summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/gpmi-nand/gpmi-nand.c
blob: a05b7b444d4f1f8a92d6f0e10a2ee1db19d3c722 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
/*
 * Freescale GPMI NAND Flash Driver
 *
 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */
#include <linux/clk.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/mtd/gpmi-nand.h>
#include <linux/mtd/partitions.h>
#include <linux/pinctrl/consumer.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include "gpmi-nand.h"

/* add our owner bbt descriptor */
static uint8_t scan_ff_pattern[] = { 0xff };
static struct nand_bbt_descr gpmi_bbt_descr = {
	.options	= 0,
	.offs		= 0,
	.len		= 1,
	.pattern	= scan_ff_pattern
};

/*  We will use all the (page + OOB). */
static struct nand_ecclayout gpmi_hw_ecclayout = {
	.eccbytes = 0,
	.eccpos = { 0, },
	.oobfree = { {.offset = 0, .length = 0} }
};

static irqreturn_t bch_irq(int irq, void *cookie)
{
	struct gpmi_nand_data *this = cookie;

	gpmi_clear_bch(this);
	complete(&this->bch_done);
	return IRQ_HANDLED;
}

/*
 *  Calculate the ECC strength by hand:
 *	E : The ECC strength.
 *	G : the length of Galois Field.
 *	N : The chunk count of per page.
 *	O : the oobsize of the NAND chip.
 *	M : the metasize of per page.
 *
 *	The formula is :
 *		E * G * N
 *	      ------------ <= (O - M)
 *                  8
 *
 *      So, we get E by:
 *                    (O - M) * 8
 *              E <= -------------
 *                       G * N
 */
static inline int get_ecc_strength(struct gpmi_nand_data *this)
{
	struct bch_geometry *geo = &this->bch_geometry;
	struct mtd_info	*mtd = &this->mtd;
	int ecc_strength;

	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
			/ (geo->gf_len * geo->ecc_chunk_count);

	/* We need the minor even number. */
	return round_down(ecc_strength, 2);
}

int common_nfc_set_geometry(struct gpmi_nand_data *this)
{
	struct bch_geometry *geo = &this->bch_geometry;
	struct mtd_info *mtd = &this->mtd;
	unsigned int metadata_size;
	unsigned int status_size;
	unsigned int block_mark_bit_offset;

	/*
	 * The size of the metadata can be changed, though we set it to 10
	 * bytes now. But it can't be too large, because we have to save
	 * enough space for BCH.
	 */
	geo->metadata_size = 10;

	/* The default for the length of Galois Field. */
	geo->gf_len = 13;

	/* The default for chunk size. There is no oobsize greater then 512. */
	geo->ecc_chunk_size = 512;
	while (geo->ecc_chunk_size < mtd->oobsize)
		geo->ecc_chunk_size *= 2; /* keep C >= O */

	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;

	/* We use the same ECC strength for all chunks. */
	geo->ecc_strength = get_ecc_strength(this);
	if (!geo->ecc_strength) {
		pr_err("We get a wrong ECC strength.\n");
		return -EINVAL;
	}

	geo->page_size = mtd->writesize + mtd->oobsize;
	geo->payload_size = mtd->writesize;

	/*
	 * The auxiliary buffer contains the metadata and the ECC status. The
	 * metadata is padded to the nearest 32-bit boundary. The ECC status
	 * contains one byte for every ECC chunk, and is also padded to the
	 * nearest 32-bit boundary.
	 */
	metadata_size = ALIGN(geo->metadata_size, 4);
	status_size   = ALIGN(geo->ecc_chunk_count, 4);

	geo->auxiliary_size = metadata_size + status_size;
	geo->auxiliary_status_offset = metadata_size;

	if (!this->swap_block_mark)
		return 0;

	/*
	 * We need to compute the byte and bit offsets of
	 * the physical block mark within the ECC-based view of the page.
	 *
	 * NAND chip with 2K page shows below:
	 *                                             (Block Mark)
	 *                                                   |      |
	 *                                                   |  D   |
	 *                                                   |<---->|
	 *                                                   V      V
	 *    +---+----------+-+----------+-+----------+-+----------+-+
	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
	 *    +---+----------+-+----------+-+----------+-+----------+-+
	 *
	 * The position of block mark moves forward in the ECC-based view
	 * of page, and the delta is:
	 *
	 *                   E * G * (N - 1)
	 *             D = (---------------- + M)
	 *                          8
	 *
	 * With the formula to compute the ECC strength, and the condition
	 *       : C >= O         (C is the ecc chunk size)
	 *
	 * It's easy to deduce to the following result:
	 *
	 *         E * G       (O - M)      C - M         C - M
	 *      ----------- <= ------- <=  --------  <  ---------
	 *           8            N           N          (N - 1)
	 *
	 *  So, we get:
	 *
	 *                   E * G * (N - 1)
	 *             D = (---------------- + M) < C
	 *                          8
	 *
	 *  The above inequality means the position of block mark
	 *  within the ECC-based view of the page is still in the data chunk,
	 *  and it's NOT in the ECC bits of the chunk.
	 *
	 *  Use the following to compute the bit position of the
	 *  physical block mark within the ECC-based view of the page:
	 *          (page_size - D) * 8
	 *
	 *  --Huang Shijie
	 */
	block_mark_bit_offset = mtd->writesize * 8 -
		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
				+ geo->metadata_size * 8);

	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
	return 0;
}

struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
{
	int chipnr = this->current_chip;

	return this->dma_chans[chipnr];
}

/* Can we use the upper's buffer directly for DMA? */
void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
{
	struct scatterlist *sgl = &this->data_sgl;
	int ret;

	this->direct_dma_map_ok = true;

	/* first try to map the upper buffer directly */
	sg_init_one(sgl, this->upper_buf, this->upper_len);
	ret = dma_map_sg(this->dev, sgl, 1, dr);
	if (ret == 0) {
		/* We have to use our own DMA buffer. */
		sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE);

		if (dr == DMA_TO_DEVICE)
			memcpy(this->data_buffer_dma, this->upper_buf,
				this->upper_len);

		ret = dma_map_sg(this->dev, sgl, 1, dr);
		if (ret == 0)
			pr_err("map failed.\n");

		this->direct_dma_map_ok = false;
	}
}

/* This will be called after the DMA operation is finished. */
static void dma_irq_callback(void *param)
{
	struct gpmi_nand_data *this = param;
	struct completion *dma_c = &this->dma_done;

	complete(dma_c);

	switch (this->dma_type) {
	case DMA_FOR_COMMAND:
		dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
		break;

	case DMA_FOR_READ_DATA:
		dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
		if (this->direct_dma_map_ok == false)
			memcpy(this->upper_buf, this->data_buffer_dma,
				this->upper_len);
		break;

	case DMA_FOR_WRITE_DATA:
		dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
		break;

	case DMA_FOR_READ_ECC_PAGE:
	case DMA_FOR_WRITE_ECC_PAGE:
		/* We have to wait the BCH interrupt to finish. */
		break;

	default:
		pr_err("in wrong DMA operation.\n");
	}
}

int start_dma_without_bch_irq(struct gpmi_nand_data *this,
				struct dma_async_tx_descriptor *desc)
{
	struct completion *dma_c = &this->dma_done;
	int err;

	init_completion(dma_c);

	desc->callback		= dma_irq_callback;
	desc->callback_param	= this;
	dmaengine_submit(desc);
	dma_async_issue_pending(get_dma_chan(this));

	/* Wait for the interrupt from the DMA block. */
	err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
	if (!err) {
		pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type);
		gpmi_dump_info(this);
		return -ETIMEDOUT;
	}
	return 0;
}

/*
 * This function is used in BCH reading or BCH writing pages.
 * It will wait for the BCH interrupt as long as ONE second.
 * Actually, we must wait for two interrupts :
 *	[1] firstly the DMA interrupt and
 *	[2] secondly the BCH interrupt.
 */
int start_dma_with_bch_irq(struct gpmi_nand_data *this,
			struct dma_async_tx_descriptor *desc)
{
	struct completion *bch_c = &this->bch_done;
	int err;

	/* Prepare to receive an interrupt from the BCH block. */
	init_completion(bch_c);

	/* start the DMA */
	start_dma_without_bch_irq(this, desc);

	/* Wait for the interrupt from the BCH block. */
	err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
	if (!err) {
		pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type);
		gpmi_dump_info(this);
		return -ETIMEDOUT;
	}
	return 0;
}

static int __devinit
acquire_register_block(struct gpmi_nand_data *this, const char *res_name)
{
	struct platform_device *pdev = this->pdev;
	struct resources *res = &this->resources;
	struct resource *r;
	void *p;

	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
	if (!r) {
		pr_err("Can't get resource for %s\n", res_name);
		return -ENXIO;
	}

	p = ioremap(r->start, resource_size(r));
	if (!p) {
		pr_err("Can't remap %s\n", res_name);
		return -ENOMEM;
	}

	if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
		res->gpmi_regs = p;
	else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
		res->bch_regs = p;
	else
		pr_err("unknown resource name : %s\n", res_name);

	return 0;
}

static void release_register_block(struct gpmi_nand_data *this)
{
	struct resources *res = &this->resources;
	if (res->gpmi_regs)
		iounmap(res->gpmi_regs);
	if (res->bch_regs)
		iounmap(res->bch_regs);
	res->gpmi_regs = NULL;
	res->bch_regs = NULL;
}

static int __devinit
acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
{
	struct platform_device *pdev = this->pdev;
	struct resources *res = &this->resources;
	const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
	struct resource *r;
	int err;

	r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
	if (!r) {
		pr_err("Can't get resource for %s\n", res_name);
		return -ENXIO;
	}

	err = request_irq(r->start, irq_h, 0, res_name, this);
	if (err) {
		pr_err("Can't own %s\n", res_name);
		return err;
	}

	res->bch_low_interrupt = r->start;
	res->bch_high_interrupt = r->end;
	return 0;
}

static void release_bch_irq(struct gpmi_nand_data *this)
{
	struct resources *res = &this->resources;
	int i = res->bch_low_interrupt;

	for (; i <= res->bch_high_interrupt; i++)
		free_irq(i, this);
}

static bool gpmi_dma_filter(struct dma_chan *chan, void *param)
{
	struct gpmi_nand_data *this = param;
	int dma_channel = (int)this->private;

	if (!mxs_dma_is_apbh(chan))
		return false;
	/*
	 * only catch the GPMI dma channels :
	 *	for mx23 :	MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3
	 *		(These four channels share the same IRQ!)
	 *
	 *	for mx28 :	MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7
	 *		(These eight channels share the same IRQ!)
	 */
	if (dma_channel == chan->chan_id) {
		chan->private = &this->dma_data;
		return true;
	}
	return false;
}

static void release_dma_channels(struct gpmi_nand_data *this)
{
	unsigned int i;
	for (i = 0; i < DMA_CHANS; i++)
		if (this->dma_chans[i]) {
			dma_release_channel(this->dma_chans[i]);
			this->dma_chans[i] = NULL;
		}
}

static int __devinit acquire_dma_channels(struct gpmi_nand_data *this)
{
	struct platform_device *pdev = this->pdev;
	struct resource *r_dma;
	struct device_node *dn;
	int dma_channel;
	unsigned int ret;
	struct dma_chan *dma_chan;
	dma_cap_mask_t mask;

	/* dma channel, we only use the first one. */
	dn = pdev->dev.of_node;
	ret = of_property_read_u32(dn, "fsl,gpmi-dma-channel", &dma_channel);
	if (ret) {
		pr_err("unable to get DMA channel from dt.\n");
		goto acquire_err;
	}
	this->private = (void *)dma_channel;

	/* gpmi dma interrupt */
	r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
					GPMI_NAND_DMA_INTERRUPT_RES_NAME);
	if (!r_dma) {
		pr_err("Can't get resource for DMA\n");
		goto acquire_err;
	}
	this->dma_data.chan_irq = r_dma->start;

	/* request dma channel */
	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);

	dma_chan = dma_request_channel(mask, gpmi_dma_filter, this);
	if (!dma_chan) {
		pr_err("dma_request_channel failed.\n");
		goto acquire_err;
	}

	this->dma_chans[0] = dma_chan;
	return 0;

acquire_err:
	release_dma_channels(this);
	return -EINVAL;
}

static int __devinit acquire_resources(struct gpmi_nand_data *this)
{
	struct resources *res = &this->resources;
	struct pinctrl *pinctrl;
	int ret;

	ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
	if (ret)
		goto exit_regs;

	ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
	if (ret)
		goto exit_regs;

	ret = acquire_bch_irq(this, bch_irq);
	if (ret)
		goto exit_regs;

	ret = acquire_dma_channels(this);
	if (ret)
		goto exit_dma_channels;

	pinctrl = devm_pinctrl_get_select_default(&this->pdev->dev);
	if (IS_ERR(pinctrl)) {
		ret = PTR_ERR(pinctrl);
		goto exit_pin;
	}

	res->clock = clk_get(&this->pdev->dev, NULL);
	if (IS_ERR(res->clock)) {
		pr_err("can not get the clock\n");
		ret = -ENOENT;
		goto exit_clock;
	}
	return 0;

exit_clock:
exit_pin:
	release_dma_channels(this);
exit_dma_channels:
	release_bch_irq(this);
exit_regs:
	release_register_block(this);
	return ret;
}

static void release_resources(struct gpmi_nand_data *this)
{
	struct resources *r = &this->resources;

	clk_put(r->clock);
	release_register_block(this);
	release_bch_irq(this);
	release_dma_channels(this);
}

static int __devinit init_hardware(struct gpmi_nand_data *this)
{
	int ret;

	/*
	 * This structure contains the "safe" GPMI timing that should succeed
	 * with any NAND Flash device
	 * (although, with less-than-optimal performance).
	 */
	struct nand_timing  safe_timing = {
		.data_setup_in_ns        = 80,
		.data_hold_in_ns         = 60,
		.address_setup_in_ns     = 25,
		.gpmi_sample_delay_in_ns =  6,
		.tREA_in_ns              = -1,
		.tRLOH_in_ns             = -1,
		.tRHOH_in_ns             = -1,
	};

	/* Initialize the hardwares. */
	ret = gpmi_init(this);
	if (ret)
		return ret;

	this->timing = safe_timing;
	return 0;
}

static int read_page_prepare(struct gpmi_nand_data *this,
			void *destination, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			void **use_virt, dma_addr_t *use_phys)
{
	struct device *dev = this->dev;

	if (virt_addr_valid(destination)) {
		dma_addr_t dest_phys;

		dest_phys = dma_map_single(dev, destination,
						length, DMA_FROM_DEVICE);
		if (dma_mapping_error(dev, dest_phys)) {
			if (alt_size < length) {
				pr_err("Alternate buffer is too small\n");
				return -ENOMEM;
			}
			goto map_failed;
		}
		*use_virt = destination;
		*use_phys = dest_phys;
		this->direct_dma_map_ok = true;
		return 0;
	}

map_failed:
	*use_virt = alt_virt;
	*use_phys = alt_phys;
	this->direct_dma_map_ok = false;
	return 0;
}

static inline void read_page_end(struct gpmi_nand_data *this,
			void *destination, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			void *used_virt, dma_addr_t used_phys)
{
	if (this->direct_dma_map_ok)
		dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
}

static inline void read_page_swap_end(struct gpmi_nand_data *this,
			void *destination, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			void *used_virt, dma_addr_t used_phys)
{
	if (!this->direct_dma_map_ok)
		memcpy(destination, alt_virt, length);
}

static int send_page_prepare(struct gpmi_nand_data *this,
			const void *source, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			const void **use_virt, dma_addr_t *use_phys)
{
	struct device *dev = this->dev;

	if (virt_addr_valid(source)) {
		dma_addr_t source_phys;

		source_phys = dma_map_single(dev, (void *)source, length,
						DMA_TO_DEVICE);
		if (dma_mapping_error(dev, source_phys)) {
			if (alt_size < length) {
				pr_err("Alternate buffer is too small\n");
				return -ENOMEM;
			}
			goto map_failed;
		}
		*use_virt = source;
		*use_phys = source_phys;
		return 0;
	}
map_failed:
	/*
	 * Copy the content of the source buffer into the alternate
	 * buffer and set up the return values accordingly.
	 */
	memcpy(alt_virt, source, length);

	*use_virt = alt_virt;
	*use_phys = alt_phys;
	return 0;
}

static void send_page_end(struct gpmi_nand_data *this,
			const void *source, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			const void *used_virt, dma_addr_t used_phys)
{
	struct device *dev = this->dev;
	if (used_virt == source)
		dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
}

static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
{
	struct device *dev = this->dev;

	if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
		dma_free_coherent(dev, this->page_buffer_size,
					this->page_buffer_virt,
					this->page_buffer_phys);
	kfree(this->cmd_buffer);
	kfree(this->data_buffer_dma);

	this->cmd_buffer	= NULL;
	this->data_buffer_dma	= NULL;
	this->page_buffer_virt	= NULL;
	this->page_buffer_size	=  0;
}

/* Allocate the DMA buffers */
static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
{
	struct bch_geometry *geo = &this->bch_geometry;
	struct device *dev = this->dev;

	/* [1] Allocate a command buffer. PAGE_SIZE is enough. */
	this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA);
	if (this->cmd_buffer == NULL)
		goto error_alloc;

	/* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
	this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA);
	if (this->data_buffer_dma == NULL)
		goto error_alloc;

	/*
	 * [3] Allocate the page buffer.
	 *
	 * Both the payload buffer and the auxiliary buffer must appear on
	 * 32-bit boundaries. We presume the size of the payload buffer is a
	 * power of two and is much larger than four, which guarantees the
	 * auxiliary buffer will appear on a 32-bit boundary.
	 */
	this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
	this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
					&this->page_buffer_phys, GFP_DMA);
	if (!this->page_buffer_virt)
		goto error_alloc;


	/* Slice up the page buffer. */
	this->payload_virt = this->page_buffer_virt;
	this->payload_phys = this->page_buffer_phys;
	this->auxiliary_virt = this->payload_virt + geo->payload_size;
	this->auxiliary_phys = this->payload_phys + geo->payload_size;
	return 0;

error_alloc:
	gpmi_free_dma_buffer(this);
	pr_err("allocate DMA buffer ret!!\n");
	return -ENOMEM;
}

static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;
	int ret;

	/*
	 * Every operation begins with a command byte and a series of zero or
	 * more address bytes. These are distinguished by either the Address
	 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
	 * asserted. When MTD is ready to execute the command, it will deassert
	 * both latch enables.
	 *
	 * Rather than run a separate DMA operation for every single byte, we
	 * queue them up and run a single DMA operation for the entire series
	 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
	 */
	if ((ctrl & (NAND_ALE | NAND_CLE))) {
		if (data != NAND_CMD_NONE)
			this->cmd_buffer[this->command_length++] = data;
		return;
	}

	if (!this->command_length)
		return;

	ret = gpmi_send_command(this);
	if (ret)
		pr_err("Chip: %u, Error %d\n", this->current_chip, ret);

	this->command_length = 0;
}

static int gpmi_dev_ready(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;

	return gpmi_is_ready(this, this->current_chip);
}

static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;

	if ((this->current_chip < 0) && (chipnr >= 0))
		gpmi_begin(this);
	else if ((this->current_chip >= 0) && (chipnr < 0))
		gpmi_end(this);

	this->current_chip = chipnr;
}

static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;

	pr_debug("len is %d\n", len);
	this->upper_buf	= buf;
	this->upper_len	= len;

	gpmi_read_data(this);
}

static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;

	pr_debug("len is %d\n", len);
	this->upper_buf	= (uint8_t *)buf;
	this->upper_len	= len;

	gpmi_send_data(this);
}

static uint8_t gpmi_read_byte(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;
	uint8_t *buf = this->data_buffer_dma;

	gpmi_read_buf(mtd, buf, 1);
	return buf[0];
}

/*
 * Handles block mark swapping.
 * It can be called in swapping the block mark, or swapping it back,
 * because the the operations are the same.
 */
static void block_mark_swapping(struct gpmi_nand_data *this,
				void *payload, void *auxiliary)
{
	struct bch_geometry *nfc_geo = &this->bch_geometry;
	unsigned char *p;
	unsigned char *a;
	unsigned int  bit;
	unsigned char mask;
	unsigned char from_data;
	unsigned char from_oob;

	if (!this->swap_block_mark)
		return;

	/*
	 * If control arrives here, we're swapping. Make some convenience
	 * variables.
	 */
	bit = nfc_geo->block_mark_bit_offset;
	p   = payload + nfc_geo->block_mark_byte_offset;
	a   = auxiliary;

	/*
	 * Get the byte from the data area that overlays the block mark. Since
	 * the ECC engine applies its own view to the bits in the page, the
	 * physical block mark won't (in general) appear on a byte boundary in
	 * the data.
	 */
	from_data = (p[0] >> bit) | (p[1] << (8 - bit));

	/* Get the byte from the OOB. */
	from_oob = a[0];

	/* Swap them. */
	a[0] = from_data;

	mask = (0x1 << bit) - 1;
	p[0] = (p[0] & mask) | (from_oob << bit);

	mask = ~0 << bit;
	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
}

static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
{
	struct gpmi_nand_data *this = chip->priv;
	struct bch_geometry *nfc_geo = &this->bch_geometry;
	void          *payload_virt;
	dma_addr_t    payload_phys;
	void          *auxiliary_virt;
	dma_addr_t    auxiliary_phys;
	unsigned int  i;
	unsigned char *status;
	unsigned int  failed;
	unsigned int  corrected;
	int           ret;

	pr_debug("page number is : %d\n", page);
	ret = read_page_prepare(this, buf, mtd->writesize,
					this->payload_virt, this->payload_phys,
					nfc_geo->payload_size,
					&payload_virt, &payload_phys);
	if (ret) {
		pr_err("Inadequate DMA buffer\n");
		ret = -ENOMEM;
		return ret;
	}
	auxiliary_virt = this->auxiliary_virt;
	auxiliary_phys = this->auxiliary_phys;

	/* go! */
	ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
	read_page_end(this, buf, mtd->writesize,
			this->payload_virt, this->payload_phys,
			nfc_geo->payload_size,
			payload_virt, payload_phys);
	if (ret) {
		pr_err("Error in ECC-based read: %d\n", ret);
		goto exit_nfc;
	}

	/* handle the block mark swapping */
	block_mark_swapping(this, payload_virt, auxiliary_virt);

	/* Loop over status bytes, accumulating ECC status. */
	failed		= 0;
	corrected	= 0;
	status		= auxiliary_virt + nfc_geo->auxiliary_status_offset;

	for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
			continue;

		if (*status == STATUS_UNCORRECTABLE) {
			failed++;
			continue;
		}
		corrected += *status;
	}

	/*
	 * Propagate ECC status to the owning MTD only when failed or
	 * corrected times nearly reaches our ECC correction threshold.
	 */
	if (failed || corrected >= (nfc_geo->ecc_strength - 1)) {
		mtd->ecc_stats.failed    += failed;
		mtd->ecc_stats.corrected += corrected;
	}

	if (oob_required) {
		/*
		 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
		 * for details about our policy for delivering the OOB.
		 *
		 * We fill the caller's buffer with set bits, and then copy the
		 * block mark to th caller's buffer. Note that, if block mark
		 * swapping was necessary, it has already been done, so we can
		 * rely on the first byte of the auxiliary buffer to contain
		 * the block mark.
		 */
		memset(chip->oob_poi, ~0, mtd->oobsize);
		chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];

		read_page_swap_end(this, buf, mtd->writesize,
				this->payload_virt, this->payload_phys,
				nfc_geo->payload_size,
				payload_virt, payload_phys);
	}
exit_nfc:
	return ret;
}

static void gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
				const uint8_t *buf, int oob_required)
{
	struct gpmi_nand_data *this = chip->priv;
	struct bch_geometry *nfc_geo = &this->bch_geometry;
	const void *payload_virt;
	dma_addr_t payload_phys;
	const void *auxiliary_virt;
	dma_addr_t auxiliary_phys;
	int        ret;

	pr_debug("ecc write page.\n");
	if (this->swap_block_mark) {
		/*
		 * If control arrives here, we're doing block mark swapping.
		 * Since we can't modify the caller's buffers, we must copy them
		 * into our own.
		 */
		memcpy(this->payload_virt, buf, mtd->writesize);
		payload_virt = this->payload_virt;
		payload_phys = this->payload_phys;

		memcpy(this->auxiliary_virt, chip->oob_poi,
				nfc_geo->auxiliary_size);
		auxiliary_virt = this->auxiliary_virt;
		auxiliary_phys = this->auxiliary_phys;

		/* Handle block mark swapping. */
		block_mark_swapping(this,
				(void *) payload_virt, (void *) auxiliary_virt);
	} else {
		/*
		 * If control arrives here, we're not doing block mark swapping,
		 * so we can to try and use the caller's buffers.
		 */
		ret = send_page_prepare(this,
				buf, mtd->writesize,
				this->payload_virt, this->payload_phys,
				nfc_geo->payload_size,
				&payload_virt, &payload_phys);
		if (ret) {
			pr_err("Inadequate payload DMA buffer\n");
			return;
		}

		ret = send_page_prepare(this,
				chip->oob_poi, mtd->oobsize,
				this->auxiliary_virt, this->auxiliary_phys,
				nfc_geo->auxiliary_size,
				&auxiliary_virt, &auxiliary_phys);
		if (ret) {
			pr_err("Inadequate auxiliary DMA buffer\n");
			goto exit_auxiliary;
		}
	}

	/* Ask the NFC. */
	ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
	if (ret)
		pr_err("Error in ECC-based write: %d\n", ret);

	if (!this->swap_block_mark) {
		send_page_end(this, chip->oob_poi, mtd->oobsize,
				this->auxiliary_virt, this->auxiliary_phys,
				nfc_geo->auxiliary_size,
				auxiliary_virt, auxiliary_phys);
exit_auxiliary:
		send_page_end(this, buf, mtd->writesize,
				this->payload_virt, this->payload_phys,
				nfc_geo->payload_size,
				payload_virt, payload_phys);
	}
}

/*
 * There are several places in this driver where we have to handle the OOB and
 * block marks. This is the function where things are the most complicated, so
 * this is where we try to explain it all. All the other places refer back to
 * here.
 *
 * These are the rules, in order of decreasing importance:
 *
 * 1) Nothing the caller does can be allowed to imperil the block mark.
 *
 * 2) In read operations, the first byte of the OOB we return must reflect the
 *    true state of the block mark, no matter where that block mark appears in
 *    the physical page.
 *
 * 3) ECC-based read operations return an OOB full of set bits (since we never
 *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
 *    return).
 *
 * 4) "Raw" read operations return a direct view of the physical bytes in the
 *    page, using the conventional definition of which bytes are data and which
 *    are OOB. This gives the caller a way to see the actual, physical bytes
 *    in the page, without the distortions applied by our ECC engine.
 *
 *
 * What we do for this specific read operation depends on two questions:
 *
 * 1) Are we doing a "raw" read, or an ECC-based read?
 *
 * 2) Are we using block mark swapping or transcription?
 *
 * There are four cases, illustrated by the following Karnaugh map:
 *
 *                    |           Raw           |         ECC-based       |
 *       -------------+-------------------------+-------------------------+
 *                    | Read the conventional   |                         |
 *                    | OOB at the end of the   |                         |
 *       Swapping     | page and return it. It  |                         |
 *                    | contains exactly what   |                         |
 *                    | we want.                | Read the block mark and |
 *       -------------+-------------------------+ return it in a buffer   |
 *                    | Read the conventional   | full of set bits.       |
 *                    | OOB at the end of the   |                         |
 *                    | page and also the block |                         |
 *       Transcribing | mark in the metadata.   |                         |
 *                    | Copy the block mark     |                         |
 *                    | into the first byte of  |                         |
 *                    | the OOB.                |                         |
 *       -------------+-------------------------+-------------------------+
 *
 * Note that we break rule #4 in the Transcribing/Raw case because we're not
 * giving an accurate view of the actual, physical bytes in the page (we're
 * overwriting the block mark). That's OK because it's more important to follow
 * rule #2.
 *
 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
 * easy. When reading a page, for example, the NAND Flash MTD code calls our
 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
 * ECC-based or raw view of the page is implicit in which function it calls
 * (there is a similar pair of ECC-based/raw functions for writing).
 *
 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
 * caller wants an ECC-based or raw view of the page is not propagated down to
 * this driver.
 */
static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
				int page)
{
	struct gpmi_nand_data *this = chip->priv;

	pr_debug("page number is %d\n", page);
	/* clear the OOB buffer */
	memset(chip->oob_poi, ~0, mtd->oobsize);

	/* Read out the conventional OOB. */
	chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);

	/*
	 * Now, we want to make sure the block mark is correct. In the
	 * Swapping/Raw case, we already have it. Otherwise, we need to
	 * explicitly read it.
	 */
	if (!this->swap_block_mark) {
		/* Read the block mark into the first byte of the OOB buffer. */
		chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
		chip->oob_poi[0] = chip->read_byte(mtd);
	}

	return 0;
}

static int
gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
{
	/*
	 * The BCH will use all the (page + oob).
	 * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob.
	 * But it can not stop some ioctls such MEMWRITEOOB which uses
	 * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit
	 * these ioctls too.
	 */
	return -EPERM;
}

static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;
	int block, ret = 0;
	uint8_t *block_mark;
	int column, page, status, chipnr;

	/* Get block number */
	block = (int)(ofs >> chip->bbt_erase_shift);
	if (chip->bbt)
		chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);

	/* Do we have a flash based bad block table ? */
	if (chip->bbt_options & NAND_BBT_USE_FLASH)
		ret = nand_update_bbt(mtd, ofs);
	else {
		chipnr = (int)(ofs >> chip->chip_shift);
		chip->select_chip(mtd, chipnr);

		column = this->swap_block_mark ? mtd->writesize : 0;

		/* Write the block mark. */
		block_mark = this->data_buffer_dma;
		block_mark[0] = 0; /* bad block marker */

		/* Shift to get page */
		page = (int)(ofs >> chip->page_shift);

		chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
		chip->write_buf(mtd, block_mark, 1);
		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);

		status = chip->waitfunc(mtd, chip);
		if (status & NAND_STATUS_FAIL)
			ret = -EIO;

		chip->select_chip(mtd, -1);
	}
	if (!ret)
		mtd->ecc_stats.badblocks++;

	return ret;
}

static int nand_boot_set_geometry(struct gpmi_nand_data *this)
{
	struct boot_rom_geometry *geometry = &this->rom_geometry;

	/*
	 * Set the boot block stride size.
	 *
	 * In principle, we should be reading this from the OTP bits, since
	 * that's where the ROM is going to get it. In fact, we don't have any
	 * way to read the OTP bits, so we go with the default and hope for the
	 * best.
	 */
	geometry->stride_size_in_pages = 64;

	/*
	 * Set the search area stride exponent.
	 *
	 * In principle, we should be reading this from the OTP bits, since
	 * that's where the ROM is going to get it. In fact, we don't have any
	 * way to read the OTP bits, so we go with the default and hope for the
	 * best.
	 */
	geometry->search_area_stride_exponent = 2;
	return 0;
}

static const char  *fingerprint = "STMP";
static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
{
	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
	struct device *dev = this->dev;
	struct mtd_info *mtd = &this->mtd;
	struct nand_chip *chip = &this->nand;
	unsigned int search_area_size_in_strides;
	unsigned int stride;
	unsigned int page;
	loff_t byte;
	uint8_t *buffer = chip->buffers->databuf;
	int saved_chip_number;
	int found_an_ncb_fingerprint = false;

	/* Compute the number of strides in a search area. */
	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;

	saved_chip_number = this->current_chip;
	chip->select_chip(mtd, 0);

	/*
	 * Loop through the first search area, looking for the NCB fingerprint.
	 */
	dev_dbg(dev, "Scanning for an NCB fingerprint...\n");

	for (stride = 0; stride < search_area_size_in_strides; stride++) {
		/* Compute the page and byte addresses. */
		page = stride * rom_geo->stride_size_in_pages;
		byte = page   * mtd->writesize;

		dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);

		/*
		 * Read the NCB fingerprint. The fingerprint is four bytes long
		 * and starts in the 12th byte of the page.
		 */
		chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
		chip->read_buf(mtd, buffer, strlen(fingerprint));

		/* Look for the fingerprint. */
		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
			found_an_ncb_fingerprint = true;
			break;
		}

	}

	chip->select_chip(mtd, saved_chip_number);

	if (found_an_ncb_fingerprint)
		dev_dbg(dev, "\tFound a fingerprint\n");
	else
		dev_dbg(dev, "\tNo fingerprint found\n");
	return found_an_ncb_fingerprint;
}

/* Writes a transcription stamp. */
static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
{
	struct device *dev = this->dev;
	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
	struct mtd_info *mtd = &this->mtd;
	struct nand_chip *chip = &this->nand;
	unsigned int block_size_in_pages;
	unsigned int search_area_size_in_strides;
	unsigned int search_area_size_in_pages;
	unsigned int search_area_size_in_blocks;
	unsigned int block;
	unsigned int stride;
	unsigned int page;
	loff_t       byte;
	uint8_t      *buffer = chip->buffers->databuf;
	int saved_chip_number;
	int status;

	/* Compute the search area geometry. */
	block_size_in_pages = mtd->erasesize / mtd->writesize;
	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
	search_area_size_in_pages = search_area_size_in_strides *
					rom_geo->stride_size_in_pages;
	search_area_size_in_blocks =
		  (search_area_size_in_pages + (block_size_in_pages - 1)) /
				    block_size_in_pages;

	dev_dbg(dev, "Search Area Geometry :\n");
	dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);

	/* Select chip 0. */
	saved_chip_number = this->current_chip;
	chip->select_chip(mtd, 0);

	/* Loop over blocks in the first search area, erasing them. */
	dev_dbg(dev, "Erasing the search area...\n");

	for (block = 0; block < search_area_size_in_blocks; block++) {
		/* Compute the page address. */
		page = block * block_size_in_pages;

		/* Erase this block. */
		dev_dbg(dev, "\tErasing block 0x%x\n", block);
		chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
		chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);

		/* Wait for the erase to finish. */
		status = chip->waitfunc(mtd, chip);
		if (status & NAND_STATUS_FAIL)
			dev_err(dev, "[%s] Erase failed.\n", __func__);
	}

	/* Write the NCB fingerprint into the page buffer. */
	memset(buffer, ~0, mtd->writesize);
	memset(chip->oob_poi, ~0, mtd->oobsize);
	memcpy(buffer + 12, fingerprint, strlen(fingerprint));

	/* Loop through the first search area, writing NCB fingerprints. */
	dev_dbg(dev, "Writing NCB fingerprints...\n");
	for (stride = 0; stride < search_area_size_in_strides; stride++) {
		/* Compute the page and byte addresses. */
		page = stride * rom_geo->stride_size_in_pages;
		byte = page   * mtd->writesize;

		/* Write the first page of the current stride. */
		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
		chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
		chip->ecc.write_page_raw(mtd, chip, buffer, 0);
		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);

		/* Wait for the write to finish. */
		status = chip->waitfunc(mtd, chip);
		if (status & NAND_STATUS_FAIL)
			dev_err(dev, "[%s] Write failed.\n", __func__);
	}

	/* Deselect chip 0. */
	chip->select_chip(mtd, saved_chip_number);
	return 0;
}

static int mx23_boot_init(struct gpmi_nand_data  *this)
{
	struct device *dev = this->dev;
	struct nand_chip *chip = &this->nand;
	struct mtd_info *mtd = &this->mtd;
	unsigned int block_count;
	unsigned int block;
	int     chipnr;
	int     page;
	loff_t  byte;
	uint8_t block_mark;
	int     ret = 0;

	/*
	 * If control arrives here, we can't use block mark swapping, which
	 * means we're forced to use transcription. First, scan for the
	 * transcription stamp. If we find it, then we don't have to do
	 * anything -- the block marks are already transcribed.
	 */
	if (mx23_check_transcription_stamp(this))
		return 0;

	/*
	 * If control arrives here, we couldn't find a transcription stamp, so
	 * so we presume the block marks are in the conventional location.
	 */
	dev_dbg(dev, "Transcribing bad block marks...\n");

	/* Compute the number of blocks in the entire medium. */
	block_count = chip->chipsize >> chip->phys_erase_shift;

	/*
	 * Loop over all the blocks in the medium, transcribing block marks as
	 * we go.
	 */
	for (block = 0; block < block_count; block++) {
		/*
		 * Compute the chip, page and byte addresses for this block's
		 * conventional mark.
		 */
		chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
		page = block << (chip->phys_erase_shift - chip->page_shift);
		byte = block <<  chip->phys_erase_shift;

		/* Send the command to read the conventional block mark. */
		chip->select_chip(mtd, chipnr);
		chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
		block_mark = chip->read_byte(mtd);
		chip->select_chip(mtd, -1);

		/*
		 * Check if the block is marked bad. If so, we need to mark it
		 * again, but this time the result will be a mark in the
		 * location where we transcribe block marks.
		 */
		if (block_mark != 0xff) {
			dev_dbg(dev, "Transcribing mark in block %u\n", block);
			ret = chip->block_markbad(mtd, byte);
			if (ret)
				dev_err(dev, "Failed to mark block bad with "
							"ret %d\n", ret);
		}
	}

	/* Write the stamp that indicates we've transcribed the block marks. */
	mx23_write_transcription_stamp(this);
	return 0;
}

static int nand_boot_init(struct gpmi_nand_data  *this)
{
	nand_boot_set_geometry(this);

	/* This is ROM arch-specific initilization before the BBT scanning. */
	if (GPMI_IS_MX23(this))
		return mx23_boot_init(this);
	return 0;
}

static int gpmi_set_geometry(struct gpmi_nand_data *this)
{
	int ret;

	/* Free the temporary DMA memory for reading ID. */
	gpmi_free_dma_buffer(this);

	/* Set up the NFC geometry which is used by BCH. */
	ret = bch_set_geometry(this);
	if (ret) {
		pr_err("set geometry ret : %d\n", ret);
		return ret;
	}

	/* Alloc the new DMA buffers according to the pagesize and oobsize */
	return gpmi_alloc_dma_buffer(this);
}

static int gpmi_pre_bbt_scan(struct gpmi_nand_data  *this)
{
	int ret;

	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
	if (GPMI_IS_MX23(this))
		this->swap_block_mark = false;
	else
		this->swap_block_mark = true;

	/* Set up the medium geometry */
	ret = gpmi_set_geometry(this);
	if (ret)
		return ret;

	/* Adjust the ECC strength according to the chip. */
	this->nand.ecc.strength = this->bch_geometry.ecc_strength;
	this->mtd.ecc_strength = this->bch_geometry.ecc_strength;

	/* NAND boot init, depends on the gpmi_set_geometry(). */
	return nand_boot_init(this);
}

static int gpmi_scan_bbt(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;
	int ret;

	/* Prepare for the BBT scan. */
	ret = gpmi_pre_bbt_scan(this);
	if (ret)
		return ret;

	/* use the default BBT implementation */
	return nand_default_bbt(mtd);
}

void gpmi_nfc_exit(struct gpmi_nand_data *this)
{
	nand_release(&this->mtd);
	gpmi_free_dma_buffer(this);
}

static int __devinit gpmi_nfc_init(struct gpmi_nand_data *this)
{
	struct mtd_info  *mtd = &this->mtd;
	struct nand_chip *chip = &this->nand;
	struct mtd_part_parser_data ppdata = {};
	int ret;

	/* init current chip */
	this->current_chip	= -1;

	/* init the MTD data structures */
	mtd->priv		= chip;
	mtd->name		= "gpmi-nand";
	mtd->owner		= THIS_MODULE;

	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
	chip->priv		= this;
	chip->select_chip	= gpmi_select_chip;
	chip->cmd_ctrl		= gpmi_cmd_ctrl;
	chip->dev_ready		= gpmi_dev_ready;
	chip->read_byte		= gpmi_read_byte;
	chip->read_buf		= gpmi_read_buf;
	chip->write_buf		= gpmi_write_buf;
	chip->ecc.read_page	= gpmi_ecc_read_page;
	chip->ecc.write_page	= gpmi_ecc_write_page;
	chip->ecc.read_oob	= gpmi_ecc_read_oob;
	chip->ecc.write_oob	= gpmi_ecc_write_oob;
	chip->scan_bbt		= gpmi_scan_bbt;
	chip->badblock_pattern	= &gpmi_bbt_descr;
	chip->block_markbad	= gpmi_block_markbad;
	chip->options		|= NAND_NO_SUBPAGE_WRITE;
	chip->ecc.mode		= NAND_ECC_HW;
	chip->ecc.size		= 1;
	chip->ecc.strength	= 8;
	chip->ecc.layout	= &gpmi_hw_ecclayout;

	/* Allocate a temporary DMA buffer for reading ID in the nand_scan() */
	this->bch_geometry.payload_size = 1024;
	this->bch_geometry.auxiliary_size = 128;
	ret = gpmi_alloc_dma_buffer(this);
	if (ret)
		goto err_out;

	ret = nand_scan(mtd, 1);
	if (ret) {
		pr_err("Chip scan failed\n");
		goto err_out;
	}

	ppdata.of_node = this->pdev->dev.of_node;
	ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
	if (ret)
		goto err_out;
	return 0;

err_out:
	gpmi_nfc_exit(this);
	return ret;
}

static const struct platform_device_id gpmi_ids[] = {
	{ .name = "imx23-gpmi-nand", .driver_data = IS_MX23, },
	{ .name = "imx28-gpmi-nand", .driver_data = IS_MX28, },
	{ .name = "imx6q-gpmi-nand", .driver_data = IS_MX6Q, },
	{},
};

static const struct of_device_id gpmi_nand_id_table[] = {
	{
		.compatible = "fsl,imx23-gpmi-nand",
		.data = (void *)&gpmi_ids[IS_MX23]
	}, {
		.compatible = "fsl,imx28-gpmi-nand",
		.data = (void *)&gpmi_ids[IS_MX28]
	}, {
		.compatible = "fsl,imx6q-gpmi-nand",
		.data = (void *)&gpmi_ids[IS_MX6Q]
	}, {}
};
MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);

static int __devinit gpmi_nand_probe(struct platform_device *pdev)
{
	struct gpmi_nand_data *this;
	const struct of_device_id *of_id;
	int ret;

	of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
	if (of_id) {
		pdev->id_entry = of_id->data;
	} else {
		pr_err("Failed to find the right device id.\n");
		return -ENOMEM;
	}

	this = kzalloc(sizeof(*this), GFP_KERNEL);
	if (!this) {
		pr_err("Failed to allocate per-device memory\n");
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, this);
	this->pdev  = pdev;
	this->dev   = &pdev->dev;

	ret = acquire_resources(this);
	if (ret)
		goto exit_acquire_resources;

	ret = init_hardware(this);
	if (ret)
		goto exit_nfc_init;

	ret = gpmi_nfc_init(this);
	if (ret)
		goto exit_nfc_init;

	return 0;

exit_nfc_init:
	release_resources(this);
exit_acquire_resources:
	platform_set_drvdata(pdev, NULL);
	kfree(this);
	return ret;
}

static int __exit gpmi_nand_remove(struct platform_device *pdev)
{
	struct gpmi_nand_data *this = platform_get_drvdata(pdev);

	gpmi_nfc_exit(this);
	release_resources(this);
	platform_set_drvdata(pdev, NULL);
	kfree(this);
	return 0;
}

static struct platform_driver gpmi_nand_driver = {
	.driver = {
		.name = "gpmi-nand",
		.of_match_table = gpmi_nand_id_table,
	},
	.probe   = gpmi_nand_probe,
	.remove  = __exit_p(gpmi_nand_remove),
	.id_table = gpmi_ids,
};

static int __init gpmi_nand_init(void)
{
	int err;

	err = platform_driver_register(&gpmi_nand_driver);
	if (err == 0)
		printk(KERN_INFO "GPMI NAND driver registered. (IMX)\n");
	else
		pr_err("i.MX GPMI NAND driver registration failed\n");
	return err;
}

static void __exit gpmi_nand_exit(void)
{
	platform_driver_unregister(&gpmi_nand_driver);
}

module_init(gpmi_nand_init);
module_exit(gpmi_nand_exit);

MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
MODULE_LICENSE("GPL");