summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/marvell/octeontx2/nic/otx2_txrx.c
blob: 45abe0cd0e7b584ed620b63d6c314c555252eba5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
// SPDX-License-Identifier: GPL-2.0
/* Marvell OcteonTx2 RVU Ethernet driver
 *
 * Copyright (C) 2020 Marvell International Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/etherdevice.h>
#include <net/ip.h>
#include <net/tso.h>

#include "otx2_reg.h"
#include "otx2_common.h"
#include "otx2_struct.h"
#include "otx2_txrx.h"

#define CQE_ADDR(CQ, idx) ((CQ)->cqe_base + ((CQ)->cqe_size * (idx)))

static struct nix_cqe_hdr_s *otx2_get_next_cqe(struct otx2_cq_queue *cq)
{
	struct nix_cqe_hdr_s *cqe_hdr;

	cqe_hdr = (struct nix_cqe_hdr_s *)CQE_ADDR(cq, cq->cq_head);
	if (cqe_hdr->cqe_type == NIX_XQE_TYPE_INVALID)
		return NULL;

	cq->cq_head++;
	cq->cq_head &= (cq->cqe_cnt - 1);

	return cqe_hdr;
}

static unsigned int frag_num(unsigned int i)
{
#ifdef __BIG_ENDIAN
	return (i & ~3) + 3 - (i & 3);
#else
	return i;
#endif
}

static dma_addr_t otx2_dma_map_skb_frag(struct otx2_nic *pfvf,
					struct sk_buff *skb, int seg, int *len)
{
	const skb_frag_t *frag;
	struct page *page;
	int offset;

	/* First segment is always skb->data */
	if (!seg) {
		page = virt_to_page(skb->data);
		offset = offset_in_page(skb->data);
		*len = skb_headlen(skb);
	} else {
		frag = &skb_shinfo(skb)->frags[seg - 1];
		page = skb_frag_page(frag);
		offset = skb_frag_off(frag);
		*len = skb_frag_size(frag);
	}
	return otx2_dma_map_page(pfvf, page, offset, *len, DMA_TO_DEVICE);
}

static void otx2_dma_unmap_skb_frags(struct otx2_nic *pfvf, struct sg_list *sg)
{
	int seg;

	for (seg = 0; seg < sg->num_segs; seg++) {
		otx2_dma_unmap_page(pfvf, sg->dma_addr[seg],
				    sg->size[seg], DMA_TO_DEVICE);
	}
	sg->num_segs = 0;
}

static void otx2_snd_pkt_handler(struct otx2_nic *pfvf,
				 struct otx2_cq_queue *cq,
				 struct otx2_snd_queue *sq,
				 struct nix_cqe_tx_s *cqe,
				 int budget, int *tx_pkts, int *tx_bytes)
{
	struct nix_send_comp_s *snd_comp = &cqe->comp;
	struct sk_buff *skb = NULL;
	struct sg_list *sg;

	if (unlikely(snd_comp->status) && netif_msg_tx_err(pfvf))
		net_err_ratelimited("%s: TX%d: Error in send CQ status:%x\n",
				    pfvf->netdev->name, cq->cint_idx,
				    snd_comp->status);

	sg = &sq->sg[snd_comp->sqe_id];
	skb = (struct sk_buff *)sg->skb;
	if (unlikely(!skb))
		return;

	*tx_bytes += skb->len;
	(*tx_pkts)++;
	otx2_dma_unmap_skb_frags(pfvf, sg);
	napi_consume_skb(skb, budget);
	sg->skb = (u64)NULL;
}

static void otx2_skb_add_frag(struct otx2_nic *pfvf, struct sk_buff *skb,
			      u64 iova, int len)
{
	struct page *page;
	void *va;

	va = phys_to_virt(otx2_iova_to_phys(pfvf->iommu_domain, iova));
	page = virt_to_page(va);
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
			va - page_address(page), len, pfvf->rbsize);

	otx2_dma_unmap_page(pfvf, iova - OTX2_HEAD_ROOM,
			    pfvf->rbsize, DMA_FROM_DEVICE);
}

static void otx2_set_rxhash(struct otx2_nic *pfvf,
			    struct nix_cqe_rx_s *cqe, struct sk_buff *skb)
{
	enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
	struct otx2_rss_info *rss;
	u32 hash = 0;

	if (!(pfvf->netdev->features & NETIF_F_RXHASH))
		return;

	rss = &pfvf->hw.rss_info;
	if (rss->flowkey_cfg) {
		if (rss->flowkey_cfg &
		    ~(NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6))
			hash_type = PKT_HASH_TYPE_L4;
		else
			hash_type = PKT_HASH_TYPE_L3;
		hash = cqe->hdr.flow_tag;
	}
	skb_set_hash(skb, hash, hash_type);
}

static void otx2_free_rcv_seg(struct otx2_nic *pfvf, struct nix_cqe_rx_s *cqe,
			      int qidx)
{
	struct nix_rx_sg_s *sg = &cqe->sg;
	void *end, *start;
	u64 *seg_addr;
	int seg;

	start = (void *)sg;
	end = start + ((cqe->parse.desc_sizem1 + 1) * 16);
	while (start < end) {
		sg = (struct nix_rx_sg_s *)start;
		seg_addr = &sg->seg_addr;
		for (seg = 0; seg < sg->segs; seg++, seg_addr++)
			otx2_aura_freeptr(pfvf, qidx, *seg_addr & ~0x07ULL);
		start += sizeof(*sg);
	}
}

static bool otx2_check_rcv_errors(struct otx2_nic *pfvf,
				  struct nix_cqe_rx_s *cqe, int qidx)
{
	struct otx2_drv_stats *stats = &pfvf->hw.drv_stats;
	struct nix_rx_parse_s *parse = &cqe->parse;

	if (netif_msg_rx_err(pfvf))
		netdev_err(pfvf->netdev,
			   "RQ%d: Error pkt with errlev:0x%x errcode:0x%x\n",
			   qidx, parse->errlev, parse->errcode);

	if (parse->errlev == NPC_ERRLVL_RE) {
		switch (parse->errcode) {
		case ERRCODE_FCS:
		case ERRCODE_FCS_RCV:
			atomic_inc(&stats->rx_fcs_errs);
			break;
		case ERRCODE_UNDERSIZE:
			atomic_inc(&stats->rx_undersize_errs);
			break;
		case ERRCODE_OVERSIZE:
			atomic_inc(&stats->rx_oversize_errs);
			break;
		case ERRCODE_OL2_LEN_MISMATCH:
			atomic_inc(&stats->rx_len_errs);
			break;
		default:
			atomic_inc(&stats->rx_other_errs);
			break;
		}
	} else if (parse->errlev == NPC_ERRLVL_NIX) {
		switch (parse->errcode) {
		case ERRCODE_OL3_LEN:
		case ERRCODE_OL4_LEN:
		case ERRCODE_IL3_LEN:
		case ERRCODE_IL4_LEN:
			atomic_inc(&stats->rx_len_errs);
			break;
		case ERRCODE_OL4_CSUM:
		case ERRCODE_IL4_CSUM:
			atomic_inc(&stats->rx_csum_errs);
			break;
		default:
			atomic_inc(&stats->rx_other_errs);
			break;
		}
	} else {
		atomic_inc(&stats->rx_other_errs);
		/* For now ignore all the NPC parser errors and
		 * pass the packets to stack.
		 */
		if (cqe->sg.segs == 1)
			return false;
	}

	/* If RXALL is enabled pass on packets to stack. */
	if (cqe->sg.segs == 1 && (pfvf->netdev->features & NETIF_F_RXALL))
		return false;

	/* Free buffer back to pool */
	if (cqe->sg.segs)
		otx2_free_rcv_seg(pfvf, cqe, qidx);
	return true;
}

static void otx2_rcv_pkt_handler(struct otx2_nic *pfvf,
				 struct napi_struct *napi,
				 struct otx2_cq_queue *cq,
				 struct nix_cqe_rx_s *cqe)
{
	struct nix_rx_parse_s *parse = &cqe->parse;
	struct sk_buff *skb = NULL;

	if (unlikely(parse->errlev || parse->errcode || cqe->sg.segs > 1)) {
		if (otx2_check_rcv_errors(pfvf, cqe, cq->cq_idx))
			return;
	}

	skb = napi_get_frags(napi);
	if (unlikely(!skb))
		return;

	otx2_skb_add_frag(pfvf, skb, cqe->sg.seg_addr, cqe->sg.seg_size);
	cq->pool_ptrs++;

	otx2_set_rxhash(pfvf, cqe, skb);

	skb_record_rx_queue(skb, cq->cq_idx);
	if (pfvf->netdev->features & NETIF_F_RXCSUM)
		skb->ip_summed = CHECKSUM_UNNECESSARY;

	napi_gro_frags(napi);
}

static int otx2_rx_napi_handler(struct otx2_nic *pfvf,
				struct napi_struct *napi,
				struct otx2_cq_queue *cq, int budget)
{
	struct nix_cqe_rx_s *cqe;
	int processed_cqe = 0;
	s64 bufptr;

	while (likely(processed_cqe < budget)) {
		cqe = (struct nix_cqe_rx_s *)CQE_ADDR(cq, cq->cq_head);
		if (cqe->hdr.cqe_type == NIX_XQE_TYPE_INVALID ||
		    !cqe->sg.seg_addr) {
			if (!processed_cqe)
				return 0;
			break;
		}
		cq->cq_head++;
		cq->cq_head &= (cq->cqe_cnt - 1);

		otx2_rcv_pkt_handler(pfvf, napi, cq, cqe);

		cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID;
		cqe->sg.seg_addr = 0x00;
		processed_cqe++;
	}

	/* Free CQEs to HW */
	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
		     ((u64)cq->cq_idx << 32) | processed_cqe);

	if (unlikely(!cq->pool_ptrs))
		return 0;

	/* Refill pool with new buffers */
	while (cq->pool_ptrs) {
		bufptr = otx2_alloc_rbuf(pfvf, cq->rbpool, GFP_ATOMIC);
		if (unlikely(bufptr <= 0)) {
			struct refill_work *work;
			struct delayed_work *dwork;

			work = &pfvf->refill_wrk[cq->cq_idx];
			dwork = &work->pool_refill_work;
			/* Schedule a task if no other task is running */
			if (!cq->refill_task_sched) {
				cq->refill_task_sched = true;
				schedule_delayed_work(dwork,
						      msecs_to_jiffies(100));
			}
			break;
		}
		otx2_aura_freeptr(pfvf, cq->cq_idx, bufptr + OTX2_HEAD_ROOM);
		cq->pool_ptrs--;
	}
	otx2_get_page(cq->rbpool);

	return processed_cqe;
}

static int otx2_tx_napi_handler(struct otx2_nic *pfvf,
				struct otx2_cq_queue *cq, int budget)
{
	int tx_pkts = 0, tx_bytes = 0;
	struct nix_cqe_tx_s *cqe;
	int processed_cqe = 0;

	while (likely(processed_cqe < budget)) {
		cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq);
		if (unlikely(!cqe)) {
			if (!processed_cqe)
				return 0;
			break;
		}
		otx2_snd_pkt_handler(pfvf, cq, &pfvf->qset.sq[cq->cint_idx],
				     cqe, budget, &tx_pkts, &tx_bytes);

		cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID;
		processed_cqe++;
	}

	/* Free CQEs to HW */
	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
		     ((u64)cq->cq_idx << 32) | processed_cqe);

	if (likely(tx_pkts)) {
		struct netdev_queue *txq;

		txq = netdev_get_tx_queue(pfvf->netdev, cq->cint_idx);
		netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
		/* Check if queue was stopped earlier due to ring full */
		smp_mb();
		if (netif_tx_queue_stopped(txq) &&
		    netif_carrier_ok(pfvf->netdev))
			netif_tx_wake_queue(txq);
	}
	return 0;
}

int otx2_napi_handler(struct napi_struct *napi, int budget)
{
	struct otx2_cq_poll *cq_poll;
	int workdone = 0, cq_idx, i;
	struct otx2_cq_queue *cq;
	struct otx2_qset *qset;
	struct otx2_nic *pfvf;

	cq_poll = container_of(napi, struct otx2_cq_poll, napi);
	pfvf = (struct otx2_nic *)cq_poll->dev;
	qset = &pfvf->qset;

	for (i = CQS_PER_CINT - 1; i >= 0; i--) {
		cq_idx = cq_poll->cq_ids[i];
		if (unlikely(cq_idx == CINT_INVALID_CQ))
			continue;
		cq = &qset->cq[cq_idx];
		if (cq->cq_type == CQ_RX) {
			/* If the RQ refill WQ task is running, skip napi
			 * scheduler for this queue.
			 */
			if (cq->refill_task_sched)
				continue;
			workdone += otx2_rx_napi_handler(pfvf, napi,
							 cq, budget);
		} else {
			workdone += otx2_tx_napi_handler(pfvf, cq, budget);
		}
	}

	/* Clear the IRQ */
	otx2_write64(pfvf, NIX_LF_CINTX_INT(cq_poll->cint_idx), BIT_ULL(0));

	if (workdone < budget && napi_complete_done(napi, workdone)) {
		/* If interface is going down, don't re-enable IRQ */
		if (pfvf->flags & OTX2_FLAG_INTF_DOWN)
			return workdone;

		/* Re-enable interrupts */
		otx2_write64(pfvf, NIX_LF_CINTX_ENA_W1S(cq_poll->cint_idx),
			     BIT_ULL(0));
	}
	return workdone;
}

static void otx2_sqe_flush(struct otx2_snd_queue *sq, int size)
{
	u64 status;

	/* Packet data stores should finish before SQE is flushed to HW */
	dma_wmb();

	do {
		memcpy(sq->lmt_addr, sq->sqe_base, size);
		status = otx2_lmt_flush(sq->io_addr);
	} while (status == 0);

	sq->head++;
	sq->head &= (sq->sqe_cnt - 1);
}

#define MAX_SEGS_PER_SG	3
/* Add SQE scatter/gather subdescriptor structure */
static bool otx2_sqe_add_sg(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
			    struct sk_buff *skb, int num_segs, int *offset)
{
	struct nix_sqe_sg_s *sg = NULL;
	u64 dma_addr, *iova = NULL;
	u16 *sg_lens = NULL;
	int seg, len;

	sq->sg[sq->head].num_segs = 0;

	for (seg = 0; seg < num_segs; seg++) {
		if ((seg % MAX_SEGS_PER_SG) == 0) {
			sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset);
			sg->ld_type = NIX_SEND_LDTYPE_LDD;
			sg->subdc = NIX_SUBDC_SG;
			sg->segs = 0;
			sg_lens = (void *)sg;
			iova = (void *)sg + sizeof(*sg);
			/* Next subdc always starts at a 16byte boundary.
			 * So if sg->segs is whether 2 or 3, offset += 16bytes.
			 */
			if ((num_segs - seg) >= (MAX_SEGS_PER_SG - 1))
				*offset += sizeof(*sg) + (3 * sizeof(u64));
			else
				*offset += sizeof(*sg) + sizeof(u64);
		}
		dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len);
		if (dma_mapping_error(pfvf->dev, dma_addr))
			return false;

		sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = len;
		sg->segs++;
		*iova++ = dma_addr;

		/* Save DMA mapping info for later unmapping */
		sq->sg[sq->head].dma_addr[seg] = dma_addr;
		sq->sg[sq->head].size[seg] = len;
		sq->sg[sq->head].num_segs++;
	}

	sq->sg[sq->head].skb = (u64)skb;
	return true;
}

/* Add SQE extended header subdescriptor */
static void otx2_sqe_add_ext(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
			     struct sk_buff *skb, int *offset)
{
	struct nix_sqe_ext_s *ext;

	ext = (struct nix_sqe_ext_s *)(sq->sqe_base + *offset);
	ext->subdc = NIX_SUBDC_EXT;
	if (skb_shinfo(skb)->gso_size) {
		ext->lso = 1;
		ext->lso_sb = skb_transport_offset(skb) + tcp_hdrlen(skb);
		ext->lso_mps = skb_shinfo(skb)->gso_size;

		/* Only TSOv4 and TSOv6 GSO offloads are supported */
		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
			ext->lso_format = pfvf->hw.lso_tsov4_idx;

			/* HW adds payload size to 'ip_hdr->tot_len' while
			 * sending TSO segment, hence set payload length
			 * in IP header of the packet to just header length.
			 */
			ip_hdr(skb)->tot_len =
				htons(ext->lso_sb - skb_network_offset(skb));
		} else {
			ext->lso_format = pfvf->hw.lso_tsov6_idx;
			ipv6_hdr(skb)->payload_len =
				htons(ext->lso_sb - skb_network_offset(skb));
		}
	}
	*offset += sizeof(*ext);
}

/* Add SQE header subdescriptor structure */
static void otx2_sqe_add_hdr(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
			     struct nix_sqe_hdr_s *sqe_hdr,
			     struct sk_buff *skb, u16 qidx)
{
	int proto = 0;

	/* Check if SQE was framed before, if yes then no need to
	 * set these constants again and again.
	 */
	if (!sqe_hdr->total) {
		/* Don't free Tx buffers to Aura */
		sqe_hdr->df = 1;
		sqe_hdr->aura = sq->aura_id;
		/* Post a CQE Tx after pkt transmission */
		sqe_hdr->pnc = 1;
		sqe_hdr->sq = qidx;
	}
	sqe_hdr->total = skb->len;
	/* Set SQE identifier which will be used later for freeing SKB */
	sqe_hdr->sqe_id = sq->head;

	/* Offload TCP/UDP checksum to HW */
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		sqe_hdr->ol3ptr = skb_network_offset(skb);
		sqe_hdr->ol4ptr = skb_transport_offset(skb);
		/* get vlan protocol Ethertype */
		if (eth_type_vlan(skb->protocol))
			skb->protocol = vlan_get_protocol(skb);

		if (skb->protocol == htons(ETH_P_IP)) {
			proto = ip_hdr(skb)->protocol;
			/* In case of TSO, HW needs this to be explicitly set.
			 * So set this always, instead of adding a check.
			 */
			sqe_hdr->ol3type = NIX_SENDL3TYPE_IP4_CKSUM;
		} else if (skb->protocol == htons(ETH_P_IPV6)) {
			proto = ipv6_hdr(skb)->nexthdr;
		}

		if (proto == IPPROTO_TCP)
			sqe_hdr->ol4type = NIX_SENDL4TYPE_TCP_CKSUM;
		else if (proto == IPPROTO_UDP)
			sqe_hdr->ol4type = NIX_SENDL4TYPE_UDP_CKSUM;
	}
}

static int otx2_dma_map_tso_skb(struct otx2_nic *pfvf,
				struct otx2_snd_queue *sq,
				struct sk_buff *skb, int sqe, int hdr_len)
{
	int num_segs = skb_shinfo(skb)->nr_frags + 1;
	struct sg_list *sg = &sq->sg[sqe];
	u64 dma_addr;
	int seg, len;

	sg->num_segs = 0;

	/* Get payload length at skb->data */
	len = skb_headlen(skb) - hdr_len;

	for (seg = 0; seg < num_segs; seg++) {
		/* Skip skb->data, if there is no payload */
		if (!seg && !len)
			continue;
		dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len);
		if (dma_mapping_error(pfvf->dev, dma_addr))
			goto unmap;

		/* Save DMA mapping info for later unmapping */
		sg->dma_addr[sg->num_segs] = dma_addr;
		sg->size[sg->num_segs] = len;
		sg->num_segs++;
	}
	return 0;
unmap:
	otx2_dma_unmap_skb_frags(pfvf, sg);
	return -EINVAL;
}

static u64 otx2_tso_frag_dma_addr(struct otx2_snd_queue *sq,
				  struct sk_buff *skb, int seg,
				  u64 seg_addr, int hdr_len, int sqe)
{
	struct sg_list *sg = &sq->sg[sqe];
	const skb_frag_t *frag;
	int offset;

	if (seg < 0)
		return sg->dma_addr[0] + (seg_addr - (u64)skb->data);

	frag = &skb_shinfo(skb)->frags[seg];
	offset = seg_addr - (u64)skb_frag_address(frag);
	if (skb_headlen(skb) - hdr_len)
		seg++;
	return sg->dma_addr[seg] + offset;
}

static void otx2_sqe_tso_add_sg(struct otx2_snd_queue *sq,
				struct sg_list *list, int *offset)
{
	struct nix_sqe_sg_s *sg = NULL;
	u16 *sg_lens = NULL;
	u64 *iova = NULL;
	int seg;

	/* Add SG descriptors with buffer addresses */
	for (seg = 0; seg < list->num_segs; seg++) {
		if ((seg % MAX_SEGS_PER_SG) == 0) {
			sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset);
			sg->ld_type = NIX_SEND_LDTYPE_LDD;
			sg->subdc = NIX_SUBDC_SG;
			sg->segs = 0;
			sg_lens = (void *)sg;
			iova = (void *)sg + sizeof(*sg);
			/* Next subdc always starts at a 16byte boundary.
			 * So if sg->segs is whether 2 or 3, offset += 16bytes.
			 */
			if ((list->num_segs - seg) >= (MAX_SEGS_PER_SG - 1))
				*offset += sizeof(*sg) + (3 * sizeof(u64));
			else
				*offset += sizeof(*sg) + sizeof(u64);
		}
		sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = list->size[seg];
		*iova++ = list->dma_addr[seg];
		sg->segs++;
	}
}

static void otx2_sq_append_tso(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
			       struct sk_buff *skb, u16 qidx)
{
	struct netdev_queue *txq = netdev_get_tx_queue(pfvf->netdev, qidx);
	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	int tcp_data, seg_len, pkt_len, offset;
	struct nix_sqe_hdr_s *sqe_hdr;
	int first_sqe = sq->head;
	struct sg_list list;
	struct tso_t tso;

	/* Map SKB's fragments to DMA.
	 * It's done here to avoid mapping for every TSO segment's packet.
	 */
	if (otx2_dma_map_tso_skb(pfvf, sq, skb, first_sqe, hdr_len)) {
		dev_kfree_skb_any(skb);
		return;
	}

	netdev_tx_sent_queue(txq, skb->len);

	tso_start(skb, &tso);
	tcp_data = skb->len - hdr_len;
	while (tcp_data > 0) {
		char *hdr;

		seg_len = min_t(int, skb_shinfo(skb)->gso_size, tcp_data);
		tcp_data -= seg_len;

		/* Set SQE's SEND_HDR */
		memset(sq->sqe_base, 0, sq->sqe_size);
		sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base);
		otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx);
		offset = sizeof(*sqe_hdr);

		/* Add TSO segment's pkt header */
		hdr = sq->tso_hdrs->base + (sq->head * TSO_HEADER_SIZE);
		tso_build_hdr(skb, hdr, &tso, seg_len, tcp_data == 0);
		list.dma_addr[0] =
			sq->tso_hdrs->iova + (sq->head * TSO_HEADER_SIZE);
		list.size[0] = hdr_len;
		list.num_segs = 1;

		/* Add TSO segment's payload data fragments */
		pkt_len = hdr_len;
		while (seg_len > 0) {
			int size;

			size = min_t(int, tso.size, seg_len);

			list.size[list.num_segs] = size;
			list.dma_addr[list.num_segs] =
				otx2_tso_frag_dma_addr(sq, skb,
						       tso.next_frag_idx - 1,
						       (u64)tso.data, hdr_len,
						       first_sqe);
			list.num_segs++;
			pkt_len += size;
			seg_len -= size;
			tso_build_data(skb, &tso, size);
		}
		sqe_hdr->total = pkt_len;
		otx2_sqe_tso_add_sg(sq, &list, &offset);

		/* DMA mappings and skb needs to be freed only after last
		 * TSO segment is transmitted out. So set 'PNC' only for
		 * last segment. Also point last segment's sqe_id to first
		 * segment's SQE index where skb address and DMA mappings
		 * are saved.
		 */
		if (!tcp_data) {
			sqe_hdr->pnc = 1;
			sqe_hdr->sqe_id = first_sqe;
			sq->sg[first_sqe].skb = (u64)skb;
		} else {
			sqe_hdr->pnc = 0;
		}

		sqe_hdr->sizem1 = (offset / 16) - 1;

		/* Flush SQE to HW */
		otx2_sqe_flush(sq, offset);
	}
}

static bool is_hw_tso_supported(struct otx2_nic *pfvf,
				struct sk_buff *skb)
{
	int payload_len, last_seg_size;

	if (!pfvf->hw.hw_tso)
		return false;

	/* HW has an issue due to which when the payload of the last LSO
	 * segment is shorter than 16 bytes, some header fields may not
	 * be correctly modified, hence don't offload such TSO segments.
	 */
	if (!is_96xx_B0(pfvf->pdev))
		return true;

	payload_len = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb));
	last_seg_size = payload_len % skb_shinfo(skb)->gso_size;
	if (last_seg_size && last_seg_size < 16)
		return false;

	return true;
}

static int otx2_get_sqe_count(struct otx2_nic *pfvf, struct sk_buff *skb)
{
	if (!skb_shinfo(skb)->gso_size)
		return 1;

	/* HW TSO */
	if (is_hw_tso_supported(pfvf, skb))
		return 1;

	/* SW TSO */
	return skb_shinfo(skb)->gso_segs;
}

bool otx2_sq_append_skb(struct net_device *netdev, struct otx2_snd_queue *sq,
			struct sk_buff *skb, u16 qidx)
{
	struct netdev_queue *txq = netdev_get_tx_queue(netdev, qidx);
	struct otx2_nic *pfvf = netdev_priv(netdev);
	int offset, num_segs, free_sqe;
	struct nix_sqe_hdr_s *sqe_hdr;

	/* Check if there is room for new SQE.
	 * 'Num of SQBs freed to SQ's pool - SQ's Aura count'
	 * will give free SQE count.
	 */
	free_sqe = (sq->num_sqbs - *sq->aura_fc_addr) * sq->sqe_per_sqb;

	if (free_sqe < sq->sqe_thresh ||
	    free_sqe < otx2_get_sqe_count(pfvf, skb))
		return false;

	num_segs = skb_shinfo(skb)->nr_frags + 1;

	/* If SKB doesn't fit in a single SQE, linearize it.
	 * TODO: Consider adding JUMP descriptor instead.
	 */
	if (unlikely(num_segs > OTX2_MAX_FRAGS_IN_SQE)) {
		if (__skb_linearize(skb)) {
			dev_kfree_skb_any(skb);
			return true;
		}
		num_segs = skb_shinfo(skb)->nr_frags + 1;
	}

	if (skb_shinfo(skb)->gso_size && !is_hw_tso_supported(pfvf, skb)) {
		otx2_sq_append_tso(pfvf, sq, skb, qidx);
		return true;
	}

	/* Set SQE's SEND_HDR.
	 * Do not clear the first 64bit as it contains constant info.
	 */
	memset(sq->sqe_base + 8, 0, sq->sqe_size - 8);
	sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base);
	otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx);
	offset = sizeof(*sqe_hdr);

	/* Add extended header if needed */
	otx2_sqe_add_ext(pfvf, sq, skb, &offset);

	/* Add SG subdesc with data frags */
	if (!otx2_sqe_add_sg(pfvf, sq, skb, num_segs, &offset)) {
		otx2_dma_unmap_skb_frags(pfvf, &sq->sg[sq->head]);
		return false;
	}

	sqe_hdr->sizem1 = (offset / 16) - 1;

	netdev_tx_sent_queue(txq, skb->len);

	/* Flush SQE to HW */
	otx2_sqe_flush(sq, offset);

	return true;
}
EXPORT_SYMBOL(otx2_sq_append_skb);

void otx2_cleanup_rx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq)
{
	struct nix_cqe_rx_s *cqe;
	int processed_cqe = 0;
	u64 iova, pa;

	while ((cqe = (struct nix_cqe_rx_s *)otx2_get_next_cqe(cq))) {
		if (!cqe->sg.subdc)
			continue;
		processed_cqe++;
		if (cqe->sg.segs > 1) {
			otx2_free_rcv_seg(pfvf, cqe, cq->cq_idx);
			continue;
		}
		iova = cqe->sg.seg_addr - OTX2_HEAD_ROOM;
		pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
		otx2_dma_unmap_page(pfvf, iova, pfvf->rbsize, DMA_FROM_DEVICE);
		put_page(virt_to_page(phys_to_virt(pa)));
	}

	/* Free CQEs to HW */
	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
		     ((u64)cq->cq_idx << 32) | processed_cqe);
}

void otx2_cleanup_tx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq)
{
	struct sk_buff *skb = NULL;
	struct otx2_snd_queue *sq;
	struct nix_cqe_tx_s *cqe;
	int processed_cqe = 0;
	struct sg_list *sg;

	sq = &pfvf->qset.sq[cq->cint_idx];

	while ((cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq))) {
		sg = &sq->sg[cqe->comp.sqe_id];
		skb = (struct sk_buff *)sg->skb;
		if (skb) {
			otx2_dma_unmap_skb_frags(pfvf, sg);
			dev_kfree_skb_any(skb);
			sg->skb = (u64)NULL;
		}
		processed_cqe++;
	}

	/* Free CQEs to HW */
	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
		     ((u64)cq->cq_idx << 32) | processed_cqe);
}

int otx2_rxtx_enable(struct otx2_nic *pfvf, bool enable)
{
	struct msg_req *msg;
	int err;

	mutex_lock(&pfvf->mbox.lock);
	if (enable)
		msg = otx2_mbox_alloc_msg_nix_lf_start_rx(&pfvf->mbox);
	else
		msg = otx2_mbox_alloc_msg_nix_lf_stop_rx(&pfvf->mbox);

	if (!msg) {
		mutex_unlock(&pfvf->mbox.lock);
		return -ENOMEM;
	}

	err = otx2_sync_mbox_msg(&pfvf->mbox);
	mutex_unlock(&pfvf->mbox.lock);
	return err;
}