than this then this is mostly likely
* to be a consequence of the host's time being adjusted.
* Check that the corrected sync window is in a reasonable
* range. If it is out of range it is likely to be because an
* interrupt or other delay occurred between reading the system
* time and writing it to MC memory.
*/
if (window < SYNCHRONISATION_GRANULARITY_NS) {
++ptp->invalid_sync_windows;
} else if (corrected >= MAX_SYNCHRONISATION_NS) {
++ptp->oversize_sync_windows;
} else if (corrected < ptp->min_synchronisation_ns) {
++ptp->undersize_sync_windows;
} else {
ngood++;
last_good = i;
}
}
if (ngood == 0) {
netif_warn(efx, drv, efx->net_dev,
"PTP no suitable synchronisations\n");
return -EAGAIN;
}
/* Calculate delay from last good sync (host time) to last_time.
* It is possible that the seconds rolled over between taking
* the start reading and the last value written by the host. The
* timescales are such that a gap of more than one second is never
* expected. delta is *not* normalised.
*/
start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
if (start_sec != last_sec &&
((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
netif_warn(efx, hw, efx->net_dev,
"PTP bad synchronisation seconds\n");
return -EAGAIN;
}
delta.tv_sec = (last_sec - start_sec) & 1;
delta.tv_nsec =
last_time->ts_real.tv_nsec -
(ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
/* Convert the NIC time at last good sync into kernel time.
* No correction is required - this time is the output of a
* firmware process.
*/
mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
ptp->timeset[last_good].minor, 0);
/* Calculate delay from NIC top of second to last_time */
delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
/* Set PPS timestamp to match NIC top of second */
ptp->host_time_pps = *last_time;
pps_sub_ts(&ptp->host_time_pps, delta);
return 0;
}
/* Synchronize times between the host and the MC */
static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
{
struct efx_ptp_data *ptp = efx->ptp_data;
MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
size_t response_length;
int rc;
unsigned long timeout;
struct pps_event_time last_time = {};
unsigned int loops = 0;
int *start = ptp->start.addr;
MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
num_readings);
MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
ptp->start.dma_addr);
/* Clear flag that signals MC ready */
WRITE_ONCE(*start, 0);
rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
EFX_WARN_ON_ONCE_PARANOID(rc);
/* Wait for start from MCDI (or timeout) */
timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
udelay(20); /* Usually start MCDI execution quickly */
loops++;
}
if (loops <= 1)
++ptp->fast_syncs;
if (!time_before(jiffies, timeout))
++ptp->sync_timeouts;
if (READ_ONCE(*start))
efx_ptp_send_times(efx, &last_time);
/* Collect results */
rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
synch_buf, sizeof(synch_buf),
&response_length);
if (rc == 0) {
rc = efx_ptp_process_times(efx, synch_buf, response_length,
&last_time);
if (rc == 0)
++ptp->good_syncs;
else
++ptp->no_time_syncs;
}
/* Increment the bad syncs counter if the synchronize fails, whatever
* the reason.
*/
if (rc != 0)
++ptp->bad_syncs;
return rc;
}
/* Transmit a PTP packet via the dedicated hardware timestamped queue. */
static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
{
struct efx_ptp_data *ptp_data = efx->ptp_data;
struct efx_tx_queue *tx_queue;
u8 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
tx_queue = &ptp_data->channel->tx_queue[type];
if (tx_queue && tx_queue->timestamping) {
efx_enqueue_skb(tx_queue, skb);
} else {
WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
dev_kfree_skb_any(skb);
}
}
/* Transmit a PTP packet, via the MCDI interface, to the wire. */
static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
{
struct efx_ptp_data *ptp_data = efx->ptp_data;
struct skb_shared_hwtstamps timestamps;
int rc = -EIO;
MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
size_t len;
MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
if (skb_shinfo(skb)->nr_frags != 0) {
rc = skb_linearize(skb);
if (rc != 0)
goto fail;
}
if (skb->ip_summed == CHECKSUM_PARTIAL) {
rc = skb_checksum_help(skb);
if (rc != 0)
goto fail;
}
skb_copy_from_linear_data(skb,
MCDI_PTR(ptp_data->txbuf,
PTP_IN_TRANSMIT_PACKET),
skb->len);
rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
txtime, sizeof(txtime), &len);
if (rc != 0)
goto fail;
memset(×tamps, 0, sizeof(timestamps));
timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
ptp_data->ts_corrections.ptp_tx);
skb_tstamp_tx(skb, ×tamps);
rc = 0;
fail:
dev_kfree_skb_any(skb);
return;
}
static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
{
struct efx_ptp_data *ptp = efx->ptp_data;
struct list_head *cursor;
struct list_head *next;
if (ptp->rx_ts_inline)
return;
/* Drop time-expired events */
spin_lock_bh(&ptp->evt_lock);
if (!list_empty(&ptp->evt_list)) {
list_for_each_safe(cursor, next, &ptp->evt_list) {
struct efx_ptp_event_rx *evt;
evt = list_entry(cursor, struct efx_ptp_event_rx,
link);
if (time_after(jiffies, evt->expiry)) {
list_move(&evt->link, &ptp->evt_free_list);
netif_warn(efx, hw, efx->net_dev,
"PTP rx event dropped\n");
}
}
}
spin_unlock_bh(&ptp->evt_lock);
}
static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
struct sk_buff *skb)
{
struct efx_ptp_data *ptp = efx->ptp_data;
bool evts_waiting;
struct list_head *cursor;
struct list_head *next;
struct efx_ptp_match *match;
enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
WARN_ON_ONCE(ptp->rx_ts_inline);
spin_lock_bh(&ptp->evt_lock);
evts_waiting = !list_empty(&ptp->evt_list);
spin_unlock_bh(&ptp->evt_lock);
if (!evts_waiting)
return PTP_PACKET_STATE_UNMATCHED;
match = (struct efx_ptp_match *)skb->cb;
/* Look for a matching timestamp in the event queue */
spin_lock_bh(&ptp->evt_lock);
list_for_each_safe(cursor, next, &ptp->evt_list) {
struct efx_ptp_event_rx *evt;
evt = list_entry(cursor, struct efx_ptp_event_rx, link);
if ((evt->seq0 == match->words[0]) &&
(evt->seq1 == match->words[1])) {
struct skb_shared_hwtstamps *timestamps;
/* Match - add in hardware timestamp */
timestamps = skb_hwtstamps(skb);
timestamps->hwtstamp = evt->hwtimestamp;
match->state = PTP_PACKET_STATE_MATCHED;
rc = PTP_PACKET_STATE_MATCHED;
list_move(&evt->link, &ptp->evt_free_list);
break;
}
}
spin_unlock_bh(&ptp->evt_lock);
return rc;
}
/* Process any queued receive events and corresponding packets
*
* q is returned with all the packets that are ready for delivery.
*/
static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
{
struct efx_ptp_data *ptp = efx->ptp_data;
struct sk_buff *skb;
while ((skb = skb_dequeue(&ptp->rxq))) {
struct efx_ptp_match *match;
match = (struct efx_ptp_match *)skb->cb;
if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
__skb_queue_tail(q, skb);
} else if (efx_ptp_match_rx(efx, skb) ==
PTP_PACKET_STATE_MATCHED) {
__skb_queue_tail(q, skb);
} else if (time_after(jiffies, match->expiry)) {
match->state = PTP_PACKET_STATE_TIMED_OUT;
++ptp->rx_no_timestamp;
__skb_queue_tail(q, skb);
} else {
/* Replace unprocessed entry and stop */
skb_queue_head(&ptp->rxq, skb);
break;
}
}
}
/* Complete processing of a received packet */
static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
{
local_bh_disable();
netif_receive_skb(skb);
local_bh_enable();
}
static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
{
struct efx_ptp_data *ptp = efx->ptp_data;
if (ptp->rxfilter_installed) {
efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
ptp->rxfilter_general);
efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
ptp->rxfilter_event);
ptp->rxfilter_installed = false;
}
}
static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
{
struct efx_ptp_data *ptp = efx->ptp_data;
struct efx_filter_spec rxfilter;
int rc;
if (!ptp->channel || ptp->rxfilter_installed)
return 0;
/* Must filter on both event and general ports to ensure
* that there is no packet re-ordering.
*/
efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
efx_rx_queue_index(
efx_channel_get_rx_queue(ptp->channel)));
rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
htonl(PTP_ADDRESS),
htons(PTP_EVENT_PORT));
if (rc != 0)
return rc;
rc = efx_filter_insert_filter(efx, &rxfilter, true);
if (rc < 0)
return rc;
ptp->rxfilter_event = rc;
efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
efx_rx_queue_index(
efx_channel_get_rx_queue(ptp->channel)));
rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
htonl(PTP_ADDRESS),
htons(PTP_GENERAL_PORT));
if (rc != 0)
goto fail;
rc = efx_filter_insert_filter(efx, &rxfilter, true);
if (rc < 0)
goto fail;
ptp->rxfilter_general = rc;
ptp->rxfilter_installed = true;
return 0;
fail:
efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
ptp->rxfilter_event);
return rc;
}
static int efx_ptp_start(struct efx_nic *efx)
{
struct efx_ptp_data *ptp = efx->ptp_data;
int rc;
ptp->reset_required = false;
rc = efx_ptp_insert_multicast_filters(efx);
if (rc)
return rc;
rc = efx_ptp_enable(efx);
if (rc != 0)
goto fail;
ptp->evt_frag_idx = 0;
ptp->current_adjfreq = 0;
return 0;
fail:
efx_ptp_remove_multicast_filters(efx);
return rc;
}
static int efx_ptp_stop(struct efx_nic *efx)
{
struct efx_ptp_data *ptp = efx->ptp_data;
struct list_head *cursor;
struct list_head *next;
int rc;
if (ptp == NULL)
return 0;
rc = efx_ptp_disable(efx);
efx_ptp_remove_multicast_filters(efx);
/* Make sure RX packets are really delivered */
efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
skb_queue_purge(&efx->ptp_data->txq);
/* Drop any pending receive events */
spin_lock_bh(&efx->ptp_data->evt_lock);
list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
list_move(cursor, &efx->ptp_data->evt_free_list);
}
spin_unlock_bh(&efx->ptp_data->evt_lock);
return rc;
}
static int efx_ptp_restart(struct efx_nic *efx)
{
if (efx->ptp_data && efx->ptp_data->enabled)
return efx_ptp_start(efx);
return 0;
}
static void efx_ptp_pps_worker(struct work_struct *work)
{
struct efx_ptp_data *ptp =
container_of(work, struct efx_ptp_data, pps_work);
struct efx_nic *efx = ptp->efx;
struct ptp_clock_event ptp_evt;
if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
return;
ptp_evt.type = PTP_CLOCK_PPSUSR;
ptp_evt.pps_times = ptp->host_time_pps;
ptp_clock_event(ptp->phc_clock, &ptp_evt);
}
static void efx_ptp_worker(struct work_struct *work)
{
struct efx_ptp_data *ptp_data =
container_of(work, struct efx_ptp_data, work);
struct efx_nic *efx = ptp_data->efx;
struct sk_buff *skb;
struct sk_buff_head tempq;
if (ptp_data->reset_required) {
efx_ptp_stop(efx);
efx_ptp_start(efx);
return;
}
efx_ptp_drop_time_expired_events(efx);
__skb_queue_head_init(&tempq);
efx_ptp_process_events(efx, &tempq);
while ((skb = skb_dequeue(&ptp_data->txq)))
ptp_data->xmit_skb(efx, skb);
while ((skb = __skb_dequeue(&tempq)))
efx_ptp_process_rx(efx, skb);
}
static const struct ptp_clock_info efx_phc_clock_info = {
.owner = THIS_MODULE,
.name = "sfc",
.max_adj = MAX_PPB,
.n_alarm = 0,
.n_ext_ts = 0,
.n_per_out = 0,
.n_pins = 0,
.pps = 1,
.adjfreq = efx_phc_adjfreq,
.adjtime = efx_phc_adjtime,
.gettime64 = efx_phc_gettime,
.settime64 = efx_phc_settime,
.enable = efx_phc_enable,
};
/* Initialise PTP state. */
int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
{
struct efx_ptp_data *ptp;
int rc = 0;
unsigned int pos;
ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
efx->ptp_data = ptp;
if (!efx->ptp_data)
return -ENOMEM;
ptp->efx = efx;
ptp->channel = channel;
ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
if (rc != 0)
goto fail1;
skb_queue_head_init(&ptp->rxq);
skb_queue_head_init(&ptp->txq);
ptp->workwq = create_singlethread_workqueue("sfc_ptp");
if (!ptp->workwq) {
rc = -ENOMEM;
goto fail2;
}
if (efx_ptp_use_mac_tx_timestamps(efx)) {
ptp->xmit_skb = efx_ptp_xmit_skb_queue;
/* Request sync events on this channel. */
channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
} else {
ptp->xmit_skb = efx_ptp_xmit_skb_mc;
}
INIT_WORK(&ptp->work, efx_ptp_worker);
ptp->config.flags = 0;
ptp->config.tx_type = HWTSTAMP_TX_OFF;
ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
INIT_LIST_HEAD(&ptp->evt_list);
INIT_LIST_HEAD(&ptp->evt_free_list);
spin_lock_init(&ptp->evt_lock);
for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
/* Get the NIC PTP attributes and set up time conversions */
rc = efx_ptp_get_attributes(efx);
if (rc < 0)
goto fail3;
/* Get the timestamp corrections */
rc = efx_ptp_get_timestamp_corrections(efx);
if (rc < 0)
goto fail3;
if (efx->mcdi->fn_flags &
(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
ptp->phc_clock_info = efx_phc_clock_info;
ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
&efx->pci_dev->dev);
if (IS_ERR(ptp->phc_clock)) {
rc = PTR_ERR(ptp->phc_clock);
goto fail3;
} else if (ptp->phc_clock) {
INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
if (!ptp->pps_workwq) {
rc = -ENOMEM;
goto fail4;
}
}
}
ptp->nic_ts_enabled = false;
return 0;
fail4:
ptp_clock_unregister(efx->ptp_data->phc_clock);
fail3:
destroy_workqueue(efx->ptp_data->workwq);
fail2:
efx_nic_free_buffer(efx, &ptp->start);
fail1:
kfree(efx->ptp_data);
efx->ptp_data = NULL;
return rc;
}
/* Initialise PTP channel.
*
* Setting core_index to zero causes the queue to be initialised and doesn't
* overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
*/
static int efx_ptp_probe_channel(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
int rc;
channel->irq_moderation_us = 0;
channel->rx_queue.core_index = 0;
rc = efx_ptp_probe(efx, channel);
/* Failure to probe PTP is not fatal; this channel will just not be
* used for anything.
* In the case of EPERM, efx_ptp_probe will print its own message (in
* efx_ptp_get_attributes()), so we don't need to.
*/
if (rc && rc != -EPERM)
netif_warn(efx, drv, efx->net_dev,
"Failed to probe PTP, rc=%d\n", rc);
return 0;
}
void efx_ptp_remove(struct efx_nic *efx)
{
if (!efx->ptp_data)
return;
(void)efx_ptp_disable(efx);
cancel_work_sync(&efx->ptp_data->work);
if (efx->ptp_data->pps_workwq)
cancel_work_sync(&efx->ptp_data->pps_work);
skb_queue_purge(&efx->ptp_data->rxq);
skb_queue_purge(&efx->ptp_data->txq);
if (efx->ptp_data->phc_clock) {
destroy_workqueue(efx->ptp_data->pps_workwq);
ptp_clock_unregister(efx->ptp_data->phc_clock);
}
destroy_workqueue(efx->ptp_data->workwq);
efx_nic_free_buffer(efx, &efx->ptp_data->start);
kfree(efx->ptp_data);
efx->ptp_data = NULL;
}
static void efx_ptp_remove_channel(struct efx_channel *channel)
{
efx_ptp_remove(channel->efx);
}
static void efx_ptp_get_channel_name(struct efx_channel *channel,
char *buf, size_t len)
{
snprintf(buf, len, "%s-ptp", channel->efx->name);
}
/* Determine whether this packet should be processed by the PTP module
* or transmitted conventionally.
*/
bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
{
return efx->ptp_data &&
efx->ptp_data->enabled &&
skb->len >= PTP_MIN_LENGTH &&
skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
likely(skb->protocol == htons(ETH_P_IP)) &&
skb_transport_header_was_set(skb) &&
skb_network_header_len(skb) >= sizeof(struct iphdr) &&
ip_hdr(skb)->protocol == IPPROTO_UDP &&
skb_headlen(skb) >=
skb_transport_offset(skb) + sizeof(struct udphdr) &&
udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
}
/* Receive a PTP packet. Packets are queued until the arrival of
* the receive timestamp from the MC - this will probably occur after the
* packet arrival because of the processing in the MC.
*/
static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
{
struct efx_nic *efx = channel->efx;
struct efx_ptp_data *ptp = efx->ptp_data;
struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
u8 *match_data_012, *match_data_345;
unsigned int version;
u8 *data;
match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
/* Correct version? */
if (ptp->mode == MC_CMD_PTP_MODE_V1) {
if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
return false;
}
data = skb->data;
version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
if (version != PTP_VERSION_V1) {
return false;
}
/* PTP V1 uses all six bytes of the UUID to match the packet
* to the timestamp
*/
match_data_012 = data + PTP_V1_UUID_OFFSET;
match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
} else {
if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
return false;
}
data = skb->data;
version = data[PTP_V2_VERSION_OFFSET];
if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
return false;
}
/* The original V2 implementation uses bytes 2-7 of
* the UUID to match the packet to the timestamp. This
* discards two of the bytes of the MAC address used
* to create the UUID (SF bug 33070). The PTP V2
* enhanced mode fixes this issue and uses bytes 0-2
* and byte 5-7 of the UUID.
*/
match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
if (ptp->mode == MC_CMD_PTP_MODE_V2) {
match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
} else {
match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
}
}
/* Does this packet require timestamping? */
if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
match->state = PTP_PACKET_STATE_UNMATCHED;
/* We expect the sequence number to be in the same position in
* the packet for PTP V1 and V2
*/
BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
/* Extract UUID/Sequence information */
match->words[0] = (match_data_012[0] |
(match_data_012[1] << 8) |
(match_data_012[2] << 16) |
(match_data_345[0] << 24));
match->words[1] = (match_data_345[1] |
(match_data_345[2] << 8) |
(data[PTP_V1_SEQUENCE_OFFSET +
PTP_V1_SEQUENCE_LENGTH - 1] <<
16));
} else {
match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
}
skb_queue_tail(&ptp->rxq, skb);
queue_work(ptp->workwq, &ptp->work);
return true;
}
/* Transmit a PTP packet. This has to be transmitted by the MC
* itself, through an MCDI call. MCDI calls aren't permitted
* in the transmit path so defer the actual transmission to a suitable worker.
*/
int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
{
struct efx_ptp_data *ptp = efx->ptp_data;
skb_queue_tail(&ptp->txq, skb);
if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
(skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
efx_xmit_hwtstamp_pending(skb);
queue_work(ptp->workwq, &ptp->work);
return NETDEV_TX_OK;
}
int efx_ptp_get_mode(struct efx_nic *efx)
{
return efx->ptp_data->mode;
}
int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
unsigned int new_mode)
{
if ((enable_wanted != efx->ptp_data->enabled) ||
(enable_wanted && (efx->ptp_data->mode != new_mode))) {
int rc = 0;
if (enable_wanted) {
/* Change of mode requires disable */
if (efx->ptp_data->enabled &&
(efx->ptp_data->mode != new_mode)) {
efx->ptp_data->enabled = false;
rc = efx_ptp_stop(efx);
if (rc != 0)
return rc;
}
/* Set new operating mode and establish
* baseline synchronisation, which must
* succeed.
*/
efx->ptp_data->mode = new_mode;
if (netif_running(efx->net_dev))
rc = efx_ptp_start(efx);
if (rc == 0) {
rc = efx_ptp_synchronize(efx,
PTP_SYNC_ATTEMPTS * 2);
if (rc != 0)
efx_ptp_stop(efx);
}
} else {
rc = efx_ptp_stop(efx);
}
if (rc != 0)
return rc;
efx->ptp_data->enabled = enable_wanted;
}
return 0;
}
static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
{
int rc;
if (init->flags)
return -EINVAL;
if ((init->tx_type != HWTSTAMP_TX_OFF) &&
(init->tx_type != HWTSTAMP_TX_ON))
return -ERANGE;
rc = efx->type->ptp_set_ts_config(efx, init);
if (rc)
return rc;
efx->ptp_data->config = *init;
return 0;
}
void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
{
struct efx_ptp_data *ptp = efx->ptp_data;
struct efx_nic *primary = efx->primary;
ASSERT_RTNL();
if (!ptp)
return;
ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE);
/* Check licensed features. If we don't have the license for TX
* timestamps, the NIC will not support them.
*/
if (efx_ptp_use_mac_tx_timestamps(efx)) {
struct efx_ef10_nic_data *nic_data = efx->nic_data;
if (!(nic_data->licensed_features &
(1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
ts_info->so_timestamping &=
~SOF_TIMESTAMPING_TX_HARDWARE;
}
if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
ts_info->phc_index =
ptp_clock_index(primary->ptp_data->phc_clock);
ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
}
int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
{
struct hwtstamp_config config;
int rc;
/* Not a PTP enabled port */
if (!efx->ptp_data)
return -EOPNOTSUPP;
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
rc = efx_ptp_ts_init(efx, &config);
if (rc != 0)
return rc;
return copy_to_user(ifr->ifr_data, &config, sizeof(config))
? -EFAULT : 0;
}
int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
{
if (!efx->ptp_data)
return -EOPNOTSUPP;
return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
}
static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
{
struct efx_ptp_data *ptp = efx->ptp_data;
netif_err(efx, hw, efx->net_dev,
"PTP unexpected event length: got %d expected %d\n",
ptp->evt_frag_idx, expected_frag_len);
ptp->reset_required = true;
queue_work(ptp->workwq, &ptp->work);
}
/* Process a completed receive event. Put it on the event queue and
* start worker thread. This is required because event and their
* correspoding packets may come in either order.
*/
static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
{
struct efx_ptp_event_rx *evt = NULL;
if (WARN_ON_ONCE(ptp->rx_ts_inline))
return;
if (ptp->evt_frag_idx != 3) {
ptp_event_failure(efx, 3);
return;
}
spin_lock_bh(&ptp->evt_lock);
if (!list_empty(&ptp->evt_free_list)) {
evt = list_first_entry(&ptp->evt_free_list,
struct efx_ptp_event_rx, link);
list_del(&evt->link);
evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
MCDI_EVENT_SRC) |
(EFX_QWORD_FIELD(ptp->evt_frags[1],
MCDI_EVENT_SRC) << 8) |
(EFX_QWORD_FIELD(ptp->evt_frags[0],
MCDI_EVENT_SRC) << 16));
evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
ptp->ts_corrections.ptp_rx);
evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
list_add_tail(&evt->link, &ptp->evt_list);
queue_work(ptp->workwq, &ptp->work);
} else if (net_ratelimit()) {
/* Log a rate-limited warning message. */
netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
}
spin_unlock_bh(&ptp->evt_lock);
}
static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
{
int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
if (ptp->evt_frag_idx != 1) {
ptp_event_failure(efx, 1);
return;
}
netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
}
static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
{
if (ptp->nic_ts_enabled)
queue_work(ptp->pps_workwq, &ptp->pps_work);
}
void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
{
struct efx_ptp_data *ptp = efx->ptp_data;
int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
if (!ptp) {
if (!efx->ptp_warned) {
netif_warn(efx, drv, efx->net_dev,
"Received PTP event but PTP not set up\n");
efx->ptp_warned = true;
}
return;
}
if (!ptp->enabled)
return;
if (ptp->evt_frag_idx == 0) {
ptp->evt_code = code;
} else if (ptp->evt_code != code) {
netif_err(efx, hw, efx->net_dev,
"PTP out of sequence event %d\n", code);
ptp->evt_frag_idx = 0;
}
ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
if (!MCDI_EVENT_FIELD(*ev, CONT)) {
/* Process resulting event */
switch (code) {
case MCDI_EVENT_CODE_PTP_RX:
ptp_event_rx(efx, ptp);
break;
case MCDI_EVENT_CODE_PTP_FAULT:
ptp_event_fault(efx, ptp);
break;
case MCDI_EVENT_CODE_PTP_PPS:
ptp_event_pps(efx, ptp);
break;
default:
netif_err(efx, hw, efx->net_dev,
"PTP unknown event %d\n", code);
break;
}
ptp->evt_frag_idx = 0;
} else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
netif_err(efx, hw, efx->net_dev,
"PTP too many event fragments\n");
ptp->evt_frag_idx = 0;
}
}
void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
{
struct efx_nic *efx = channel->efx;
struct efx_ptp_data *ptp = efx->ptp_data;
/* When extracting the sync timestamp minor value, we should discard
* the least significant two bits. These are not required in order
* to reconstruct full-range timestamps and they are optionally used
* to report status depending on the options supplied when subscribing
* for sync events.
*/
channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
channel->sync_timestamp_minor =
(MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
<< ptp->nic_time.sync_event_minor_shift;
/* if sync events have been disabled then we want to silently ignore
* this event, so throw away result.
*/
(void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
SYNC_EVENTS_VALID);
}
static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
{
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
#else
const u8 *data = eh + efx->rx_packet_ts_offset;
return (u32)data[0] |
(u32)data[1] << 8 |
(u32)data[2] << 16 |
(u32)data[3] << 24;
#endif
}
void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
struct sk_buff *skb)
{
struct efx_nic *efx = channel->efx;
struct efx_ptp_data *ptp = efx->ptp_data;
u32 pkt_timestamp_major, pkt_timestamp_minor;
u32 diff, carry;
struct skb_shared_hwtstamps *timestamps;
if (channel->sync_events_state != SYNC_EVENTS_VALID)
return;
pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
/* get the difference between the packet and sync timestamps,
* modulo one second
*/
diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
if (pkt_timestamp_minor < channel->sync_timestamp_minor)
diff += ptp->nic_time.minor_max;
/* do we roll over a second boundary and need to carry the one? */
carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
1 : 0;
if (diff <= ptp->nic_time.sync_event_diff_max) {
/* packet is ahead of the sync event by a quarter of a second or
* less (allowing for fuzz)
*/
pkt_timestamp_major = channel->sync_timestamp_major + carry;
} else if (diff >= ptp->nic_time.sync_event_diff_min) {
/* packet is behind the sync event but within the fuzz factor.
* This means the RX packet and sync event crossed as they were
* placed on the event queue, which can sometimes happen.
*/
pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
} else {
/* it's outside tolerance in both directions. this might be
* indicative of us missing sync events for some reason, so
* we'll call it an error rather than risk giving a bogus
* timestamp.
*/
netif_vdbg(efx, drv, efx->net_dev,
"packet timestamp %x too far from sync event %x:%x\n",
pkt_timestamp_minor, channel->sync_timestamp_major,
channel->sync_timestamp_minor);
return;
}
/* attach the timestamps to the skb */
timestamps = skb_hwtstamps(skb);
timestamps->hwtstamp =
ptp->nic_to_kernel_time(pkt_timestamp_major,
pkt_timestamp_minor,
ptp->ts_corrections.general_rx);
}
static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
{
struct efx_ptp_data *ptp_data = container_of(ptp,
struct efx_ptp_data,
phc_clock_info);
struct efx_nic *efx = ptp_data->efx;
MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
s64 adjustment_ns;
int rc;
if (delta > MAX_PPB)
delta = MAX_PPB;
else if (delta < -MAX_PPB)
delta = -MAX_PPB;
/* Convert ppb to fixed point ns taking care to round correctly. */
adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
(1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
ptp_data->adjfreq_ppb_shift;
MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
NULL, 0, NULL);
if (rc != 0)
return rc;
ptp_data->current_adjfreq = adjustment_ns;
return 0;
}
static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
u32 nic_major, nic_minor;
struct efx_ptp_data *ptp_data = container_of(ptp,
struct efx_ptp_data,
phc_clock_info);
struct efx_nic *efx = ptp_data->efx;
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
NULL, 0, NULL);
}
static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
{
struct efx_ptp_data *ptp_data = container_of(ptp,
struct efx_ptp_data,
phc_clock_info);
struct efx_nic *efx = ptp_data->efx;
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
int rc;
ktime_t kt;
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), NULL);
if (rc != 0)
return rc;
kt = ptp_data->nic_to_kernel_time(
MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
*ts = ktime_to_timespec64(kt);
return 0;
}
static int efx_phc_settime(struct ptp_clock_info *ptp,
const struct timespec64 *e_ts)
{
/* Get the current NIC time, efx_phc_gettime.
* Subtract from the desired time to get the offset
* call efx_phc_adjtime with the offset
*/
int rc;
struct timespec64 time_now;
struct timespec64 delta;
rc = efx_phc_gettime(ptp, &time_now);
if (rc != 0)
return rc;
delta = timespec64_sub(*e_ts, time_now);
rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
if (rc != 0)
return rc;
return 0;
}
static int efx_phc_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *request,
int enable)
{
struct efx_ptp_data *ptp_data = container_of(ptp,
struct efx_ptp_data,
phc_clock_info);
if (request->type != PTP_CLK_REQ_PPS)
return -EOPNOTSUPP;
ptp_data->nic_ts_enabled = !!enable;
return 0;
}
static const struct efx_channel_type efx_ptp_channel_type = {
.handle_no_channel = efx_ptp_handle_no_channel,
.pre_probe = efx_ptp_probe_channel,
.post_remove = efx_ptp_remove_channel,
.get_name = efx_ptp_get_channel_name,
/* no copy operation; there is no need to reallocate this channel */
.receive_skb = efx_ptp_rx,
.want_txqs = efx_ptp_want_txqs,
.keep_eventq = false,
};
void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
{
/* Check whether PTP is implemented on this NIC. The DISABLE
* operation will succeed if and only if it is implemented.
*/
if (efx_ptp_disable(efx) == 0)
efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
&efx_ptp_channel_type;
}
void efx_ptp_start_datapath(struct efx_nic *efx)
{
if (efx_ptp_restart(efx))
netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
/* re-enable timestamping if it was previously enabled */
if (efx->type->ptp_set_ts_sync_events)
efx->type->ptp_set_ts_sync_events(efx, true, true);
}
void efx_ptp_stop_datapath(struct efx_nic *efx)
{
/* temporarily disable timestamping */
if (efx->type->ptp_set_ts_sync_events)
efx->type->ptp_set_ts_sync_events(efx, false, true);
efx_ptp_stop(efx);
}
|