1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
|
/*****************************************************************************
* *
* File: sge.c *
* $Revision: 1.13 $ *
* $Date: 2005/03/23 07:41:27 $ *
* Description: *
* DMA engine. *
* part of the Chelsio 10Gb Ethernet Driver. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License, version 2, as *
* published by the Free Software Foundation. *
* *
* You should have received a copy of the GNU General Public License along *
* with this program; if not, write to the Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
* *
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
* *
* http://www.chelsio.com *
* *
* Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
* All rights reserved. *
* *
* Maintainers: maintainers@chelsio.com *
* *
* Authors: Dimitrios Michailidis <dm@chelsio.com> *
* Tina Yang <tainay@chelsio.com> *
* Felix Marti <felix@chelsio.com> *
* Scott Bardone <sbardone@chelsio.com> *
* Kurt Ottaway <kottaway@chelsio.com> *
* Frank DiMambro <frank@chelsio.com> *
* *
* History: *
* *
****************************************************************************/
#include "common.h"
#include <linux/config.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/if_arp.h>
#include "cpl5_cmd.h"
#include "sge.h"
#include "regs.h"
#include "espi.h"
#include <linux/tcp.h>
#define SGE_CMDQ_N 2
#define SGE_FREELQ_N 2
#define SGE_CMDQ0_E_N 512
#define SGE_CMDQ1_E_N 128
#define SGE_FREEL_SIZE 4096
#define SGE_JUMBO_FREEL_SIZE 512
#define SGE_FREEL_REFILL_THRESH 16
#define SGE_RESPQ_E_N 1024
#define SGE_INTR_BUCKETSIZE 100
#define SGE_INTR_LATBUCKETS 5
#define SGE_INTR_MAXBUCKETS 11
#define SGE_INTRTIMER0 1
#define SGE_INTRTIMER1 50
#define SGE_INTRTIMER_NRES 10000
#define SGE_RX_COPY_THRESHOLD 256
#define SGE_RX_SM_BUF_SIZE 1536
#define SGE_RESPQ_REPLENISH_THRES ((3 * SGE_RESPQ_E_N) / 4)
#define SGE_RX_OFFSET 2
#ifndef NET_IP_ALIGN
# define NET_IP_ALIGN SGE_RX_OFFSET
#endif
/*
* Memory Mapped HW Command, Freelist and Response Queue Descriptors
*/
#if defined(__BIG_ENDIAN_BITFIELD)
struct cmdQ_e {
u32 AddrLow;
u32 GenerationBit : 1;
u32 BufferLength : 31;
u32 RespQueueSelector : 4;
u32 ResponseTokens : 12;
u32 CmdId : 8;
u32 Reserved : 3;
u32 TokenValid : 1;
u32 Eop : 1;
u32 Sop : 1;
u32 DataValid : 1;
u32 GenerationBit2 : 1;
u32 AddrHigh;
};
struct freelQ_e {
u32 AddrLow;
u32 GenerationBit : 1;
u32 BufferLength : 31;
u32 Reserved : 31;
u32 GenerationBit2 : 1;
u32 AddrHigh;
};
struct respQ_e {
u32 Qsleeping : 4;
u32 Cmdq1CreditReturn : 5;
u32 Cmdq1DmaComplete : 5;
u32 Cmdq0CreditReturn : 5;
u32 Cmdq0DmaComplete : 5;
u32 FreelistQid : 2;
u32 CreditValid : 1;
u32 DataValid : 1;
u32 Offload : 1;
u32 Eop : 1;
u32 Sop : 1;
u32 GenerationBit : 1;
u32 BufferLength;
};
#elif defined(__LITTLE_ENDIAN_BITFIELD)
struct cmdQ_e {
u32 BufferLength : 31;
u32 GenerationBit : 1;
u32 AddrLow;
u32 AddrHigh;
u32 GenerationBit2 : 1;
u32 DataValid : 1;
u32 Sop : 1;
u32 Eop : 1;
u32 TokenValid : 1;
u32 Reserved : 3;
u32 CmdId : 8;
u32 ResponseTokens : 12;
u32 RespQueueSelector : 4;
};
struct freelQ_e {
u32 BufferLength : 31;
u32 GenerationBit : 1;
u32 AddrLow;
u32 AddrHigh;
u32 GenerationBit2 : 1;
u32 Reserved : 31;
};
struct respQ_e {
u32 BufferLength;
u32 GenerationBit : 1;
u32 Sop : 1;
u32 Eop : 1;
u32 Offload : 1;
u32 DataValid : 1;
u32 CreditValid : 1;
u32 FreelistQid : 2;
u32 Cmdq0DmaComplete : 5;
u32 Cmdq0CreditReturn : 5;
u32 Cmdq1DmaComplete : 5;
u32 Cmdq1CreditReturn : 5;
u32 Qsleeping : 4;
} ;
#endif
/*
* SW Context Command and Freelist Queue Descriptors
*/
struct cmdQ_ce {
struct sk_buff *skb;
DECLARE_PCI_UNMAP_ADDR(dma_addr);
DECLARE_PCI_UNMAP_LEN(dma_len);
unsigned int single;
};
struct freelQ_ce {
struct sk_buff *skb;
DECLARE_PCI_UNMAP_ADDR(dma_addr);
DECLARE_PCI_UNMAP_LEN(dma_len);
};
/*
* SW Command, Freelist and Response Queue
*/
struct cmdQ {
atomic_t asleep; /* HW DMA Fetch status */
atomic_t credits; /* # available descriptors for TX */
atomic_t pio_pidx; /* Variable updated on Doorbell */
u16 entries_n; /* # descriptors for TX */
u16 pidx; /* producer index (SW) */
u16 cidx; /* consumer index (HW) */
u8 genbit; /* current generation (=valid) bit */
struct cmdQ_e *entries; /* HW command descriptor Q */
struct cmdQ_ce *centries; /* SW command context descriptor Q */
spinlock_t Qlock; /* Lock to protect cmdQ enqueuing */
dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
};
struct freelQ {
unsigned int credits; /* # of available RX buffers */
unsigned int entries_n; /* free list capacity */
u16 pidx; /* producer index (SW) */
u16 cidx; /* consumer index (HW) */
u16 rx_buffer_size; /* Buffer size on this free list */
u16 dma_offset; /* DMA offset to align IP headers */
u8 genbit; /* current generation (=valid) bit */
struct freelQ_e *entries; /* HW freelist descriptor Q */
struct freelQ_ce *centries; /* SW freelist conext descriptor Q */
dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
};
struct respQ {
u16 credits; /* # of available respQ descriptors */
u16 credits_pend; /* # of not yet returned descriptors */
u16 entries_n; /* # of response Q descriptors */
u16 pidx; /* producer index (HW) */
u16 cidx; /* consumer index (SW) */
u8 genbit; /* current generation(=valid) bit */
struct respQ_e *entries; /* HW response descriptor Q */
dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
};
/*
* Main SGE data structure
*
* Interrupts are handled by a single CPU and it is likely that on a MP system
* the application is migrated to another CPU. In that scenario, we try to
* seperate the RX(in irq context) and TX state in order to decrease memory
* contention.
*/
struct sge {
struct adapter *adapter; /* adapter backpointer */
struct freelQ freelQ[SGE_FREELQ_N]; /* freelist Q(s) */
struct respQ respQ; /* response Q instatiation */
unsigned int rx_pkt_pad; /* RX padding for L2 packets */
unsigned int jumbo_fl; /* jumbo freelist Q index */
u32 intrtimer[SGE_INTR_MAXBUCKETS]; /* ! */
u32 currIndex; /* current index into intrtimer[] */
u32 intrtimer_nres; /* no resource interrupt timer value */
u32 sge_control; /* shadow content of sge control reg */
struct sge_intr_counts intr_cnt;
struct timer_list ptimer;
struct sk_buff *pskb;
u32 ptimeout;
struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned; /* command Q(s)*/
};
static unsigned int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
unsigned int qid);
/*
* PIO to indicate that memory mapped Q contains valid descriptor(s).
*/
static inline void doorbell_pio(struct sge *sge, u32 val)
{
wmb();
t1_write_reg_4(sge->adapter, A_SG_DOORBELL, val);
}
/*
* Disables the DMA engine.
*/
void t1_sge_stop(struct sge *sge)
{
t1_write_reg_4(sge->adapter, A_SG_CONTROL, 0);
t1_read_reg_4(sge->adapter, A_SG_CONTROL); /* flush write */
if (is_T2(sge->adapter))
del_timer_sync(&sge->ptimer);
}
static u8 ch_mac_addr[ETH_ALEN] = {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
static void t1_espi_workaround(void *data)
{
struct adapter *adapter = (struct adapter *)data;
struct sge *sge = adapter->sge;
if (netif_running(adapter->port[0].dev) &&
atomic_read(&sge->cmdQ[0].asleep)) {
u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
if ((seop & 0xfff0fff) == 0xfff && sge->pskb) {
struct sk_buff *skb = sge->pskb;
if (!skb->cb[0]) {
memcpy(skb->data+sizeof(struct cpl_tx_pkt), ch_mac_addr, ETH_ALEN);
memcpy(skb->data+skb->len-10, ch_mac_addr, ETH_ALEN);
skb->cb[0] = 0xff;
}
t1_sge_tx(skb, adapter,0);
}
}
mod_timer(&adapter->sge->ptimer, jiffies + sge->ptimeout);
}
/*
* Enables the DMA engine.
*/
void t1_sge_start(struct sge *sge)
{
t1_write_reg_4(sge->adapter, A_SG_CONTROL, sge->sge_control);
t1_read_reg_4(sge->adapter, A_SG_CONTROL); /* flush write */
if (is_T2(sge->adapter)) {
init_timer(&sge->ptimer);
sge->ptimer.function = (void *)&t1_espi_workaround;
sge->ptimer.data = (unsigned long)sge->adapter;
sge->ptimer.expires = jiffies + sge->ptimeout;
add_timer(&sge->ptimer);
}
}
/*
* Creates a t1_sge structure and returns suggested resource parameters.
*/
struct sge * __devinit t1_sge_create(struct adapter *adapter,
struct sge_params *p)
{
struct sge *sge = kmalloc(sizeof(*sge), GFP_KERNEL);
if (!sge)
return NULL;
memset(sge, 0, sizeof(*sge));
if (is_T2(adapter))
sge->ptimeout = 1; /* finest allowed */
sge->adapter = adapter;
sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : SGE_RX_OFFSET;
sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
p->cmdQ_size[0] = SGE_CMDQ0_E_N;
p->cmdQ_size[1] = SGE_CMDQ1_E_N;
p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
p->rx_coalesce_usecs = SGE_INTRTIMER1;
p->last_rx_coalesce_raw = SGE_INTRTIMER1 *
(board_info(sge->adapter)->clock_core / 1000000);
p->default_rx_coalesce_usecs = SGE_INTRTIMER1;
p->coalesce_enable = 0; /* Turn off adaptive algorithm by default */
p->sample_interval_usecs = 0;
return sge;
}
/*
* Frees all RX buffers on the freelist Q. The caller must make sure that
* the SGE is turned off before calling this function.
*/
static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *Q)
{
unsigned int cidx = Q->cidx, credits = Q->credits;
while (credits--) {
struct freelQ_ce *ce = &Q->centries[cidx];
pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len),
PCI_DMA_FROMDEVICE);
dev_kfree_skb(ce->skb);
ce->skb = NULL;
if (++cidx == Q->entries_n)
cidx = 0;
}
}
/*
* Free RX free list and response queue resources.
*/
static void free_rx_resources(struct sge *sge)
{
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int size, i;
if (sge->respQ.entries) {
size = sizeof(struct respQ_e) * sge->respQ.entries_n;
pci_free_consistent(pdev, size, sge->respQ.entries,
sge->respQ.dma_addr);
}
for (i = 0; i < SGE_FREELQ_N; i++) {
struct freelQ *Q = &sge->freelQ[i];
if (Q->centries) {
free_freelQ_buffers(pdev, Q);
kfree(Q->centries);
}
if (Q->entries) {
size = sizeof(struct freelQ_e) * Q->entries_n;
pci_free_consistent(pdev, size, Q->entries,
Q->dma_addr);
}
}
}
/*
* Allocates basic RX resources, consisting of memory mapped freelist Qs and a
* response Q.
*/
static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
{
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int size, i;
for (i = 0; i < SGE_FREELQ_N; i++) {
struct freelQ *Q = &sge->freelQ[i];
Q->genbit = 1;
Q->entries_n = p->freelQ_size[i];
Q->dma_offset = SGE_RX_OFFSET - sge->rx_pkt_pad;
size = sizeof(struct freelQ_e) * Q->entries_n;
Q->entries = (struct freelQ_e *)
pci_alloc_consistent(pdev, size, &Q->dma_addr);
if (!Q->entries)
goto err_no_mem;
memset(Q->entries, 0, size);
Q->centries = kcalloc(Q->entries_n, sizeof(struct freelQ_ce),
GFP_KERNEL);
if (!Q->centries)
goto err_no_mem;
}
/*
* Calculate the buffer sizes for the two free lists. FL0 accommodates
* regular sized Ethernet frames, FL1 is sized not to exceed 16K,
* including all the sk_buff overhead.
*
* Note: For T2 FL0 and FL1 are reversed.
*/
sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
sizeof(struct cpl_rx_data) +
sge->freelQ[!sge->jumbo_fl].dma_offset;
sge->freelQ[sge->jumbo_fl].rx_buffer_size = (16 * 1024) -
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
sge->respQ.genbit = 1;
sge->respQ.entries_n = SGE_RESPQ_E_N;
sge->respQ.credits = SGE_RESPQ_E_N;
size = sizeof(struct respQ_e) * sge->respQ.entries_n;
sge->respQ.entries = (struct respQ_e *)
pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
if (!sge->respQ.entries)
goto err_no_mem;
memset(sge->respQ.entries, 0, size);
return 0;
err_no_mem:
free_rx_resources(sge);
return -ENOMEM;
}
/*
* Frees 'credits_pend' TX buffers and returns the credits to Q->credits.
*
* The adaptive algorithm receives the total size of the buffers freed
* accumulated in @*totpayload. No initialization of this argument here.
*
*/
static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *Q,
unsigned int credits_pend, unsigned int *totpayload)
{
struct pci_dev *pdev = sge->adapter->pdev;
struct sk_buff *skb;
struct cmdQ_ce *ce, *cq = Q->centries;
unsigned int entries_n = Q->entries_n, cidx = Q->cidx,
i = credits_pend;
ce = &cq[cidx];
while (i--) {
if (ce->single)
pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len),
PCI_DMA_TODEVICE);
else
pci_unmap_page(pdev, pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len),
PCI_DMA_TODEVICE);
if (totpayload)
*totpayload += pci_unmap_len(ce, dma_len);
skb = ce->skb;
if (skb)
dev_kfree_skb_irq(skb);
ce++;
if (++cidx == entries_n) {
cidx = 0;
ce = cq;
}
}
Q->cidx = cidx;
atomic_add(credits_pend, &Q->credits);
}
/*
* Free TX resources.
*
* Assumes that SGE is stopped and all interrupts are disabled.
*/
static void free_tx_resources(struct sge *sge)
{
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int size, i;
for (i = 0; i < SGE_CMDQ_N; i++) {
struct cmdQ *Q = &sge->cmdQ[i];
if (Q->centries) {
unsigned int pending = Q->entries_n -
atomic_read(&Q->credits);
if (pending)
free_cmdQ_buffers(sge, Q, pending, NULL);
kfree(Q->centries);
}
if (Q->entries) {
size = sizeof(struct cmdQ_e) * Q->entries_n;
pci_free_consistent(pdev, size, Q->entries,
Q->dma_addr);
}
}
}
/*
* Allocates basic TX resources, consisting of memory mapped command Qs.
*/
static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
{
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int size, i;
for (i = 0; i < SGE_CMDQ_N; i++) {
struct cmdQ *Q = &sge->cmdQ[i];
Q->genbit = 1;
Q->entries_n = p->cmdQ_size[i];
atomic_set(&Q->credits, Q->entries_n);
atomic_set(&Q->asleep, 1);
spin_lock_init(&Q->Qlock);
size = sizeof(struct cmdQ_e) * Q->entries_n;
Q->entries = (struct cmdQ_e *)
pci_alloc_consistent(pdev, size, &Q->dma_addr);
if (!Q->entries)
goto err_no_mem;
memset(Q->entries, 0, size);
Q->centries = kcalloc(Q->entries_n, sizeof(struct cmdQ_ce),
GFP_KERNEL);
if (!Q->centries)
goto err_no_mem;
}
return 0;
err_no_mem:
free_tx_resources(sge);
return -ENOMEM;
}
static inline void setup_ring_params(struct adapter *adapter, u64 addr,
u32 size, int base_reg_lo,
int base_reg_hi, int size_reg)
{
t1_write_reg_4(adapter, base_reg_lo, (u32)addr);
t1_write_reg_4(adapter, base_reg_hi, addr >> 32);
t1_write_reg_4(adapter, size_reg, size);
}
/*
* Enable/disable VLAN acceleration.
*/
void t1_set_vlan_accel(struct adapter *adapter, int on_off)
{
struct sge *sge = adapter->sge;
sge->sge_control &= ~F_VLAN_XTRACT;
if (on_off)
sge->sge_control |= F_VLAN_XTRACT;
if (adapter->open_device_map) {
t1_write_reg_4(adapter, A_SG_CONTROL, sge->sge_control);
t1_read_reg_4(adapter, A_SG_CONTROL); /* flush */
}
}
/*
* Sets the interrupt latency timer when the adaptive Rx coalescing
* is turned off. Do nothing when it is turned on again.
*
* This routine relies on the fact that the caller has already set
* the adaptive policy in adapter->sge_params before calling it.
*/
int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
{
if (!p->coalesce_enable) {
u32 newTimer = p->rx_coalesce_usecs *
(board_info(sge->adapter)->clock_core / 1000000);
t1_write_reg_4(sge->adapter, A_SG_INTRTIMER, newTimer);
}
return 0;
}
/*
* Programs the various SGE registers. However, the engine is not yet enabled,
* but sge->sge_control is setup and ready to go.
*/
static void configure_sge(struct sge *sge, struct sge_params *p)
{
struct adapter *ap = sge->adapter;
int i;
t1_write_reg_4(ap, A_SG_CONTROL, 0);
setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].entries_n,
A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].entries_n,
A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
setup_ring_params(ap, sge->freelQ[0].dma_addr,
sge->freelQ[0].entries_n, A_SG_FL0BASELWR,
A_SG_FL0BASEUPR, A_SG_FL0SIZE);
setup_ring_params(ap, sge->freelQ[1].dma_addr,
sge->freelQ[1].entries_n, A_SG_FL1BASELWR,
A_SG_FL1BASEUPR, A_SG_FL1SIZE);
/* The threshold comparison uses <. */
t1_write_reg_4(ap, A_SG_FLTHRESHOLD, SGE_RX_SM_BUF_SIZE + 1);
setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.entries_n,
A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
t1_write_reg_4(ap, A_SG_RSPQUEUECREDIT, (u32)sge->respQ.entries_n);
sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
V_RX_PKT_OFFSET(sge->rx_pkt_pad);
#if defined(__BIG_ENDIAN_BITFIELD)
sge->sge_control |= F_ENABLE_BIG_ENDIAN;
#endif
/*
* Initialize the SGE Interrupt Timer arrray:
* intrtimer[0] = (SGE_INTRTIMER0) usec
* intrtimer[0<i<5] = (SGE_INTRTIMER0 + i*2) usec
* intrtimer[4<i<10] = ((i - 3) * 6) usec
* intrtimer[10] = (SGE_INTRTIMER1) usec
*
*/
sge->intrtimer[0] = board_info(sge->adapter)->clock_core / 1000000;
for (i = 1; i < SGE_INTR_LATBUCKETS; ++i) {
sge->intrtimer[i] = SGE_INTRTIMER0 + (2 * i);
sge->intrtimer[i] *= sge->intrtimer[0];
}
for (i = SGE_INTR_LATBUCKETS; i < SGE_INTR_MAXBUCKETS - 1; ++i) {
sge->intrtimer[i] = (i - 3) * 6;
sge->intrtimer[i] *= sge->intrtimer[0];
}
sge->intrtimer[SGE_INTR_MAXBUCKETS - 1] =
sge->intrtimer[0] * SGE_INTRTIMER1;
/* Initialize resource timer */
sge->intrtimer_nres = sge->intrtimer[0] * SGE_INTRTIMER_NRES;
/* Finally finish initialization of intrtimer[0] */
sge->intrtimer[0] *= SGE_INTRTIMER0;
/* Initialize for a throughput oriented workload */
sge->currIndex = SGE_INTR_MAXBUCKETS - 1;
if (p->coalesce_enable)
t1_write_reg_4(ap, A_SG_INTRTIMER,
sge->intrtimer[sge->currIndex]);
else
t1_sge_set_coalesce_params(sge, p);
}
/*
* Return the payload capacity of the jumbo free-list buffers.
*/
static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
{
return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
sizeof(struct cpl_rx_data) - SGE_RX_OFFSET + sge->rx_pkt_pad;
}
/*
* Allocates both RX and TX resources and configures the SGE. However,
* the hardware is not enabled yet.
*/
int t1_sge_configure(struct sge *sge, struct sge_params *p)
{
if (alloc_rx_resources(sge, p))
return -ENOMEM;
if (alloc_tx_resources(sge, p)) {
free_rx_resources(sge);
return -ENOMEM;
}
configure_sge(sge, p);
/*
* Now that we have sized the free lists calculate the payload
* capacity of the large buffers. Other parts of the driver use
* this to set the max offload coalescing size so that RX packets
* do not overflow our large buffers.
*/
p->large_buf_capacity = jumbo_payload_capacity(sge);
return 0;
}
/*
* Frees all SGE related resources and the sge structure itself
*/
void t1_sge_destroy(struct sge *sge)
{
if (sge->pskb)
dev_kfree_skb(sge->pskb);
free_tx_resources(sge);
free_rx_resources(sge);
kfree(sge);
}
/*
* Allocates new RX buffers on the freelist Q (and tracks them on the freelist
* context Q) until the Q is full or alloc_skb fails.
*
* It is possible that the generation bits already match, indicating that the
* buffer is already valid and nothing needs to be done. This happens when we
* copied a received buffer into a new sk_buff during the interrupt processing.
*
* If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
* we specify a RX_OFFSET in order to make sure that the IP header is 4B
* aligned.
*/
static void refill_free_list(struct sge *sge, struct freelQ *Q)
{
struct pci_dev *pdev = sge->adapter->pdev;
struct freelQ_ce *ce = &Q->centries[Q->pidx];
struct freelQ_e *e = &Q->entries[Q->pidx];
unsigned int dma_len = Q->rx_buffer_size - Q->dma_offset;
while (Q->credits < Q->entries_n) {
if (e->GenerationBit != Q->genbit) {
struct sk_buff *skb;
dma_addr_t mapping;
skb = alloc_skb(Q->rx_buffer_size, GFP_ATOMIC);
if (!skb)
break;
if (Q->dma_offset)
skb_reserve(skb, Q->dma_offset);
mapping = pci_map_single(pdev, skb->data, dma_len,
PCI_DMA_FROMDEVICE);
ce->skb = skb;
pci_unmap_addr_set(ce, dma_addr, mapping);
pci_unmap_len_set(ce, dma_len, dma_len);
e->AddrLow = (u32)mapping;
e->AddrHigh = (u64)mapping >> 32;
e->BufferLength = dma_len;
e->GenerationBit = e->GenerationBit2 = Q->genbit;
}
e++;
ce++;
if (++Q->pidx == Q->entries_n) {
Q->pidx = 0;
Q->genbit ^= 1;
ce = Q->centries;
e = Q->entries;
}
Q->credits++;
}
}
/*
* Calls refill_free_list for both freelist Qs. If we cannot
* fill at least 1/4 of both Qs, we go into 'few interrupt mode' in order
* to give the system time to free up resources.
*/
static void freelQs_empty(struct sge *sge)
{
u32 irq_reg = t1_read_reg_4(sge->adapter, A_SG_INT_ENABLE);
u32 irqholdoff_reg;
refill_free_list(sge, &sge->freelQ[0]);
refill_free_list(sge, &sge->freelQ[1]);
if (sge->freelQ[0].credits > (sge->freelQ[0].entries_n >> 2) &&
sge->freelQ[1].credits > (sge->freelQ[1].entries_n >> 2)) {
irq_reg |= F_FL_EXHAUSTED;
irqholdoff_reg = sge->intrtimer[sge->currIndex];
} else {
/* Clear the F_FL_EXHAUSTED interrupts for now */
irq_reg &= ~F_FL_EXHAUSTED;
irqholdoff_reg = sge->intrtimer_nres;
}
t1_write_reg_4(sge->adapter, A_SG_INTRTIMER, irqholdoff_reg);
t1_write_reg_4(sge->adapter, A_SG_INT_ENABLE, irq_reg);
/* We reenable the Qs to force a freelist GTS interrupt later */
doorbell_pio(sge, F_FL0_ENABLE | F_FL1_ENABLE);
}
#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
#define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
#define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
/*
* Disable SGE Interrupts
*/
void t1_sge_intr_disable(struct sge *sge)
{
u32 val = t1_read_reg_4(sge->adapter, A_PL_ENABLE);
t1_write_reg_4(sge->adapter, A_PL_ENABLE, val & ~SGE_PL_INTR_MASK);
t1_write_reg_4(sge->adapter, A_SG_INT_ENABLE, 0);
}
/*
* Enable SGE interrupts.
*/
void t1_sge_intr_enable(struct sge *sge)
{
u32 en = SGE_INT_ENABLE;
u32 val = t1_read_reg_4(sge->adapter, A_PL_ENABLE);
if (sge->adapter->flags & TSO_CAPABLE)
en &= ~F_PACKET_TOO_BIG;
t1_write_reg_4(sge->adapter, A_SG_INT_ENABLE, en);
t1_write_reg_4(sge->adapter, A_PL_ENABLE, val | SGE_PL_INTR_MASK);
}
/*
* Clear SGE interrupts.
*/
void t1_sge_intr_clear(struct sge *sge)
{
t1_write_reg_4(sge->adapter, A_PL_CAUSE, SGE_PL_INTR_MASK);
t1_write_reg_4(sge->adapter, A_SG_INT_CAUSE, 0xffffffff);
}
/*
* SGE 'Error' interrupt handler
*/
int t1_sge_intr_error_handler(struct sge *sge)
{
struct adapter *adapter = sge->adapter;
u32 cause = t1_read_reg_4(adapter, A_SG_INT_CAUSE);
if (adapter->flags & TSO_CAPABLE)
cause &= ~F_PACKET_TOO_BIG;
if (cause & F_RESPQ_EXHAUSTED)
sge->intr_cnt.respQ_empty++;
if (cause & F_RESPQ_OVERFLOW) {
sge->intr_cnt.respQ_overflow++;
CH_ALERT("%s: SGE response queue overflow\n",
adapter->name);
}
if (cause & F_FL_EXHAUSTED) {
sge->intr_cnt.freelistQ_empty++;
freelQs_empty(sge);
}
if (cause & F_PACKET_TOO_BIG) {
sge->intr_cnt.pkt_too_big++;
CH_ALERT("%s: SGE max packet size exceeded\n",
adapter->name);
}
if (cause & F_PACKET_MISMATCH) {
sge->intr_cnt.pkt_mismatch++;
CH_ALERT("%s: SGE packet mismatch\n", adapter->name);
}
if (cause & SGE_INT_FATAL)
t1_fatal_err(adapter);
t1_write_reg_4(adapter, A_SG_INT_CAUSE, cause);
return 0;
}
/*
* The following code is copied from 2.6, where the skb_pull is doing the
* right thing and only pulls ETH_HLEN.
*
* Determine the packet's protocol ID. The rule here is that we
* assume 802.3 if the type field is short enough to be a length.
* This is normal practice and works for any 'now in use' protocol.
*/
static unsigned short sge_eth_type_trans(struct sk_buff *skb,
struct net_device *dev)
{
struct ethhdr *eth;
unsigned char *rawp;
skb->mac.raw = skb->data;
skb_pull(skb, ETH_HLEN);
eth = (struct ethhdr *)skb->mac.raw;
if (*eth->h_dest&1) {
if(memcmp(eth->h_dest, dev->broadcast, ETH_ALEN) == 0)
skb->pkt_type = PACKET_BROADCAST;
else
skb->pkt_type = PACKET_MULTICAST;
}
/*
* This ALLMULTI check should be redundant by 1.4
* so don't forget to remove it.
*
* Seems, you forgot to remove it. All silly devices
* seems to set IFF_PROMISC.
*/
else if (1 /*dev->flags&IFF_PROMISC*/)
{
if(memcmp(eth->h_dest,dev->dev_addr, ETH_ALEN))
skb->pkt_type=PACKET_OTHERHOST;
}
if (ntohs(eth->h_proto) >= 1536)
return eth->h_proto;
rawp = skb->data;
/*
* This is a magic hack to spot IPX packets. Older Novell breaks
* the protocol design and runs IPX over 802.3 without an 802.2 LLC
* layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
* won't work for fault tolerant netware but does for the rest.
*/
if (*(unsigned short *)rawp == 0xFFFF)
return htons(ETH_P_802_3);
/*
* Real 802.2 LLC
*/
return htons(ETH_P_802_2);
}
/*
* Prepare the received buffer and pass it up the stack. If it is small enough
* and allocation doesn't fail, we use a new sk_buff and copy the content.
*/
static unsigned int t1_sge_rx(struct sge *sge, struct freelQ *Q,
unsigned int len, unsigned int offload)
{
struct sk_buff *skb;
struct adapter *adapter = sge->adapter;
struct freelQ_ce *ce = &Q->centries[Q->cidx];
if (len <= SGE_RX_COPY_THRESHOLD &&
(skb = alloc_skb(len + NET_IP_ALIGN, GFP_ATOMIC))) {
struct freelQ_e *e;
char *src = ce->skb->data;
pci_dma_sync_single_for_cpu(adapter->pdev,
pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len),
PCI_DMA_FROMDEVICE);
if (!offload) {
skb_reserve(skb, NET_IP_ALIGN);
src += sge->rx_pkt_pad;
}
memcpy(skb->data, src, len);
/* Reuse the entry. */
e = &Q->entries[Q->cidx];
e->GenerationBit ^= 1;
e->GenerationBit2 ^= 1;
} else {
pci_unmap_single(adapter->pdev, pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len),
PCI_DMA_FROMDEVICE);
skb = ce->skb;
if (!offload && sge->rx_pkt_pad)
__skb_pull(skb, sge->rx_pkt_pad);
}
skb_put(skb, len);
if (unlikely(offload)) {
{
printk(KERN_ERR
"%s: unexpected offloaded packet, cmd %u\n",
adapter->name, *skb->data);
dev_kfree_skb_any(skb);
}
} else {
struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)skb->data;
skb_pull(skb, sizeof(*p));
skb->dev = adapter->port[p->iff].dev;
skb->dev->last_rx = jiffies;
skb->protocol = sge_eth_type_trans(skb, skb->dev);
if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
skb->protocol == htons(ETH_P_IP) &&
(skb->data[9] == IPPROTO_TCP ||
skb->data[9] == IPPROTO_UDP))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
if (adapter->vlan_grp && p->vlan_valid)
vlan_hwaccel_rx(skb, adapter->vlan_grp,
ntohs(p->vlan));
else
netif_rx(skb);
}
if (++Q->cidx == Q->entries_n)
Q->cidx = 0;
if (unlikely(--Q->credits < Q->entries_n - SGE_FREEL_REFILL_THRESH))
refill_free_list(sge, Q);
return 1;
}
/*
* Adaptive interrupt timer logic to keep the CPU utilization to
* manageable levels. Basically, as the Average Packet Size (APS)
* gets higher, the interrupt latency setting gets longer. Every
* SGE_INTR_BUCKETSIZE (of 100B) causes a bump of 2usec to the
* base value of SGE_INTRTIMER0. At large values of payload the
* latency hits the ceiling value of SGE_INTRTIMER1 stored at
* index SGE_INTR_MAXBUCKETS-1 in sge->intrtimer[].
*
* sge->currIndex caches the last index to save unneeded PIOs.
*/
static inline void update_intr_timer(struct sge *sge, unsigned int avg_payload)
{
unsigned int newIndex;
newIndex = avg_payload / SGE_INTR_BUCKETSIZE;
if (newIndex > SGE_INTR_MAXBUCKETS - 1) {
newIndex = SGE_INTR_MAXBUCKETS - 1;
}
/* Save a PIO with this check....maybe */
if (newIndex != sge->currIndex) {
t1_write_reg_4(sge->adapter, A_SG_INTRTIMER,
sge->intrtimer[newIndex]);
sge->currIndex = newIndex;
sge->adapter->params.sge.last_rx_coalesce_raw =
sge->intrtimer[newIndex];
}
}
/*
* Returns true if command queue q_num has enough available descriptors that
* we can resume Tx operation after temporarily disabling its packet queue.
*/
static inline int enough_free_Tx_descs(struct sge *sge, int q_num)
{
return atomic_read(&sge->cmdQ[q_num].credits) >
(sge->cmdQ[q_num].entries_n >> 2);
}
/*
* Main interrupt handler, optimized assuming that we took a 'DATA'
* interrupt.
*
* 1. Clear the interrupt
* 2. Loop while we find valid descriptors and process them; accumulate
* information that can be processed after the loop
* 3. Tell the SGE at which index we stopped processing descriptors
* 4. Bookkeeping; free TX buffers, ring doorbell if there are any
* outstanding TX buffers waiting, replenish RX buffers, potentially
* reenable upper layers if they were turned off due to lack of TX
* resources which are available again.
* 5. If we took an interrupt, but no valid respQ descriptors was found we
* let the slow_intr_handler run and do error handling.
*/
irqreturn_t t1_interrupt(int irq, void *cookie, struct pt_regs *regs)
{
struct net_device *netdev;
struct adapter *adapter = cookie;
struct sge *sge = adapter->sge;
struct respQ *Q = &sge->respQ;
unsigned int credits = Q->credits, flags = 0, ret = 0;
unsigned int tot_rxpayload = 0, tot_txpayload = 0, n_rx = 0, n_tx = 0;
unsigned int credits_pend[SGE_CMDQ_N] = { 0, 0 };
struct respQ_e *e = &Q->entries[Q->cidx];
prefetch(e);
t1_write_reg_4(adapter, A_PL_CAUSE, F_PL_INTR_SGE_DATA);
while (e->GenerationBit == Q->genbit) {
if (--credits < SGE_RESPQ_REPLENISH_THRES) {
u32 n = Q->entries_n - credits - 1;
t1_write_reg_4(adapter, A_SG_RSPQUEUECREDIT, n);
credits += n;
}
if (likely(e->DataValid)) {
if (!e->Sop || !e->Eop)
BUG();
t1_sge_rx(sge, &sge->freelQ[e->FreelistQid],
e->BufferLength, e->Offload);
tot_rxpayload += e->BufferLength;
++n_rx;
}
flags |= e->Qsleeping;
credits_pend[0] += e->Cmdq0CreditReturn;
credits_pend[1] += e->Cmdq1CreditReturn;
#ifdef CONFIG_SMP
/*
* If enough cmdQ0 buffers have finished DMAing free them so
* anyone that may be waiting for their release can continue.
* We do this only on MP systems to allow other CPUs to proceed
* promptly. UP systems can wait for the free_cmdQ_buffers()
* calls after this loop as the sole CPU is currently busy in
* this loop.
*/
if (unlikely(credits_pend[0] > SGE_FREEL_REFILL_THRESH)) {
free_cmdQ_buffers(sge, &sge->cmdQ[0], credits_pend[0],
&tot_txpayload);
n_tx += credits_pend[0];
credits_pend[0] = 0;
}
#endif
ret++;
e++;
if (unlikely(++Q->cidx == Q->entries_n)) {
Q->cidx = 0;
Q->genbit ^= 1;
e = Q->entries;
}
}
Q->credits = credits;
t1_write_reg_4(adapter, A_SG_SLEEPING, Q->cidx);
if (credits_pend[0])
free_cmdQ_buffers(sge, &sge->cmdQ[0], credits_pend[0], &tot_txpayload);
if (credits_pend[1])
free_cmdQ_buffers(sge, &sge->cmdQ[1], credits_pend[1], &tot_txpayload);
/* Do any coalescing and interrupt latency timer adjustments */
if (adapter->params.sge.coalesce_enable) {
unsigned int avg_txpayload = 0, avg_rxpayload = 0;
n_tx += credits_pend[0] + credits_pend[1];
/*
* Choose larger avg. payload size to increase
* throughput and reduce [CPU util., intr/s.]
*
* Throughput behavior favored in mixed-mode.
*/
if (n_tx)
avg_txpayload = tot_txpayload/n_tx;
if (n_rx)
avg_rxpayload = tot_rxpayload/n_rx;
if (n_tx && avg_txpayload > avg_rxpayload){
update_intr_timer(sge, avg_txpayload);
} else if (n_rx) {
update_intr_timer(sge, avg_rxpayload);
}
}
if (flags & F_CMDQ0_ENABLE) {
struct cmdQ *cmdQ = &sge->cmdQ[0];
atomic_set(&cmdQ->asleep, 1);
if (atomic_read(&cmdQ->pio_pidx) != cmdQ->pidx) {
doorbell_pio(sge, F_CMDQ0_ENABLE);
atomic_set(&cmdQ->pio_pidx, cmdQ->pidx);
}
}
if (unlikely(flags & (F_FL0_ENABLE | F_FL1_ENABLE)))
freelQs_empty(sge);
netdev = adapter->port[0].dev;
if (unlikely(netif_queue_stopped(netdev) && netif_carrier_ok(netdev) &&
enough_free_Tx_descs(sge, 0) &&
enough_free_Tx_descs(sge, 1))) {
netif_wake_queue(netdev);
}
if (unlikely(!ret))
ret = t1_slow_intr_handler(adapter);
return IRQ_RETVAL(ret != 0);
}
/*
* Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
*
* The code figures out how many entries the sk_buff will require in the
* cmdQ and updates the cmdQ data structure with the state once the enqueue
* has complete. Then, it doesn't access the global structure anymore, but
* uses the corresponding fields on the stack. In conjuction with a spinlock
* around that code, we can make the function reentrant without holding the
* lock when we actually enqueue (which might be expensive, especially on
* architectures with IO MMUs).
*/
static unsigned int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
unsigned int qid)
{
struct sge *sge = adapter->sge;
struct cmdQ *Q = &sge->cmdQ[qid];
struct cmdQ_e *e;
struct cmdQ_ce *ce;
dma_addr_t mapping;
unsigned int credits, pidx, genbit;
unsigned int count = 1 + skb_shinfo(skb)->nr_frags;
/*
* Coming from the timer
*/
if ((skb == sge->pskb)) {
/*
* Quit if any cmdQ activities
*/
if (!spin_trylock(&Q->Qlock))
return 0;
if (atomic_read(&Q->credits) != Q->entries_n) {
spin_unlock(&Q->Qlock);
return 0;
}
}
else
spin_lock(&Q->Qlock);
genbit = Q->genbit;
pidx = Q->pidx;
credits = atomic_read(&Q->credits);
credits -= count;
atomic_sub(count, &Q->credits);
Q->pidx += count;
if (Q->pidx >= Q->entries_n) {
Q->pidx -= Q->entries_n;
Q->genbit ^= 1;
}
if (unlikely(credits < (MAX_SKB_FRAGS + 1))) {
sge->intr_cnt.cmdQ_full[qid]++;
netif_stop_queue(adapter->port[0].dev);
}
spin_unlock(&Q->Qlock);
mapping = pci_map_single(adapter->pdev, skb->data,
skb->len - skb->data_len, PCI_DMA_TODEVICE);
ce = &Q->centries[pidx];
ce->skb = NULL;
pci_unmap_addr_set(ce, dma_addr, mapping);
pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
ce->single = 1;
e = &Q->entries[pidx];
e->Sop = 1;
e->DataValid = 1;
e->BufferLength = skb->len - skb->data_len;
e->AddrHigh = (u64)mapping >> 32;
e->AddrLow = (u32)mapping;
if (--count > 0) {
unsigned int i;
e->Eop = 0;
wmb();
e->GenerationBit = e->GenerationBit2 = genbit;
for (i = 0; i < count; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
ce++; e++;
if (++pidx == Q->entries_n) {
pidx = 0;
genbit ^= 1;
ce = Q->centries;
e = Q->entries;
}
mapping = pci_map_page(adapter->pdev, frag->page,
frag->page_offset,
frag->size,
PCI_DMA_TODEVICE);
ce->skb = NULL;
pci_unmap_addr_set(ce, dma_addr, mapping);
pci_unmap_len_set(ce, dma_len, frag->size);
ce->single = 0;
e->Sop = 0;
e->DataValid = 1;
e->BufferLength = frag->size;
e->AddrHigh = (u64)mapping >> 32;
e->AddrLow = (u32)mapping;
if (i < count - 1) {
e->Eop = 0;
wmb();
e->GenerationBit = e->GenerationBit2 = genbit;
}
}
}
if (skb != sge->pskb)
ce->skb = skb;
e->Eop = 1;
wmb();
e->GenerationBit = e->GenerationBit2 = genbit;
/*
* We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
* the doorbell if the Q is asleep. There is a natural race, where
* the hardware is going to sleep just after we checked, however,
* then the interrupt handler will detect the outstanding TX packet
* and ring the doorbell for us.
*/
if (qid) {
doorbell_pio(sge, F_CMDQ1_ENABLE);
} else if (atomic_read(&Q->asleep)) {
atomic_set(&Q->asleep, 0);
doorbell_pio(sge, F_CMDQ0_ENABLE);
atomic_set(&Q->pio_pidx, Q->pidx);
}
return 0;
}
#define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
/*
* Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
*/
int t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct adapter *adapter = dev->priv;
struct cpl_tx_pkt *cpl;
struct ethhdr *eth;
size_t max_len;
/*
* We are using a non-standard hard_header_len and some kernel
* components, such as pktgen, do not handle it right. Complain
* when this happens but try to fix things up.
*/
if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
struct sk_buff *orig_skb = skb;
if (net_ratelimit())
printk(KERN_ERR
"%s: Tx packet has inadequate headroom\n",
dev->name);
skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
dev_kfree_skb_any(orig_skb);
if (!skb)
return -ENOMEM;
}
if (skb_shinfo(skb)->tso_size) {
int eth_type;
struct cpl_tx_pkt_lso *hdr;
eth_type = skb->nh.raw - skb->data == ETH_HLEN ?
CPL_ETH_II : CPL_ETH_II_VLAN;
hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
hdr->opcode = CPL_TX_PKT_LSO;
hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
hdr->ip_hdr_words = skb->nh.iph->ihl;
hdr->tcp_hdr_words = skb->h.th->doff;
hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
skb_shinfo(skb)->tso_size));
hdr->len = htonl(skb->len - sizeof(*hdr));
cpl = (struct cpl_tx_pkt *)hdr;
} else
{
/*
* An Ethernet packet must have at least space for
* the DIX Ethernet header and be no greater than
* the device set MTU. Otherwise trash the packet.
*/
if (skb->len < ETH_HLEN)
goto t1_start_xmit_fail2;
eth = (struct ethhdr *)skb->data;
if (eth->h_proto == htons(ETH_P_8021Q))
max_len = dev->mtu + VLAN_ETH_HLEN;
else
max_len = dev->mtu + ETH_HLEN;
if (skb->len > max_len)
goto t1_start_xmit_fail2;
if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
skb->ip_summed == CHECKSUM_HW &&
skb->nh.iph->protocol == IPPROTO_UDP &&
skb_checksum_help(skb, 0))
goto t1_start_xmit_fail3;
if (!adapter->sge->pskb) {
if (skb->protocol == htons(ETH_P_ARP) &&
skb->nh.arph->ar_op == htons(ARPOP_REQUEST))
adapter->sge->pskb = skb;
}
cpl = (struct cpl_tx_pkt *)skb_push(skb, sizeof(*cpl));
cpl->opcode = CPL_TX_PKT;
cpl->ip_csum_dis = 1; /* SW calculates IP csum */
cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_HW ? 0 : 1;
/* the length field isn't used so don't bother setting it */
}
cpl->iff = dev->if_port;
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
cpl->vlan_valid = 1;
cpl->vlan = htons(vlan_tx_tag_get(skb));
} else
#endif
cpl->vlan_valid = 0;
dev->trans_start = jiffies;
return t1_sge_tx(skb, adapter, 0);
t1_start_xmit_fail3:
printk(KERN_INFO "%s: Unable to complete checksum\n", dev->name);
goto t1_start_xmit_fail1;
t1_start_xmit_fail2:
printk(KERN_INFO "%s: Invalid packet length %d, dropping\n",
dev->name, skb->len);
t1_start_xmit_fail1:
dev_kfree_skb_any(skb);
return 0;
}
void t1_sge_set_ptimeout(adapter_t *adapter, u32 val)
{
struct sge *sge = adapter->sge;
if (is_T2(adapter))
sge->ptimeout = max((u32)((HZ * val) / 1000), (u32)1);
}
u32 t1_sge_get_ptimeout(adapter_t *adapter)
{
struct sge *sge = adapter->sge;
return (is_T2(adapter) ? ((sge->ptimeout * 1000) / HZ) : 0);
}
|