1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */
#include "ice_common.h"
/**
* ice_aq_read_nvm
* @hw: pointer to the hw struct
* @module_typeid: module pointer location in words from the NVM beginning
* @offset: byte offset from the module beginning
* @length: length of the section to be read (in bytes from the offset)
* @data: command buffer (size [bytes] = length)
* @last_command: tells if this is the last command in a series
* @cd: pointer to command details structure or NULL
*
* Read the NVM using the admin queue commands (0x0701)
*/
static enum ice_status
ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length,
void *data, bool last_command, struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
struct ice_aqc_nvm *cmd;
cmd = &desc.params.nvm;
/* In offset the highest byte must be zeroed. */
if (offset & 0xFF000000)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read);
/* If this is the last command in a series, set the proper flag. */
if (last_command)
cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
cmd->module_typeid = cpu_to_le16(module_typeid);
cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
cmd->offset_high = (offset >> 16) & 0xFF;
cmd->length = cpu_to_le16(length);
return ice_aq_send_cmd(hw, &desc, data, length, cd);
}
/**
* ice_check_sr_access_params - verify params for Shadow RAM R/W operations.
* @hw: pointer to the HW structure
* @offset: offset in words from module start
* @words: number of words to access
*/
static enum ice_status
ice_check_sr_access_params(struct ice_hw *hw, u32 offset, u16 words)
{
if ((offset + words) > hw->nvm.sr_words) {
ice_debug(hw, ICE_DBG_NVM,
"NVM error: offset beyond SR lmt.\n");
return ICE_ERR_PARAM;
}
if (words > ICE_SR_SECTOR_SIZE_IN_WORDS) {
/* We can access only up to 4KB (one sector), in one AQ write */
ice_debug(hw, ICE_DBG_NVM,
"NVM error: tried to access %d words, limit is %d.\n",
words, ICE_SR_SECTOR_SIZE_IN_WORDS);
return ICE_ERR_PARAM;
}
if (((offset + (words - 1)) / ICE_SR_SECTOR_SIZE_IN_WORDS) !=
(offset / ICE_SR_SECTOR_SIZE_IN_WORDS)) {
/* A single access cannot spread over two sectors */
ice_debug(hw, ICE_DBG_NVM,
"NVM error: cannot spread over two sectors.\n");
return ICE_ERR_PARAM;
}
return 0;
}
/**
* ice_read_sr_aq - Read Shadow RAM.
* @hw: pointer to the HW structure
* @offset: offset in words from module start
* @words: number of words to read
* @data: buffer for words reads from Shadow RAM
* @last_command: tells the AdminQ that this is the last command
*
* Reads 16-bit word buffers from the Shadow RAM using the admin command.
*/
static enum ice_status
ice_read_sr_aq(struct ice_hw *hw, u32 offset, u16 words, u16 *data,
bool last_command)
{
enum ice_status status;
status = ice_check_sr_access_params(hw, offset, words);
/* values in "offset" and "words" parameters are sized as words
* (16 bits) but ice_aq_read_nvm expects these values in bytes.
* So do this conversion while calling ice_aq_read_nvm.
*/
if (!status)
status = ice_aq_read_nvm(hw, 0, 2 * offset, 2 * words, data,
last_command, NULL);
return status;
}
/**
* ice_read_sr_word_aq - Reads Shadow RAM via AQ
* @hw: pointer to the HW structure
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
* @data: word read from the Shadow RAM
*
* Reads one 16 bit word from the Shadow RAM using the ice_read_sr_aq method.
*/
static enum ice_status
ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data)
{
enum ice_status status;
status = ice_read_sr_aq(hw, offset, 1, data, true);
if (!status)
*data = le16_to_cpu(*(__le16 *)data);
return status;
}
/**
* ice_acquire_nvm - Generic request for acquiring the NVM ownership
* @hw: pointer to the HW structure
* @access: NVM access type (read or write)
*
* This function will request NVM ownership.
*/
static enum
ice_status ice_acquire_nvm(struct ice_hw *hw,
enum ice_aq_res_access_type access)
{
if (hw->nvm.blank_nvm_mode)
return 0;
return ice_acquire_res(hw, ICE_NVM_RES_ID, access);
}
/**
* ice_release_nvm - Generic request for releasing the NVM ownership
* @hw: pointer to the HW structure
*
* This function will release NVM ownership.
*/
static void ice_release_nvm(struct ice_hw *hw)
{
if (hw->nvm.blank_nvm_mode)
return;
ice_release_res(hw, ICE_NVM_RES_ID);
}
/**
* ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary
* @hw: pointer to the HW structure
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
* @data: word read from the Shadow RAM
*
* Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq.
*/
static enum ice_status
ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data)
{
enum ice_status status;
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (!status) {
status = ice_read_sr_word_aq(hw, offset, data);
ice_release_nvm(hw);
}
return status;
}
/**
* ice_init_nvm - initializes NVM setting
* @hw: pointer to the hw struct
*
* This function reads and populates NVM settings such as Shadow RAM size,
* max_timeout, and blank_nvm_mode
*/
enum ice_status ice_init_nvm(struct ice_hw *hw)
{
struct ice_nvm_info *nvm = &hw->nvm;
u16 eetrack_lo, eetrack_hi;
enum ice_status status = 0;
u32 fla, gens_stat;
u8 sr_size;
/* The SR size is stored regardless of the nvm programming mode
* as the blank mode may be used in the factory line.
*/
gens_stat = rd32(hw, GLNVM_GENS);
sr_size = (gens_stat & GLNVM_GENS_SR_SIZE_M) >> GLNVM_GENS_SR_SIZE_S;
/* Switching to words (sr_size contains power of 2) */
nvm->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB;
/* Check if we are in the normal or blank NVM programming mode */
fla = rd32(hw, GLNVM_FLA);
if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */
nvm->blank_nvm_mode = false;
} else { /* Blank programming mode */
nvm->blank_nvm_mode = true;
status = ICE_ERR_NVM_BLANK_MODE;
ice_debug(hw, ICE_DBG_NVM,
"NVM init error: unsupported blank mode.\n");
return status;
}
status = ice_read_sr_word(hw, ICE_SR_NVM_DEV_STARTER_VER, &hw->nvm.ver);
if (status) {
ice_debug(hw, ICE_DBG_INIT,
"Failed to read DEV starter version.\n");
return status;
}
status = ice_read_sr_word(hw, ICE_SR_NVM_EETRACK_LO, &eetrack_lo);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read EETRACK lo.\n");
return status;
}
status = ice_read_sr_word(hw, ICE_SR_NVM_EETRACK_HI, &eetrack_hi);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read EETRACK hi.\n");
return status;
}
hw->nvm.eetrack = (eetrack_hi << 16) | eetrack_lo;
return status;
}
|