1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
|
// SPDX-License-Identifier: GPL-2.0
/* Marvell OcteonTx2 RVU Physcial Function ethernet driver
*
* Copyright (C) 2020 Marvell.
*/
#include "cn10k.h"
#include "otx2_reg.h"
#include "otx2_struct.h"
static struct dev_hw_ops otx2_hw_ops = {
.sq_aq_init = otx2_sq_aq_init,
.sqe_flush = otx2_sqe_flush,
.aura_freeptr = otx2_aura_freeptr,
.refill_pool_ptrs = otx2_refill_pool_ptrs,
};
static struct dev_hw_ops cn10k_hw_ops = {
.sq_aq_init = cn10k_sq_aq_init,
.sqe_flush = cn10k_sqe_flush,
.aura_freeptr = cn10k_aura_freeptr,
.refill_pool_ptrs = cn10k_refill_pool_ptrs,
};
int cn10k_lmtst_init(struct otx2_nic *pfvf)
{
struct lmtst_tbl_setup_req *req;
int qcount, err;
if (!test_bit(CN10K_LMTST, &pfvf->hw.cap_flag)) {
pfvf->hw_ops = &otx2_hw_ops;
return 0;
}
pfvf->hw_ops = &cn10k_hw_ops;
qcount = pfvf->hw.max_queues;
/* LMTST lines allocation
* qcount = num_online_cpus();
* NPA = TX + RX + XDP.
* NIX = TX * 32 (For Burst SQE flush).
*/
pfvf->tot_lmt_lines = (qcount * 3) + (qcount * 32);
pfvf->npa_lmt_lines = qcount * 3;
pfvf->nix_lmt_size = LMT_BURST_SIZE * LMT_LINE_SIZE;
mutex_lock(&pfvf->mbox.lock);
req = otx2_mbox_alloc_msg_lmtst_tbl_setup(&pfvf->mbox);
if (!req) {
mutex_unlock(&pfvf->mbox.lock);
return -ENOMEM;
}
req->use_local_lmt_region = true;
err = qmem_alloc(pfvf->dev, &pfvf->dync_lmt, pfvf->tot_lmt_lines,
LMT_LINE_SIZE);
if (err) {
mutex_unlock(&pfvf->mbox.lock);
return err;
}
pfvf->hw.lmt_base = (u64 *)pfvf->dync_lmt->base;
req->lmt_iova = (u64)pfvf->dync_lmt->iova;
err = otx2_sync_mbox_msg(&pfvf->mbox);
mutex_unlock(&pfvf->mbox.lock);
return 0;
}
EXPORT_SYMBOL(cn10k_lmtst_init);
int cn10k_sq_aq_init(void *dev, u16 qidx, u16 sqb_aura)
{
struct nix_cn10k_aq_enq_req *aq;
struct otx2_nic *pfvf = dev;
struct otx2_snd_queue *sq;
sq = &pfvf->qset.sq[qidx];
sq->lmt_addr = (u64 *)((u64)pfvf->hw.nix_lmt_base +
(qidx * pfvf->nix_lmt_size));
sq->lmt_id = pfvf->npa_lmt_lines + (qidx * LMT_BURST_SIZE);
/* Get memory to put this msg */
aq = otx2_mbox_alloc_msg_nix_cn10k_aq_enq(&pfvf->mbox);
if (!aq)
return -ENOMEM;
aq->sq.cq = pfvf->hw.rx_queues + qidx;
aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
aq->sq.cq_ena = 1;
aq->sq.ena = 1;
/* Only one SMQ is allocated, map all SQ's to that SMQ */
aq->sq.smq = pfvf->hw.txschq_list[NIX_TXSCH_LVL_SMQ][0];
/* FIXME: set based on NIX_AF_DWRR_RPM_MTU*/
aq->sq.smq_rr_weight = pfvf->netdev->mtu;
aq->sq.default_chan = pfvf->hw.tx_chan_base;
aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
aq->sq.sqb_aura = sqb_aura;
aq->sq.sq_int_ena = NIX_SQINT_BITS;
aq->sq.qint_idx = 0;
/* Due pipelining impact minimum 2000 unused SQ CQE's
* need to maintain to avoid CQ overflow.
*/
aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (pfvf->qset.sqe_cnt));
/* Fill AQ info */
aq->qidx = qidx;
aq->ctype = NIX_AQ_CTYPE_SQ;
aq->op = NIX_AQ_INSTOP_INIT;
return otx2_sync_mbox_msg(&pfvf->mbox);
}
#define NPA_MAX_BURST 16
void cn10k_refill_pool_ptrs(void *dev, struct otx2_cq_queue *cq)
{
struct otx2_nic *pfvf = dev;
u64 ptrs[NPA_MAX_BURST];
int num_ptrs = 1;
dma_addr_t bufptr;
/* Refill pool with new buffers */
while (cq->pool_ptrs) {
if (otx2_alloc_buffer(pfvf, cq, &bufptr)) {
if (num_ptrs--)
__cn10k_aura_freeptr(pfvf, cq->cq_idx, ptrs,
num_ptrs,
cq->rbpool->lmt_addr);
break;
}
cq->pool_ptrs--;
ptrs[num_ptrs] = (u64)bufptr + OTX2_HEAD_ROOM;
num_ptrs++;
if (num_ptrs == NPA_MAX_BURST || cq->pool_ptrs == 0) {
__cn10k_aura_freeptr(pfvf, cq->cq_idx, ptrs,
num_ptrs,
cq->rbpool->lmt_addr);
num_ptrs = 1;
}
}
}
void cn10k_sqe_flush(void *dev, struct otx2_snd_queue *sq, int size, int qidx)
{
u64 val = 0, tar_addr = 0;
/* FIXME: val[0:10] LMT_ID.
* [12:15] no of LMTST - 1 in the burst.
* [19:63] data size of each LMTST in the burst except first.
*/
val = (sq->lmt_id & 0x7FF);
/* Target address for LMTST flush tells HW how many 128bit
* words are present.
* tar_addr[6:4] size of first LMTST - 1 in units of 128b.
*/
tar_addr |= sq->io_addr | (((size / 16) - 1) & 0x7) << 4;
dma_wmb();
memcpy(sq->lmt_addr, sq->sqe_base, size);
cn10k_lmt_flush(val, tar_addr);
sq->head++;
sq->head &= (sq->sqe_cnt - 1);
}
int cn10k_free_all_ipolicers(struct otx2_nic *pfvf)
{
struct nix_bandprof_free_req *req;
int rc;
if (is_dev_otx2(pfvf->pdev))
return 0;
mutex_lock(&pfvf->mbox.lock);
req = otx2_mbox_alloc_msg_nix_bandprof_free(&pfvf->mbox);
if (!req) {
rc = -ENOMEM;
goto out;
}
/* Free all bandwidth profiles allocated */
req->free_all = true;
rc = otx2_sync_mbox_msg(&pfvf->mbox);
out:
mutex_unlock(&pfvf->mbox.lock);
return rc;
}
int cn10k_alloc_leaf_profile(struct otx2_nic *pfvf, u16 *leaf)
{
struct nix_bandprof_alloc_req *req;
struct nix_bandprof_alloc_rsp *rsp;
int rc;
req = otx2_mbox_alloc_msg_nix_bandprof_alloc(&pfvf->mbox);
if (!req)
return -ENOMEM;
req->prof_count[BAND_PROF_LEAF_LAYER] = 1;
rc = otx2_sync_mbox_msg(&pfvf->mbox);
if (rc)
goto out;
rsp = (struct nix_bandprof_alloc_rsp *)
otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
if (!rsp->prof_count[BAND_PROF_LEAF_LAYER]) {
rc = -EIO;
goto out;
}
*leaf = rsp->prof_idx[BAND_PROF_LEAF_LAYER][0];
out:
if (rc) {
dev_warn(pfvf->dev,
"Failed to allocate ingress bandwidth policer\n");
}
return rc;
}
int cn10k_alloc_matchall_ipolicer(struct otx2_nic *pfvf)
{
struct otx2_hw *hw = &pfvf->hw;
int ret;
mutex_lock(&pfvf->mbox.lock);
ret = cn10k_alloc_leaf_profile(pfvf, &hw->matchall_ipolicer);
mutex_unlock(&pfvf->mbox.lock);
return ret;
}
#define POLICER_TIMESTAMP 1 /* 1 second */
#define MAX_RATE_EXP 22 /* Valid rate exponent range: 0 - 22 */
static void cn10k_get_ingress_burst_cfg(u32 burst, u32 *burst_exp,
u32 *burst_mantissa)
{
int tmp;
/* Burst is calculated as
* (1+[BURST_MANTISSA]/256)*2^[BURST_EXPONENT]
* This is the upper limit on number tokens (bytes) that
* can be accumulated in the bucket.
*/
*burst_exp = ilog2(burst);
if (burst < 256) {
/* No float: can't express mantissa in this case */
*burst_mantissa = 0;
return;
}
if (*burst_exp > MAX_RATE_EXP)
*burst_exp = MAX_RATE_EXP;
/* Calculate mantissa
* Find remaining bytes 'burst - 2^burst_exp'
* mantissa = (remaining bytes) / 2^ (burst_exp - 8)
*/
tmp = burst - rounddown_pow_of_two(burst);
*burst_mantissa = tmp / (1UL << (*burst_exp - 8));
}
static void cn10k_get_ingress_rate_cfg(u64 rate, u32 *rate_exp,
u32 *rate_mantissa, u32 *rdiv)
{
u32 div = 0;
u32 exp = 0;
u64 tmp;
/* Figure out mantissa, exponent and divider from given max pkt rate
*
* To achieve desired rate HW adds
* (1+[RATE_MANTISSA]/256)*2^[RATE_EXPONENT] tokens (bytes) at every
* policer timeunit * 2^rdiv ie 2 * 2^rdiv usecs, to the token bucket.
* Here policer timeunit is 2 usecs and rate is in bits per sec.
* Since floating point cannot be used below algorithm uses 1000000
* scale factor to support rates upto 100Gbps.
*/
tmp = rate * 32 * 2;
if (tmp < 256000000) {
while (tmp < 256000000) {
tmp = tmp * 2;
div++;
}
} else {
for (exp = 0; tmp >= 512000000 && exp <= MAX_RATE_EXP; exp++)
tmp = tmp / 2;
if (exp > MAX_RATE_EXP)
exp = MAX_RATE_EXP;
}
*rate_mantissa = (tmp - 256000000) / 1000000;
*rate_exp = exp;
*rdiv = div;
}
int cn10k_map_unmap_rq_policer(struct otx2_nic *pfvf, int rq_idx,
u16 policer, bool map)
{
struct nix_cn10k_aq_enq_req *aq;
aq = otx2_mbox_alloc_msg_nix_cn10k_aq_enq(&pfvf->mbox);
if (!aq)
return -ENOMEM;
/* Enable policing and set the bandwidth profile (policer) index */
if (map)
aq->rq.policer_ena = 1;
else
aq->rq.policer_ena = 0;
aq->rq_mask.policer_ena = 1;
aq->rq.band_prof_id = policer;
aq->rq_mask.band_prof_id = GENMASK(9, 0);
/* Fill AQ info */
aq->qidx = rq_idx;
aq->ctype = NIX_AQ_CTYPE_RQ;
aq->op = NIX_AQ_INSTOP_WRITE;
return otx2_sync_mbox_msg(&pfvf->mbox);
}
int cn10k_free_leaf_profile(struct otx2_nic *pfvf, u16 leaf)
{
struct nix_bandprof_free_req *req;
req = otx2_mbox_alloc_msg_nix_bandprof_free(&pfvf->mbox);
if (!req)
return -ENOMEM;
req->prof_count[BAND_PROF_LEAF_LAYER] = 1;
req->prof_idx[BAND_PROF_LEAF_LAYER][0] = leaf;
return otx2_sync_mbox_msg(&pfvf->mbox);
}
int cn10k_free_matchall_ipolicer(struct otx2_nic *pfvf)
{
struct otx2_hw *hw = &pfvf->hw;
int qidx, rc;
mutex_lock(&pfvf->mbox.lock);
/* Remove RQ's policer mapping */
for (qidx = 0; qidx < hw->rx_queues; qidx++)
cn10k_map_unmap_rq_policer(pfvf, qidx,
hw->matchall_ipolicer, false);
rc = cn10k_free_leaf_profile(pfvf, hw->matchall_ipolicer);
mutex_unlock(&pfvf->mbox.lock);
return rc;
}
int cn10k_set_ipolicer_rate(struct otx2_nic *pfvf, u16 profile,
u32 burst, u64 rate, bool pps)
{
struct nix_cn10k_aq_enq_req *aq;
u32 burst_exp, burst_mantissa;
u32 rate_exp, rate_mantissa;
u32 rdiv;
/* Get exponent and mantissa values for the desired rate */
cn10k_get_ingress_burst_cfg(burst, &burst_exp, &burst_mantissa);
cn10k_get_ingress_rate_cfg(rate, &rate_exp, &rate_mantissa, &rdiv);
/* Init bandwidth profile */
aq = otx2_mbox_alloc_msg_nix_cn10k_aq_enq(&pfvf->mbox);
if (!aq)
return -ENOMEM;
/* Set initial color mode to blind */
aq->prof.icolor = 0x03;
aq->prof_mask.icolor = 0x03;
/* Set rate and burst values */
aq->prof.cir_exponent = rate_exp;
aq->prof_mask.cir_exponent = 0x1F;
aq->prof.cir_mantissa = rate_mantissa;
aq->prof_mask.cir_mantissa = 0xFF;
aq->prof.cbs_exponent = burst_exp;
aq->prof_mask.cbs_exponent = 0x1F;
aq->prof.cbs_mantissa = burst_mantissa;
aq->prof_mask.cbs_mantissa = 0xFF;
aq->prof.rdiv = rdiv;
aq->prof_mask.rdiv = 0xF;
if (pps) {
/* The amount of decremented tokens is calculated according to
* the following equation:
* max([ LMODE ? 0 : (packet_length - LXPTR)] +
* ([ADJUST_MANTISSA]/256 - 1) * 2^[ADJUST_EXPONENT],
* 1/256)
* if LMODE is 1 then rate limiting will be based on
* PPS otherwise bps.
* The aim of the ADJUST value is to specify a token cost per
* packet in contrary to the packet length that specifies a
* cost per byte. To rate limit based on PPS adjust mantissa
* is set as 384 and exponent as 1 so that number of tokens
* decremented becomes 1 i.e, 1 token per packeet.
*/
aq->prof.adjust_exponent = 1;
aq->prof_mask.adjust_exponent = 0x1F;
aq->prof.adjust_mantissa = 384;
aq->prof_mask.adjust_mantissa = 0x1FF;
aq->prof.lmode = 0x1;
aq->prof_mask.lmode = 0x1;
}
/* Two rate three color marker
* With PEIR/EIR set to zero, color will be either green or red
*/
aq->prof.meter_algo = 2;
aq->prof_mask.meter_algo = 0x3;
aq->prof.rc_action = NIX_RX_BAND_PROF_ACTIONRESULT_DROP;
aq->prof_mask.rc_action = 0x3;
aq->prof.yc_action = NIX_RX_BAND_PROF_ACTIONRESULT_PASS;
aq->prof_mask.yc_action = 0x3;
aq->prof.gc_action = NIX_RX_BAND_PROF_ACTIONRESULT_PASS;
aq->prof_mask.gc_action = 0x3;
/* Setting exponent value as 24 and mantissa as 0 configures
* the bucket with zero values making bucket unused. Peak
* information rate and Excess information rate buckets are
* unused here.
*/
aq->prof.peir_exponent = 24;
aq->prof_mask.peir_exponent = 0x1F;
aq->prof.peir_mantissa = 0;
aq->prof_mask.peir_mantissa = 0xFF;
aq->prof.pebs_exponent = 24;
aq->prof_mask.pebs_exponent = 0x1F;
aq->prof.pebs_mantissa = 0;
aq->prof_mask.pebs_mantissa = 0xFF;
/* Fill AQ info */
aq->qidx = profile;
aq->ctype = NIX_AQ_CTYPE_BANDPROF;
aq->op = NIX_AQ_INSTOP_WRITE;
return otx2_sync_mbox_msg(&pfvf->mbox);
}
int cn10k_set_matchall_ipolicer_rate(struct otx2_nic *pfvf,
u32 burst, u64 rate)
{
struct otx2_hw *hw = &pfvf->hw;
int qidx, rc;
mutex_lock(&pfvf->mbox.lock);
rc = cn10k_set_ipolicer_rate(pfvf, hw->matchall_ipolicer, burst,
rate, false);
if (rc)
goto out;
for (qidx = 0; qidx < hw->rx_queues; qidx++) {
rc = cn10k_map_unmap_rq_policer(pfvf, qidx,
hw->matchall_ipolicer, true);
if (rc)
break;
}
out:
mutex_unlock(&pfvf->mbox.lock);
return rc;
}
|