1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
|
/* SPDX-License-Identifier: GPL-2.0
*
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*
*/
#ifndef HABANALABSP_H_
#define HABANALABSP_H_
#include "../include/common/cpucp_if.h"
#include "../include/common/qman_if.h"
#include "../include/hw_ip/mmu/mmu_general.h"
#include <uapi/misc/habanalabs.h>
#include <linux/cdev.h>
#include <linux/iopoll.h>
#include <linux/irqreturn.h>
#include <linux/dma-direction.h>
#include <linux/scatterlist.h>
#include <linux/hashtable.h>
#include <linux/debugfs.h>
#include <linux/bitfield.h>
#include <linux/genalloc.h>
#include <linux/sched/signal.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/coresight.h>
#define HL_NAME "habanalabs"
/* Use upper bits of mmap offset to store habana driver specific information.
* bits[63:61] - Encode mmap type
* bits[45:0] - mmap offset value
*
* NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
* defines are w.r.t to PAGE_SIZE
*/
#define HL_MMAP_TYPE_SHIFT (61 - PAGE_SHIFT)
#define HL_MMAP_TYPE_MASK (0x7ull << HL_MMAP_TYPE_SHIFT)
#define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT)
#define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT)
#define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT)
#define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK)
#define HL_PENDING_RESET_PER_SEC 10
#define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */
#define HL_PENDING_RESET_LONG_SEC 60
#define HL_HARD_RESET_MAX_TIMEOUT 120
#define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */
#define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */
#define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */
#define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */
#define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */
#define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */
#define HL_SIM_MAX_TIMEOUT_US 10000000 /* 10s */
#define HL_COMMON_USER_INTERRUPT_ID 0xFFF
/* Memory */
#define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
/* MMU */
#define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
/**
* enum hl_mmu_page_table_locaion - mmu page table location
* @MMU_DR_PGT: page-table is located on device DRAM.
* @MMU_HR_PGT: page-table is located on host memory.
* @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported.
*/
enum hl_mmu_page_table_location {
MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */
MMU_HR_PGT, /* host resident MMU PGT */
MMU_NUM_PGT_LOCATIONS /* num of PGT locations */
};
/*
* HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
* HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
*/
#define HL_RSVD_SOBS 2
#define HL_RSVD_MONS 1
/*
* HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
*/
#define HL_COLLECTIVE_RSVD_MSTR_MONS 2
#define HL_MAX_SOB_VAL (1 << 15)
#define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0))
#define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1))
#define HL_PCI_NUM_BARS 6
#define HL_MAX_DCORES 4
/*
* Reset Flags
*
* - HL_RESET_HARD
* If set do hard reset to all engines. If not set reset just
* compute/DMA engines.
*
* - HL_RESET_FROM_RESET_THREAD
* Set if the caller is the hard-reset thread
*
* - HL_RESET_HEARTBEAT
* Set if reset is due to heartbeat
*/
#define HL_RESET_HARD (1 << 0)
#define HL_RESET_FROM_RESET_THREAD (1 << 1)
#define HL_RESET_HEARTBEAT (1 << 2)
#define HL_MAX_SOBS_PER_MONITOR 8
/**
* struct hl_gen_wait_properties - properties for generating a wait CB
* @data: command buffer
* @q_idx: queue id is used to extract fence register address
* @size: offset in command buffer
* @sob_base: SOB base to use in this wait CB
* @sob_val: SOB value to wait for
* @mon_id: monitor to use in this wait CB
* @sob_mask: each bit represents a SOB offset from sob_base to be used
*/
struct hl_gen_wait_properties {
void *data;
u32 q_idx;
u32 size;
u16 sob_base;
u16 sob_val;
u16 mon_id;
u8 sob_mask;
};
/**
* struct pgt_info - MMU hop page info.
* @node: hash linked-list node for the pgts shadow hash of pgts.
* @phys_addr: physical address of the pgt.
* @shadow_addr: shadow hop in the host.
* @ctx: pointer to the owner ctx.
* @num_of_ptes: indicates how many ptes are used in the pgt.
*
* The MMU page tables hierarchy is placed on the DRAM. When a new level (hop)
* is needed during mapping, a new page is allocated and this structure holds
* its essential information. During unmapping, if no valid PTEs remained in the
* page, it is freed with its pgt_info structure.
*/
struct pgt_info {
struct hlist_node node;
u64 phys_addr;
u64 shadow_addr;
struct hl_ctx *ctx;
int num_of_ptes;
};
struct hl_device;
struct hl_fpriv;
/**
* enum hl_pci_match_mode - pci match mode per region
* @PCI_ADDRESS_MATCH_MODE: address match mode
* @PCI_BAR_MATCH_MODE: bar match mode
*/
enum hl_pci_match_mode {
PCI_ADDRESS_MATCH_MODE,
PCI_BAR_MATCH_MODE
};
/**
* enum hl_fw_component - F/W components to read version through registers.
* @FW_COMP_UBOOT: u-boot.
* @FW_COMP_PREBOOT: preboot.
*/
enum hl_fw_component {
FW_COMP_UBOOT,
FW_COMP_PREBOOT
};
/**
* enum hl_fw_types - F/W types present in the system
* @FW_TYPE_LINUX: Linux image for device CPU
* @FW_TYPE_BOOT_CPU: Boot image for device CPU
* @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system
* (preboot, ppboot etc...)
* @FW_TYPE_ALL_TYPES: Mask for all types
*/
enum hl_fw_types {
FW_TYPE_LINUX = 0x1,
FW_TYPE_BOOT_CPU = 0x2,
FW_TYPE_PREBOOT_CPU = 0x4,
FW_TYPE_ALL_TYPES =
(FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU)
};
/**
* enum hl_queue_type - Supported QUEUE types.
* @QUEUE_TYPE_NA: queue is not available.
* @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
* host.
* @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
* memories and/or operates the compute engines.
* @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
* @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
* notifications are sent by H/W.
*/
enum hl_queue_type {
QUEUE_TYPE_NA,
QUEUE_TYPE_EXT,
QUEUE_TYPE_INT,
QUEUE_TYPE_CPU,
QUEUE_TYPE_HW
};
enum hl_cs_type {
CS_TYPE_DEFAULT,
CS_TYPE_SIGNAL,
CS_TYPE_WAIT,
CS_TYPE_COLLECTIVE_WAIT
};
/*
* struct hl_inbound_pci_region - inbound region descriptor
* @mode: pci match mode for this region
* @addr: region target address
* @size: region size in bytes
* @offset_in_bar: offset within bar (address match mode)
* @bar: bar id
*/
struct hl_inbound_pci_region {
enum hl_pci_match_mode mode;
u64 addr;
u64 size;
u64 offset_in_bar;
u8 bar;
};
/*
* struct hl_outbound_pci_region - outbound region descriptor
* @addr: region target address
* @size: region size in bytes
*/
struct hl_outbound_pci_region {
u64 addr;
u64 size;
};
/*
* enum queue_cb_alloc_flags - Indicates queue support for CBs that
* allocated by Kernel or by User
* @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel
* @CB_ALLOC_USER: support only CBs that allocated by User
*/
enum queue_cb_alloc_flags {
CB_ALLOC_KERNEL = 0x1,
CB_ALLOC_USER = 0x2
};
/*
* struct hl_hw_sob - H/W SOB info.
* @hdev: habanalabs device structure.
* @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
* @sob_id: id of this SOB.
* @q_idx: the H/W queue that uses this SOB.
*/
struct hl_hw_sob {
struct hl_device *hdev;
struct kref kref;
u32 sob_id;
u32 q_idx;
};
enum hl_collective_mode {
HL_COLLECTIVE_NOT_SUPPORTED = 0x0,
HL_COLLECTIVE_MASTER = 0x1,
HL_COLLECTIVE_SLAVE = 0x2
};
/**
* struct hw_queue_properties - queue information.
* @type: queue type.
* @queue_cb_alloc_flags: bitmap which indicates if the hw queue supports CB
* that allocated by the Kernel driver and therefore,
* a CB handle can be provided for jobs on this queue.
* Otherwise, a CB address must be provided.
* @collective_mode: collective mode of current queue
* @driver_only: true if only the driver is allowed to send a job to this queue,
* false otherwise.
* @supports_sync_stream: True if queue supports sync stream
*/
struct hw_queue_properties {
enum hl_queue_type type;
enum queue_cb_alloc_flags cb_alloc_flags;
enum hl_collective_mode collective_mode;
u8 driver_only;
u8 supports_sync_stream;
};
/**
* enum vm_type_t - virtual memory mapping request information.
* @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
* @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
*/
enum vm_type_t {
VM_TYPE_USERPTR = 0x1,
VM_TYPE_PHYS_PACK = 0x2
};
/**
* enum hl_device_hw_state - H/W device state. use this to understand whether
* to do reset before hw_init or not
* @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
* @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
* hw_init
*/
enum hl_device_hw_state {
HL_DEVICE_HW_STATE_CLEAN = 0,
HL_DEVICE_HW_STATE_DIRTY
};
#define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0
/**
* struct hl_mmu_properties - ASIC specific MMU address translation properties.
* @start_addr: virtual start address of the memory region.
* @end_addr: virtual end address of the memory region.
* @hop0_shift: shift of hop 0 mask.
* @hop1_shift: shift of hop 1 mask.
* @hop2_shift: shift of hop 2 mask.
* @hop3_shift: shift of hop 3 mask.
* @hop4_shift: shift of hop 4 mask.
* @hop5_shift: shift of hop 5 mask.
* @hop0_mask: mask to get the PTE address in hop 0.
* @hop1_mask: mask to get the PTE address in hop 1.
* @hop2_mask: mask to get the PTE address in hop 2.
* @hop3_mask: mask to get the PTE address in hop 3.
* @hop4_mask: mask to get the PTE address in hop 4.
* @hop5_mask: mask to get the PTE address in hop 5.
* @page_size: default page size used to allocate memory.
* @num_hops: The amount of hops supported by the translation table.
* @host_resident: Should the MMU page table reside in host memory or in the
* device DRAM.
*/
struct hl_mmu_properties {
u64 start_addr;
u64 end_addr;
u64 hop0_shift;
u64 hop1_shift;
u64 hop2_shift;
u64 hop3_shift;
u64 hop4_shift;
u64 hop5_shift;
u64 hop0_mask;
u64 hop1_mask;
u64 hop2_mask;
u64 hop3_mask;
u64 hop4_mask;
u64 hop5_mask;
u32 page_size;
u32 num_hops;
u8 host_resident;
};
/**
* struct asic_fixed_properties - ASIC specific immutable properties.
* @hw_queues_props: H/W queues properties.
* @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
* available sensors.
* @uboot_ver: F/W U-boot version.
* @preboot_ver: F/W Preboot version.
* @dmmu: DRAM MMU address translation properties.
* @pmmu: PCI (host) MMU address translation properties.
* @pmmu_huge: PCI (host) MMU address translation properties for memory
* allocated with huge pages.
* @sram_base_address: SRAM physical start address.
* @sram_end_address: SRAM physical end address.
* @sram_user_base_address - SRAM physical start address for user access.
* @dram_base_address: DRAM physical start address.
* @dram_end_address: DRAM physical end address.
* @dram_user_base_address: DRAM physical start address for user access.
* @dram_size: DRAM total size.
* @dram_pci_bar_size: size of PCI bar towards DRAM.
* @max_power_default: max power of the device after reset
* @dc_power_default: power consumed by the device in mode idle.
* @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
* fault.
* @pcie_dbi_base_address: Base address of the PCIE_DBI block.
* @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
* @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
* @mmu_dram_default_page_addr: DRAM default page physical address.
* @cb_va_start_addr: virtual start address of command buffers which are mapped
* to the device's MMU.
* @cb_va_end_addr: virtual end address of command buffers which are mapped to
* the device's MMU.
* @mmu_pgt_size: MMU page tables total size.
* @mmu_pte_size: PTE size in MMU page tables.
* @mmu_hop_table_size: MMU hop table size.
* @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
* @dram_page_size: page size for MMU DRAM allocation.
* @cfg_size: configuration space size on SRAM.
* @sram_size: total size of SRAM.
* @max_asid: maximum number of open contexts (ASIDs).
* @num_of_events: number of possible internal H/W IRQs.
* @psoc_pci_pll_nr: PCI PLL NR value.
* @psoc_pci_pll_nf: PCI PLL NF value.
* @psoc_pci_pll_od: PCI PLL OD value.
* @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
* @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
* @high_pll: high PLL frequency used by the device.
* @cb_pool_cb_cnt: number of CBs in the CB pool.
* @cb_pool_cb_size: size of each CB in the CB pool.
* @max_pending_cs: maximum of concurrent pending command submissions
* @max_queues: maximum amount of queues in the system
* @fw_boot_cpu_security_map: bitmap representation of boot cpu security status
* reported by FW, bit description can be found in
* CPU_BOOT_DEV_STS*
* @fw_app_security_map: bitmap representation of application security status
* reported by FW, bit description can be found in
* CPU_BOOT_DEV_STS*
* @collective_first_sob: first sync object available for collective use
* @collective_first_mon: first monitor available for collective use
* @sync_stream_first_sob: first sync object available for sync stream use
* @sync_stream_first_mon: first monitor available for sync stream use
* @first_available_user_sob: first sob available for the user
* @first_available_user_mon: first monitor available for the user
* @first_available_user_msix_interrupt: first available msix interrupt
* reserved for the user
* @first_available_cq: first available CQ for the user.
* @user_interrupt_count: number of user interrupts.
* @tpc_enabled_mask: which TPCs are enabled.
* @completion_queues_count: number of completion queues.
* @fw_security_disabled: true if security measures are disabled in firmware,
* false otherwise
* @fw_security_status_valid: security status bits are valid and can be fetched
* from BOOT_DEV_STS0
* @dram_supports_virtual_memory: is there an MMU towards the DRAM
* @hard_reset_done_by_fw: true if firmware is handling hard reset flow
* @num_functional_hbms: number of functional HBMs in each DCORE.
* @iatu_done_by_fw: true if iATU configuration is being done by FW.
*/
struct asic_fixed_properties {
struct hw_queue_properties *hw_queues_props;
struct cpucp_info cpucp_info;
char uboot_ver[VERSION_MAX_LEN];
char preboot_ver[VERSION_MAX_LEN];
struct hl_mmu_properties dmmu;
struct hl_mmu_properties pmmu;
struct hl_mmu_properties pmmu_huge;
u64 sram_base_address;
u64 sram_end_address;
u64 sram_user_base_address;
u64 dram_base_address;
u64 dram_end_address;
u64 dram_user_base_address;
u64 dram_size;
u64 dram_pci_bar_size;
u64 max_power_default;
u64 dc_power_default;
u64 dram_size_for_default_page_mapping;
u64 pcie_dbi_base_address;
u64 pcie_aux_dbi_reg_addr;
u64 mmu_pgt_addr;
u64 mmu_dram_default_page_addr;
u64 cb_va_start_addr;
u64 cb_va_end_addr;
u32 mmu_pgt_size;
u32 mmu_pte_size;
u32 mmu_hop_table_size;
u32 mmu_hop0_tables_total_size;
u32 dram_page_size;
u32 cfg_size;
u32 sram_size;
u32 max_asid;
u32 num_of_events;
u32 psoc_pci_pll_nr;
u32 psoc_pci_pll_nf;
u32 psoc_pci_pll_od;
u32 psoc_pci_pll_div_factor;
u32 psoc_timestamp_frequency;
u32 high_pll;
u32 cb_pool_cb_cnt;
u32 cb_pool_cb_size;
u32 max_pending_cs;
u32 max_queues;
u32 fw_boot_cpu_security_map;
u32 fw_app_security_map;
u16 collective_first_sob;
u16 collective_first_mon;
u16 sync_stream_first_sob;
u16 sync_stream_first_mon;
u16 first_available_user_sob[HL_MAX_DCORES];
u16 first_available_user_mon[HL_MAX_DCORES];
u16 first_available_user_msix_interrupt;
u16 first_available_cq[HL_MAX_DCORES];
u16 user_interrupt_count;
u8 tpc_enabled_mask;
u8 completion_queues_count;
u8 fw_security_disabled;
u8 fw_security_status_valid;
u8 dram_supports_virtual_memory;
u8 hard_reset_done_by_fw;
u8 num_functional_hbms;
u8 iatu_done_by_fw;
};
/**
* struct hl_fence - software synchronization primitive
* @completion: fence is implemented using completion
* @refcount: refcount for this fence
* @cs_sequence: sequence of the corresponding command submission
* @error: mark this fence with error
* @timestamp: timestamp upon completion
*
*/
struct hl_fence {
struct completion completion;
struct kref refcount;
u64 cs_sequence;
int error;
ktime_t timestamp;
};
/**
* struct hl_cs_compl - command submission completion object.
* @sob_reset_work: workqueue object to run SOB reset flow.
* @base_fence: hl fence object.
* @lock: spinlock to protect fence.
* @hdev: habanalabs device structure.
* @hw_sob: the H/W SOB used in this signal/wait CS.
* @cs_seq: command submission sequence number.
* @type: type of the CS - signal/wait.
* @sob_val: the SOB value that is used in this signal/wait CS.
* @sob_group: the SOB group that is used in this collective wait CS.
*/
struct hl_cs_compl {
struct work_struct sob_reset_work;
struct hl_fence base_fence;
spinlock_t lock;
struct hl_device *hdev;
struct hl_hw_sob *hw_sob;
u64 cs_seq;
enum hl_cs_type type;
u16 sob_val;
u16 sob_group;
};
/*
* Command Buffers
*/
/**
* struct hl_cb_mgr - describes a Command Buffer Manager.
* @cb_lock: protects cb_handles.
* @cb_handles: an idr to hold all command buffer handles.
*/
struct hl_cb_mgr {
spinlock_t cb_lock;
struct idr cb_handles; /* protected by cb_lock */
};
/**
* struct hl_cb - describes a Command Buffer.
* @refcount: reference counter for usage of the CB.
* @hdev: pointer to device this CB belongs to.
* @ctx: pointer to the CB owner's context.
* @lock: spinlock to protect mmap flows.
* @debugfs_list: node in debugfs list of command buffers.
* @pool_list: node in pool list of command buffers.
* @va_block_list: list of virtual addresses blocks of the CB if it is mapped to
* the device's MMU.
* @id: the CB's ID.
* @kernel_address: Holds the CB's kernel virtual address.
* @bus_address: Holds the CB's DMA address.
* @mmap_size: Holds the CB's size that was mmaped.
* @size: holds the CB's size.
* @cs_cnt: holds number of CS that this CB participates in.
* @mmap: true if the CB is currently mmaped to user.
* @is_pool: true if CB was acquired from the pool, false otherwise.
* @is_internal: internaly allocated
* @is_mmu_mapped: true if the CB is mapped to the device's MMU.
*/
struct hl_cb {
struct kref refcount;
struct hl_device *hdev;
struct hl_ctx *ctx;
spinlock_t lock;
struct list_head debugfs_list;
struct list_head pool_list;
struct list_head va_block_list;
u64 id;
void *kernel_address;
dma_addr_t bus_address;
u32 mmap_size;
u32 size;
atomic_t cs_cnt;
u8 mmap;
u8 is_pool;
u8 is_internal;
u8 is_mmu_mapped;
};
/*
* QUEUES
*/
struct hl_cs;
struct hl_cs_job;
/* Queue length of external and HW queues */
#define HL_QUEUE_LENGTH 4096
#define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE)
#if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
#error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
#endif
/* HL_CQ_LENGTH is in units of struct hl_cq_entry */
#define HL_CQ_LENGTH HL_QUEUE_LENGTH
#define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
/* Must be power of 2 */
#define HL_EQ_LENGTH 64
#define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
/* Host <-> CPU-CP shared memory size */
#define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M
/**
* struct hl_sync_stream_properties -
* describes a H/W queue sync stream properties
* @hw_sob: array of the used H/W SOBs by this H/W queue.
* @next_sob_val: the next value to use for the currently used SOB.
* @base_sob_id: the base SOB id of the SOBs used by this queue.
* @base_mon_id: the base MON id of the MONs used by this queue.
* @collective_mstr_mon_id: the MON ids of the MONs used by this master queue
* in order to sync with all slave queues.
* @collective_slave_mon_id: the MON id used by this slave queue in order to
* sync with its master queue.
* @collective_sob_id: current SOB id used by this collective slave queue
* to signal its collective master queue upon completion.
* @curr_sob_offset: the id offset to the currently used SOB from the
* HL_RSVD_SOBS that are being used by this queue.
*/
struct hl_sync_stream_properties {
struct hl_hw_sob hw_sob[HL_RSVD_SOBS];
u16 next_sob_val;
u16 base_sob_id;
u16 base_mon_id;
u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS];
u16 collective_slave_mon_id;
u16 collective_sob_id;
u8 curr_sob_offset;
};
/**
* struct hl_hw_queue - describes a H/W transport queue.
* @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
* @sync_stream_prop: sync stream queue properties
* @queue_type: type of queue.
* @collective_mode: collective mode of current queue
* @kernel_address: holds the queue's kernel virtual address.
* @bus_address: holds the queue's DMA address.
* @pi: holds the queue's pi value.
* @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
* @hw_queue_id: the id of the H/W queue.
* @cq_id: the id for the corresponding CQ for this H/W queue.
* @msi_vec: the IRQ number of the H/W queue.
* @int_queue_len: length of internal queue (number of entries).
* @valid: is the queue valid (we have array of 32 queues, not all of them
* exist).
* @supports_sync_stream: True if queue supports sync stream
*/
struct hl_hw_queue {
struct hl_cs_job **shadow_queue;
struct hl_sync_stream_properties sync_stream_prop;
enum hl_queue_type queue_type;
enum hl_collective_mode collective_mode;
void *kernel_address;
dma_addr_t bus_address;
u32 pi;
atomic_t ci;
u32 hw_queue_id;
u32 cq_id;
u32 msi_vec;
u16 int_queue_len;
u8 valid;
u8 supports_sync_stream;
};
/**
* struct hl_cq - describes a completion queue
* @hdev: pointer to the device structure
* @kernel_address: holds the queue's kernel virtual address
* @bus_address: holds the queue's DMA address
* @cq_idx: completion queue index in array
* @hw_queue_id: the id of the matching H/W queue
* @ci: ci inside the queue
* @pi: pi inside the queue
* @free_slots_cnt: counter of free slots in queue
*/
struct hl_cq {
struct hl_device *hdev;
void *kernel_address;
dma_addr_t bus_address;
u32 cq_idx;
u32 hw_queue_id;
u32 ci;
u32 pi;
atomic_t free_slots_cnt;
};
/**
* struct hl_user_interrupt - holds user interrupt information
* @hdev: pointer to the device structure
* @wait_list_head: head to the list of user threads pending on this interrupt
* @wait_list_lock: protects wait_list_head
* @interrupt_id: msix interrupt id
*/
struct hl_user_interrupt {
struct hl_device *hdev;
struct list_head wait_list_head;
spinlock_t wait_list_lock;
u32 interrupt_id;
};
/**
* struct hl_user_pending_interrupt - holds a context to a user thread
* pending on an interrupt
* @wait_list_node: node in the list of user threads pending on an interrupt
* @fence: hl fence object for interrupt completion
*/
struct hl_user_pending_interrupt {
struct list_head wait_list_node;
struct hl_fence fence;
};
/**
* struct hl_eq - describes the event queue (single one per device)
* @hdev: pointer to the device structure
* @kernel_address: holds the queue's kernel virtual address
* @bus_address: holds the queue's DMA address
* @ci: ci inside the queue
*/
struct hl_eq {
struct hl_device *hdev;
void *kernel_address;
dma_addr_t bus_address;
u32 ci;
};
/*
* ASICs
*/
/**
* enum hl_asic_type - supported ASIC types.
* @ASIC_INVALID: Invalid ASIC type.
* @ASIC_GOYA: Goya device.
* @ASIC_GAUDI: Gaudi device.
* @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000).
*/
enum hl_asic_type {
ASIC_INVALID,
ASIC_GOYA,
ASIC_GAUDI,
ASIC_GAUDI_SEC
};
struct hl_cs_parser;
/**
* enum hl_pm_mng_profile - power management profile.
* @PM_AUTO: internal clock is set by the Linux driver.
* @PM_MANUAL: internal clock is set by the user.
* @PM_LAST: last power management type.
*/
enum hl_pm_mng_profile {
PM_AUTO = 1,
PM_MANUAL,
PM_LAST
};
/**
* enum hl_pll_frequency - PLL frequency.
* @PLL_HIGH: high frequency.
* @PLL_LOW: low frequency.
* @PLL_LAST: last frequency values that were configured by the user.
*/
enum hl_pll_frequency {
PLL_HIGH = 1,
PLL_LOW,
PLL_LAST
};
#define PLL_REF_CLK 50
enum div_select_defs {
DIV_SEL_REF_CLK = 0,
DIV_SEL_PLL_CLK = 1,
DIV_SEL_DIVIDED_REF = 2,
DIV_SEL_DIVIDED_PLL = 3,
};
/**
* struct hl_asic_funcs - ASIC specific functions that are can be called from
* common code.
* @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
* @early_fini: tears down what was done in early_init.
* @late_init: sets up late driver/hw state (post hw_init) - Optional.
* @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
* @sw_init: sets up driver state, does not configure H/W.
* @sw_fini: tears down driver state, does not configure H/W.
* @hw_init: sets up the H/W state.
* @hw_fini: tears down the H/W state.
* @halt_engines: halt engines, needed for reset sequence. This also disables
* interrupts from the device. Should be called before
* hw_fini and before CS rollback.
* @suspend: handles IP specific H/W or SW changes for suspend.
* @resume: handles IP specific H/W or SW changes for resume.
* @cb_mmap: maps a CB.
* @ring_doorbell: increment PI on a given QMAN.
* @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
* function because the PQs are located in different memory areas
* per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
* writing the PQE must match the destination memory area
* properties.
* @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
* dma_alloc_coherent(). This is ASIC function because
* its implementation is not trivial when the driver
* is loaded in simulation mode (not upstreamed).
* @asic_dma_free_coherent: Free coherent DMA memory by calling
* dma_free_coherent(). This is ASIC function because
* its implementation is not trivial when the driver
* is loaded in simulation mode (not upstreamed).
* @scrub_device_mem: Scrub device memory given an address and size
* @get_int_queue_base: get the internal queue base address.
* @test_queues: run simple test on all queues for sanity check.
* @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
* size of allocation is HL_DMA_POOL_BLK_SIZE.
* @asic_dma_pool_free: free small DMA allocation from pool.
* @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
* @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
* @hl_dma_unmap_sg: DMA unmap scatter-gather list.
* @cs_parser: parse Command Submission.
* @asic_dma_map_sg: DMA map scatter-gather list.
* @get_dma_desc_list_size: get number of LIN_DMA packets required for CB.
* @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
* @update_eq_ci: update event queue CI.
* @context_switch: called upon ASID context switch.
* @restore_phase_topology: clear all SOBs amd MONs.
* @debugfs_read32: debug interface for reading u32 from DRAM/SRAM/Host memory.
* @debugfs_write32: debug interface for writing u32 to DRAM/SRAM/Host memory.
* @debugfs_read64: debug interface for reading u64 from DRAM/SRAM/Host memory.
* @debugfs_write64: debug interface for writing u64 to DRAM/SRAM/Host memory.
* @debugfs_read_dma: debug interface for reading up to 2MB from the device's
* internal memory via DMA engine.
* @add_device_attr: add ASIC specific device attributes.
* @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
* @set_pll_profile: change PLL profile (manual/automatic).
* @get_events_stat: retrieve event queue entries histogram.
* @read_pte: read MMU page table entry from DRAM.
* @write_pte: write MMU page table entry to DRAM.
* @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
* (L1 only) or hard (L0 & L1) flush.
* @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with
* ASID-VA-size mask.
* @send_heartbeat: send is-alive packet to CPU-CP and verify response.
* @set_clock_gating: enable/disable clock gating per engine according to
* clock gating mask in hdev
* @disable_clock_gating: disable clock gating completely
* @debug_coresight: perform certain actions on Coresight for debugging.
* @is_device_idle: return true if device is idle, false otherwise.
* @soft_reset_late_init: perform certain actions needed after soft reset.
* @hw_queues_lock: acquire H/W queues lock.
* @hw_queues_unlock: release H/W queues lock.
* @get_pci_id: retrieve PCI ID.
* @get_eeprom_data: retrieve EEPROM data from F/W.
* @send_cpu_message: send message to F/W. If the message is timedout, the
* driver will eventually reset the device. The timeout can
* be determined by the calling function or it can be 0 and
* then the timeout is the default timeout for the specific
* ASIC
* @get_hw_state: retrieve the H/W state
* @pci_bars_map: Map PCI BARs.
* @init_iatu: Initialize the iATU unit inside the PCI controller.
* @rreg: Read a register. Needed for simulator support.
* @wreg: Write a register. Needed for simulator support.
* @halt_coresight: stop the ETF and ETR traces.
* @ctx_init: context dependent initialization.
* @ctx_fini: context dependent cleanup.
* @get_clk_rate: Retrieve the ASIC current and maximum clock rate in MHz
* @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
* @read_device_fw_version: read the device's firmware versions that are
* contained in registers
* @load_firmware_to_device: load the firmware to the device's memory
* @load_boot_fit_to_device: load boot fit to device's memory
* @get_signal_cb_size: Get signal CB size.
* @get_wait_cb_size: Get wait CB size.
* @gen_signal_cb: Generate a signal CB.
* @gen_wait_cb: Generate a wait CB.
* @reset_sob: Reset a SOB.
* @reset_sob_group: Reset SOB group
* @set_dma_mask_from_fw: set the DMA mask in the driver according to the
* firmware configuration
* @get_device_time: Get the device time.
* @collective_wait_init_cs: Generate collective master/slave packets
* and place them in the relevant cs jobs
* @collective_wait_create_jobs: allocate collective wait cs jobs
* @scramble_addr: Routine to scramble the address prior of mapping it
* in the MMU.
* @descramble_addr: Routine to de-scramble the address prior of
* showing it to users.
* @ack_protection_bits_errors: ack and dump all security violations
* @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it.
* also returns the size of the block if caller supplies
* a valid pointer for it
* @hw_block_mmap: mmap a HW block with a given id.
* @enable_events_from_fw: send interrupt to firmware to notify them the
* driver is ready to receive asynchronous events. This
* function should be called during the first init and
* after every hard-reset of the device
*/
struct hl_asic_funcs {
int (*early_init)(struct hl_device *hdev);
int (*early_fini)(struct hl_device *hdev);
int (*late_init)(struct hl_device *hdev);
void (*late_fini)(struct hl_device *hdev);
int (*sw_init)(struct hl_device *hdev);
int (*sw_fini)(struct hl_device *hdev);
int (*hw_init)(struct hl_device *hdev);
void (*hw_fini)(struct hl_device *hdev, bool hard_reset);
void (*halt_engines)(struct hl_device *hdev, bool hard_reset);
int (*suspend)(struct hl_device *hdev);
int (*resume)(struct hl_device *hdev);
int (*cb_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size);
void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
struct hl_bd *bd);
void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle, gfp_t flag);
void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
void *cpu_addr, dma_addr_t dma_handle);
int (*scrub_device_mem)(struct hl_device *hdev, u64 addr, u64 size);
void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
dma_addr_t *dma_handle, u16 *queue_len);
int (*test_queues)(struct hl_device *hdev);
void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
gfp_t mem_flags, dma_addr_t *dma_handle);
void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
dma_addr_t dma_addr);
void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
size_t size, dma_addr_t *dma_handle);
void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
size_t size, void *vaddr);
void (*hl_dma_unmap_sg)(struct hl_device *hdev,
struct scatterlist *sgl, int nents,
enum dma_data_direction dir);
int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
int (*asic_dma_map_sg)(struct hl_device *hdev,
struct scatterlist *sgl, int nents,
enum dma_data_direction dir);
u32 (*get_dma_desc_list_size)(struct hl_device *hdev,
struct sg_table *sgt);
void (*add_end_of_cb_packets)(struct hl_device *hdev,
void *kernel_address, u32 len,
u64 cq_addr, u32 cq_val, u32 msix_num,
bool eb);
void (*update_eq_ci)(struct hl_device *hdev, u32 val);
int (*context_switch)(struct hl_device *hdev, u32 asid);
void (*restore_phase_topology)(struct hl_device *hdev);
int (*debugfs_read32)(struct hl_device *hdev, u64 addr,
bool user_address, u32 *val);
int (*debugfs_write32)(struct hl_device *hdev, u64 addr,
bool user_address, u32 val);
int (*debugfs_read64)(struct hl_device *hdev, u64 addr,
bool user_address, u64 *val);
int (*debugfs_write64)(struct hl_device *hdev, u64 addr,
bool user_address, u64 val);
int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size,
void *blob_addr);
void (*add_device_attr)(struct hl_device *hdev,
struct attribute_group *dev_attr_grp);
void (*handle_eqe)(struct hl_device *hdev,
struct hl_eq_entry *eq_entry);
void (*set_pll_profile)(struct hl_device *hdev,
enum hl_pll_frequency freq);
void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
u32 *size);
u64 (*read_pte)(struct hl_device *hdev, u64 addr);
void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
u32 flags);
int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
u32 asid, u64 va, u64 size);
int (*send_heartbeat)(struct hl_device *hdev);
void (*set_clock_gating)(struct hl_device *hdev);
void (*disable_clock_gating)(struct hl_device *hdev);
int (*debug_coresight)(struct hl_device *hdev, void *data);
bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr,
u8 mask_len, struct seq_file *s);
int (*soft_reset_late_init)(struct hl_device *hdev);
void (*hw_queues_lock)(struct hl_device *hdev);
void (*hw_queues_unlock)(struct hl_device *hdev);
u32 (*get_pci_id)(struct hl_device *hdev);
int (*get_eeprom_data)(struct hl_device *hdev, void *data,
size_t max_size);
int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
u16 len, u32 timeout, u64 *result);
int (*pci_bars_map)(struct hl_device *hdev);
int (*init_iatu)(struct hl_device *hdev);
u32 (*rreg)(struct hl_device *hdev, u32 reg);
void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
void (*halt_coresight)(struct hl_device *hdev);
int (*ctx_init)(struct hl_ctx *ctx);
void (*ctx_fini)(struct hl_ctx *ctx);
int (*get_clk_rate)(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
int (*read_device_fw_version)(struct hl_device *hdev,
enum hl_fw_component fwc);
int (*load_firmware_to_device)(struct hl_device *hdev);
int (*load_boot_fit_to_device)(struct hl_device *hdev);
u32 (*get_signal_cb_size)(struct hl_device *hdev);
u32 (*get_wait_cb_size)(struct hl_device *hdev);
u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id,
u32 size, bool eb);
u32 (*gen_wait_cb)(struct hl_device *hdev,
struct hl_gen_wait_properties *prop);
void (*reset_sob)(struct hl_device *hdev, void *data);
void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group);
void (*set_dma_mask_from_fw)(struct hl_device *hdev);
u64 (*get_device_time)(struct hl_device *hdev);
void (*collective_wait_init_cs)(struct hl_cs *cs);
int (*collective_wait_create_jobs)(struct hl_device *hdev,
struct hl_ctx *ctx, struct hl_cs *cs, u32 wait_queue_id,
u32 collective_engine_id);
u64 (*scramble_addr)(struct hl_device *hdev, u64 addr);
u64 (*descramble_addr)(struct hl_device *hdev, u64 addr);
void (*ack_protection_bits_errors)(struct hl_device *hdev);
int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr,
u32 *block_size, u32 *block_id);
int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
u32 block_id, u32 block_size);
void (*enable_events_from_fw)(struct hl_device *hdev);
void (*get_msi_info)(u32 *table);
};
/*
* CONTEXTS
*/
#define HL_KERNEL_ASID_ID 0
/**
* enum hl_va_range_type - virtual address range type.
* @HL_VA_RANGE_TYPE_HOST: range type of host pages
* @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages
* @HL_VA_RANGE_TYPE_DRAM: range type of dram pages
*/
enum hl_va_range_type {
HL_VA_RANGE_TYPE_HOST,
HL_VA_RANGE_TYPE_HOST_HUGE,
HL_VA_RANGE_TYPE_DRAM,
HL_VA_RANGE_TYPE_MAX
};
/**
* struct hl_va_range - virtual addresses range.
* @lock: protects the virtual addresses list.
* @list: list of virtual addresses blocks available for mappings.
* @start_addr: range start address.
* @end_addr: range end address.
* @page_size: page size of this va range.
*/
struct hl_va_range {
struct mutex lock;
struct list_head list;
u64 start_addr;
u64 end_addr;
u32 page_size;
};
/**
* struct hl_cs_counters_atomic - command submission counters
* @out_of_mem_drop_cnt: dropped due to memory allocation issue
* @parsing_drop_cnt: dropped due to error in packet parsing
* @queue_full_drop_cnt: dropped due to queue full
* @device_in_reset_drop_cnt: dropped due to device in reset
* @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
* @validation_drop_cnt: dropped due to error in validation
*/
struct hl_cs_counters_atomic {
atomic64_t out_of_mem_drop_cnt;
atomic64_t parsing_drop_cnt;
atomic64_t queue_full_drop_cnt;
atomic64_t device_in_reset_drop_cnt;
atomic64_t max_cs_in_flight_drop_cnt;
atomic64_t validation_drop_cnt;
};
/**
* struct hl_pending_cb - pending command buffer structure
* @cb_node: cb node in pending cb list
* @cb: command buffer to send in next submission
* @cb_size: command buffer size
* @hw_queue_id: destination queue id
*/
struct hl_pending_cb {
struct list_head cb_node;
struct hl_cb *cb;
u32 cb_size;
u32 hw_queue_id;
};
/**
* struct hl_ctx - user/kernel context.
* @mem_hash: holds mapping from virtual address to virtual memory area
* descriptor (hl_vm_phys_pg_list or hl_userptr).
* @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
* @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
* @hdev: pointer to the device structure.
* @refcount: reference counter for the context. Context is released only when
* this hits 0l. It is incremented on CS and CS_WAIT.
* @cs_pending: array of hl fence objects representing pending CS.
* @va_range: holds available virtual addresses for host and dram mappings.
* @mem_hash_lock: protects the mem_hash.
* @mmu_lock: protects the MMU page tables. Any change to the PGT, modifying the
* MMU hash or walking the PGT requires talking this lock.
* @hw_block_list_lock: protects the HW block memory list.
* @debugfs_list: node in debugfs list of contexts.
* pending_cb_list: list of pending command buffers waiting to be sent upon
* next user command submission context.
* @hw_block_mem_list: list of HW block virtual mapped addresses.
* @cs_counters: context command submission counters.
* @cb_va_pool: device VA pool for command buffers which are mapped to the
* device's MMU.
* @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
* to user so user could inquire about CS. It is used as
* index to cs_pending array.
* @dram_default_hops: array that holds all hops addresses needed for default
* DRAM mapping.
* @pending_cb_lock: spinlock to protect pending cb list
* @cs_lock: spinlock to protect cs_sequence.
* @dram_phys_mem: amount of used physical DRAM memory by this context.
* @thread_ctx_switch_token: token to prevent multiple threads of the same
* context from running the context switch phase.
* Only a single thread should run it.
* @thread_pending_cb_token: token to prevent multiple threads from processing
* the pending CB list. Only a single thread should
* process the list since it is protected by a
* spinlock and we don't want to halt the entire
* command submission sequence.
* @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
* the context switch phase from moving to their
* execution phase before the context switch phase
* has finished.
* @asid: context's unique address space ID in the device's MMU.
* @handle: context's opaque handle for user
*/
struct hl_ctx {
DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
struct hl_fpriv *hpriv;
struct hl_device *hdev;
struct kref refcount;
struct hl_fence **cs_pending;
struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX];
struct mutex mem_hash_lock;
struct mutex mmu_lock;
struct mutex hw_block_list_lock;
struct list_head debugfs_list;
struct list_head pending_cb_list;
struct list_head hw_block_mem_list;
struct hl_cs_counters_atomic cs_counters;
struct gen_pool *cb_va_pool;
u64 cs_sequence;
u64 *dram_default_hops;
spinlock_t pending_cb_lock;
spinlock_t cs_lock;
atomic64_t dram_phys_mem;
atomic_t thread_ctx_switch_token;
atomic_t thread_pending_cb_token;
u32 thread_ctx_switch_wait_token;
u32 asid;
u32 handle;
};
/**
* struct hl_ctx_mgr - for handling multiple contexts.
* @ctx_lock: protects ctx_handles.
* @ctx_handles: idr to hold all ctx handles.
*/
struct hl_ctx_mgr {
struct mutex ctx_lock;
struct idr ctx_handles;
};
/*
* COMMAND SUBMISSIONS
*/
/**
* struct hl_userptr - memory mapping chunk information
* @vm_type: type of the VM.
* @job_node: linked-list node for hanging the object on the Job's list.
* @pages: pointer to struct page array
* @npages: size of @pages array
* @sgt: pointer to the scatter-gather table that holds the pages.
* @dir: for DMA unmapping, the direction must be supplied, so save it.
* @debugfs_list: node in debugfs list of command submissions.
* @addr: user-space virtual address of the start of the memory area.
* @size: size of the memory area to pin & map.
* @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
*/
struct hl_userptr {
enum vm_type_t vm_type; /* must be first */
struct list_head job_node;
struct page **pages;
unsigned int npages;
struct sg_table *sgt;
enum dma_data_direction dir;
struct list_head debugfs_list;
u64 addr;
u32 size;
u8 dma_mapped;
};
/**
* struct hl_cs - command submission.
* @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
* @ctx: the context this CS belongs to.
* @job_list: list of the CS's jobs in the various queues.
* @job_lock: spinlock for the CS's jobs list. Needed for free_job.
* @refcount: reference counter for usage of the CS.
* @fence: pointer to the fence object of this CS.
* @signal_fence: pointer to the fence object of the signal CS (used by wait
* CS only).
* @finish_work: workqueue object to run when CS is completed by H/W.
* @work_tdr: delayed work node for TDR.
* @mirror_node : node in device mirror list of command submissions.
* @staged_cs_node: node in the staged cs list.
* @debugfs_list: node in debugfs list of command submissions.
* @sequence: the sequence number of this CS.
* @staged_sequence: the sequence of the staged submission this CS is part of,
* relevant only if staged_cs is set.
* @timeout_jiffies: cs timeout in jiffies.
* @type: CS_TYPE_*.
* @submitted: true if CS was submitted to H/W.
* @completed: true if CS was completed by device.
* @timedout : true if CS was timedout.
* @tdr_active: true if TDR was activated for this CS (to prevent
* double TDR activation).
* @aborted: true if CS was aborted due to some device error.
* @timestamp: true if a timestmap must be captured upon completion.
* @staged_last: true if this is the last staged CS and needs completion.
* @staged_first: true if this is the first staged CS and we need to receive
* timeout for this CS.
* @staged_cs: true if this CS is part of a staged submission.
*/
struct hl_cs {
u16 *jobs_in_queue_cnt;
struct hl_ctx *ctx;
struct list_head job_list;
spinlock_t job_lock;
struct kref refcount;
struct hl_fence *fence;
struct hl_fence *signal_fence;
struct work_struct finish_work;
struct delayed_work work_tdr;
struct list_head mirror_node;
struct list_head staged_cs_node;
struct list_head debugfs_list;
u64 sequence;
u64 staged_sequence;
u64 timeout_jiffies;
enum hl_cs_type type;
u8 submitted;
u8 completed;
u8 timedout;
u8 tdr_active;
u8 aborted;
u8 timestamp;
u8 staged_last;
u8 staged_first;
u8 staged_cs;
};
/**
* struct hl_cs_job - command submission job.
* @cs_node: the node to hang on the CS jobs list.
* @cs: the CS this job belongs to.
* @user_cb: the CB we got from the user.
* @patched_cb: in case of patching, this is internal CB which is submitted on
* the queue instead of the CB we got from the IOCTL.
* @finish_work: workqueue object to run when job is completed.
* @userptr_list: linked-list of userptr mappings that belong to this job and
* wait for completion.
* @debugfs_list: node in debugfs list of command submission jobs.
* @refcount: reference counter for usage of the CS job.
* @queue_type: the type of the H/W queue this job is submitted to.
* @id: the id of this job inside a CS.
* @hw_queue_id: the id of the H/W queue this job is submitted to.
* @user_cb_size: the actual size of the CB we got from the user.
* @job_cb_size: the actual size of the CB that we put on the queue.
* @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
* handle to a kernel-allocated CB object, false
* otherwise (SRAM/DRAM/host address).
* @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
* info is needed later, when adding the 2xMSG_PROT at the
* end of the JOB, to know which barriers to put in the
* MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
* have streams so the engine can't be busy by another
* stream.
*/
struct hl_cs_job {
struct list_head cs_node;
struct hl_cs *cs;
struct hl_cb *user_cb;
struct hl_cb *patched_cb;
struct work_struct finish_work;
struct list_head userptr_list;
struct list_head debugfs_list;
struct kref refcount;
enum hl_queue_type queue_type;
u32 id;
u32 hw_queue_id;
u32 user_cb_size;
u32 job_cb_size;
u8 is_kernel_allocated_cb;
u8 contains_dma_pkt;
};
/**
* struct hl_cs_parser - command submission parser properties.
* @user_cb: the CB we got from the user.
* @patched_cb: in case of patching, this is internal CB which is submitted on
* the queue instead of the CB we got from the IOCTL.
* @job_userptr_list: linked-list of userptr mappings that belong to the related
* job and wait for completion.
* @cs_sequence: the sequence number of the related CS.
* @queue_type: the type of the H/W queue this job is submitted to.
* @ctx_id: the ID of the context the related CS belongs to.
* @hw_queue_id: the id of the H/W queue this job is submitted to.
* @user_cb_size: the actual size of the CB we got from the user.
* @patched_cb_size: the size of the CB after parsing.
* @job_id: the id of the related job inside the related CS.
* @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
* handle to a kernel-allocated CB object, false
* otherwise (SRAM/DRAM/host address).
* @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
* info is needed later, when adding the 2xMSG_PROT at the
* end of the JOB, to know which barriers to put in the
* MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
* have streams so the engine can't be busy by another
* stream.
* @completion: true if we need completion for this CS.
*/
struct hl_cs_parser {
struct hl_cb *user_cb;
struct hl_cb *patched_cb;
struct list_head *job_userptr_list;
u64 cs_sequence;
enum hl_queue_type queue_type;
u32 ctx_id;
u32 hw_queue_id;
u32 user_cb_size;
u32 patched_cb_size;
u8 job_id;
u8 is_kernel_allocated_cb;
u8 contains_dma_pkt;
u8 completion;
};
/*
* MEMORY STRUCTURE
*/
/**
* struct hl_vm_hash_node - hash element from virtual address to virtual
* memory area descriptor (hl_vm_phys_pg_list or
* hl_userptr).
* @node: node to hang on the hash table in context object.
* @vaddr: key virtual address.
* @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
*/
struct hl_vm_hash_node {
struct hlist_node node;
u64 vaddr;
void *ptr;
};
/**
* struct hl_vm_hw_block_list_node - list element from user virtual address to
* HW block id.
* @node: node to hang on the list in context object.
* @ctx: the context this node belongs to.
* @vaddr: virtual address of the HW block.
* @size: size of the block.
* @id: HW block id (handle).
*/
struct hl_vm_hw_block_list_node {
struct list_head node;
struct hl_ctx *ctx;
unsigned long vaddr;
u32 size;
u32 id;
};
/**
* struct hl_vm_phys_pg_pack - physical page pack.
* @vm_type: describes the type of the virtual area descriptor.
* @pages: the physical page array.
* @npages: num physical pages in the pack.
* @total_size: total size of all the pages in this list.
* @mapping_cnt: number of shared mappings.
* @asid: the context related to this list.
* @page_size: size of each page in the pack.
* @flags: HL_MEM_* flags related to this list.
* @handle: the provided handle related to this list.
* @offset: offset from the first page.
* @contiguous: is contiguous physical memory.
* @created_from_userptr: is product of host virtual address.
*/
struct hl_vm_phys_pg_pack {
enum vm_type_t vm_type; /* must be first */
u64 *pages;
u64 npages;
u64 total_size;
atomic_t mapping_cnt;
u32 asid;
u32 page_size;
u32 flags;
u32 handle;
u32 offset;
u8 contiguous;
u8 created_from_userptr;
};
/**
* struct hl_vm_va_block - virtual range block information.
* @node: node to hang on the virtual range list in context object.
* @start: virtual range start address.
* @end: virtual range end address.
* @size: virtual range size.
*/
struct hl_vm_va_block {
struct list_head node;
u64 start;
u64 end;
u64 size;
};
/**
* struct hl_vm - virtual memory manager for MMU.
* @dram_pg_pool: pool for DRAM physical pages of 2MB.
* @dram_pg_pool_refcount: reference counter for the pool usage.
* @idr_lock: protects the phys_pg_list_handles.
* @phys_pg_pack_handles: idr to hold all device allocations handles.
* @init_done: whether initialization was done. We need this because VM
* initialization might be skipped during device initialization.
*/
struct hl_vm {
struct gen_pool *dram_pg_pool;
struct kref dram_pg_pool_refcount;
spinlock_t idr_lock;
struct idr phys_pg_pack_handles;
u8 init_done;
};
/*
* DEBUG, PROFILING STRUCTURE
*/
/**
* struct hl_debug_params - Coresight debug parameters.
* @input: pointer to component specific input parameters.
* @output: pointer to component specific output parameters.
* @output_size: size of output buffer.
* @reg_idx: relevant register ID.
* @op: component operation to execute.
* @enable: true if to enable component debugging, false otherwise.
*/
struct hl_debug_params {
void *input;
void *output;
u32 output_size;
u32 reg_idx;
u32 op;
bool enable;
};
/*
* FILE PRIVATE STRUCTURE
*/
/**
* struct hl_fpriv - process information stored in FD private data.
* @hdev: habanalabs device structure.
* @filp: pointer to the given file structure.
* @taskpid: current process ID.
* @ctx: current executing context. TODO: remove for multiple ctx per process
* @ctx_mgr: context manager to handle multiple context for this FD.
* @cb_mgr: command buffer manager to handle multiple buffers for this FD.
* @debugfs_list: list of relevant ASIC debugfs.
* @dev_node: node in the device list of file private data
* @refcount: number of related contexts.
* @restore_phase_mutex: lock for context switch and restore phase.
* @is_control: true for control device, false otherwise
*/
struct hl_fpriv {
struct hl_device *hdev;
struct file *filp;
struct pid *taskpid;
struct hl_ctx *ctx;
struct hl_ctx_mgr ctx_mgr;
struct hl_cb_mgr cb_mgr;
struct list_head debugfs_list;
struct list_head dev_node;
struct kref refcount;
struct mutex restore_phase_mutex;
u8 is_control;
};
/*
* DebugFS
*/
/**
* struct hl_info_list - debugfs file ops.
* @name: file name.
* @show: function to output information.
* @write: function to write to the file.
*/
struct hl_info_list {
const char *name;
int (*show)(struct seq_file *s, void *data);
ssize_t (*write)(struct file *file, const char __user *buf,
size_t count, loff_t *f_pos);
};
/**
* struct hl_debugfs_entry - debugfs dentry wrapper.
* @info_ent: dentry realted ops.
* @dev_entry: ASIC specific debugfs manager.
*/
struct hl_debugfs_entry {
const struct hl_info_list *info_ent;
struct hl_dbg_device_entry *dev_entry;
};
/**
* struct hl_dbg_device_entry - ASIC specific debugfs manager.
* @root: root dentry.
* @hdev: habanalabs device structure.
* @entry_arr: array of available hl_debugfs_entry.
* @file_list: list of available debugfs files.
* @file_mutex: protects file_list.
* @cb_list: list of available CBs.
* @cb_spinlock: protects cb_list.
* @cs_list: list of available CSs.
* @cs_spinlock: protects cs_list.
* @cs_job_list: list of available CB jobs.
* @cs_job_spinlock: protects cs_job_list.
* @userptr_list: list of available userptrs (virtual memory chunk descriptor).
* @userptr_spinlock: protects userptr_list.
* @ctx_mem_hash_list: list of available contexts with MMU mappings.
* @ctx_mem_hash_spinlock: protects cb_list.
* @blob_desc: descriptor of blob
* @addr: next address to read/write from/to in read/write32.
* @mmu_addr: next virtual address to translate to physical address in mmu_show.
* @mmu_asid: ASID to use while translating in mmu_show.
* @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
* @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read.
* @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read.
*/
struct hl_dbg_device_entry {
struct dentry *root;
struct hl_device *hdev;
struct hl_debugfs_entry *entry_arr;
struct list_head file_list;
struct mutex file_mutex;
struct list_head cb_list;
spinlock_t cb_spinlock;
struct list_head cs_list;
spinlock_t cs_spinlock;
struct list_head cs_job_list;
spinlock_t cs_job_spinlock;
struct list_head userptr_list;
spinlock_t userptr_spinlock;
struct list_head ctx_mem_hash_list;
spinlock_t ctx_mem_hash_spinlock;
struct debugfs_blob_wrapper blob_desc;
u64 addr;
u64 mmu_addr;
u32 mmu_asid;
u8 i2c_bus;
u8 i2c_addr;
u8 i2c_reg;
};
/*
* DEVICES
*/
#define HL_STR_MAX 32
#define HL_DEV_STS_MAX (HL_DEVICE_STATUS_NEEDS_RESET + 1)
/* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
* x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
*/
#define HL_MAX_MINORS 256
/*
* Registers read & write functions.
*/
u32 hl_rreg(struct hl_device *hdev, u32 reg);
void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
#define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
#define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
#define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \
hdev->asic_funcs->rreg(hdev, (reg)))
#define WREG32_P(reg, val, mask) \
do { \
u32 tmp_ = RREG32(reg); \
tmp_ &= (mask); \
tmp_ |= ((val) & ~(mask)); \
WREG32(reg, tmp_); \
} while (0)
#define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
#define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
#define RMWREG32(reg, val, mask) \
do { \
u32 tmp_ = RREG32(reg); \
tmp_ &= ~(mask); \
tmp_ |= ((val) << __ffs(mask)); \
WREG32(reg, tmp_); \
} while (0)
#define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
#define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
#define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
#define WREG32_FIELD(reg, offset, field, val) \
WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
~REG_FIELD_MASK(reg, field)) | \
(val) << REG_FIELD_SHIFT(reg, field))
/* Timeout should be longer when working with simulator but cap the
* increased timeout to some maximum
*/
#define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
({ \
ktime_t __timeout; \
if (hdev->pdev) \
__timeout = ktime_add_us(ktime_get(), timeout_us); \
else \
__timeout = ktime_add_us(ktime_get(),\
min((u64)(timeout_us * 10), \
(u64) HL_SIM_MAX_TIMEOUT_US)); \
might_sleep_if(sleep_us); \
for (;;) { \
(val) = RREG32(addr); \
if (cond) \
break; \
if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
(val) = RREG32(addr); \
break; \
} \
if (sleep_us) \
usleep_range((sleep_us >> 2) + 1, sleep_us); \
} \
(cond) ? 0 : -ETIMEDOUT; \
})
/*
* address in this macro points always to a memory location in the
* host's (server's) memory. That location is updated asynchronously
* either by the direct access of the device or by another core.
*
* To work both in LE and BE architectures, we need to distinguish between the
* two states (device or another core updates the memory location). Therefore,
* if mem_written_by_device is true, the host memory being polled will be
* updated directly by the device. If false, the host memory being polled will
* be updated by host CPU. Required so host knows whether or not the memory
* might need to be byte-swapped before returning value to caller.
*/
#define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
mem_written_by_device) \
({ \
ktime_t __timeout; \
if (hdev->pdev) \
__timeout = ktime_add_us(ktime_get(), timeout_us); \
else \
__timeout = ktime_add_us(ktime_get(),\
min((u64)(timeout_us * 10), \
(u64) HL_SIM_MAX_TIMEOUT_US)); \
might_sleep_if(sleep_us); \
for (;;) { \
/* Verify we read updates done by other cores or by device */ \
mb(); \
(val) = *((u32 *)(addr)); \
if (mem_written_by_device) \
(val) = le32_to_cpu(*(__le32 *) &(val)); \
if (cond) \
break; \
if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
(val) = *((u32 *)(addr)); \
if (mem_written_by_device) \
(val) = le32_to_cpu(*(__le32 *) &(val)); \
break; \
} \
if (sleep_us) \
usleep_range((sleep_us >> 2) + 1, sleep_us); \
} \
(cond) ? 0 : -ETIMEDOUT; \
})
#define hl_poll_timeout_device_memory(hdev, addr, val, cond, sleep_us, \
timeout_us) \
({ \
ktime_t __timeout; \
if (hdev->pdev) \
__timeout = ktime_add_us(ktime_get(), timeout_us); \
else \
__timeout = ktime_add_us(ktime_get(),\
min((u64)(timeout_us * 10), \
(u64) HL_SIM_MAX_TIMEOUT_US)); \
might_sleep_if(sleep_us); \
for (;;) { \
(val) = readl(addr); \
if (cond) \
break; \
if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
(val) = readl(addr); \
break; \
} \
if (sleep_us) \
usleep_range((sleep_us >> 2) + 1, sleep_us); \
} \
(cond) ? 0 : -ETIMEDOUT; \
})
struct hwmon_chip_info;
/**
* struct hl_device_reset_work - reset workqueue task wrapper.
* @wq: work queue for device reset procedure.
* @reset_work: reset work to be done.
* @hdev: habanalabs device structure.
*/
struct hl_device_reset_work {
struct workqueue_struct *wq;
struct delayed_work reset_work;
struct hl_device *hdev;
};
/**
* struct hr_mmu_hop_addrs - used for holding per-device host-resident mmu hop
* information.
* @virt_addr: the virtual address of the hop.
* @phys-addr: the physical address of the hop (used by the device-mmu).
* @shadow_addr: The shadow of the hop used by the driver for walking the hops.
*/
struct hr_mmu_hop_addrs {
u64 virt_addr;
u64 phys_addr;
u64 shadow_addr;
};
/**
* struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident
* page-table internal information.
* @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
* @mmu_shadow_hop0: shadow array of hop0 tables.
*/
struct hl_mmu_hr_priv {
struct gen_pool *mmu_pgt_pool;
struct hr_mmu_hop_addrs *mmu_shadow_hop0;
};
/**
* struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident
* page-table internal information.
* @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
* @mmu_shadow_hop0: shadow array of hop0 tables.
*/
struct hl_mmu_dr_priv {
struct gen_pool *mmu_pgt_pool;
void *mmu_shadow_hop0;
};
/**
* struct hl_mmu_priv - used for holding per-device mmu internal information.
* @dr: information on the device-resident MMU, when exists.
* @hr: information on the host-resident MMU, when exists.
*/
struct hl_mmu_priv {
struct hl_mmu_dr_priv dr;
struct hl_mmu_hr_priv hr;
};
/**
* struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry
* that was created in order to translate a virtual address to a
* physical one.
* @hop_addr: The address of the hop.
* @hop_pte_addr: The address of the hop entry.
* @hop_pte_val: The value in the hop entry.
*/
struct hl_mmu_per_hop_info {
u64 hop_addr;
u64 hop_pte_addr;
u64 hop_pte_val;
};
/**
* struct hl_mmu_hop_info - A structure describing the TLB hops and their
* hop-entries that were created in order to translate a virtual address to a
* physical one.
* @scrambled_vaddr: The value of the virtual address after scrambling. This
* address replaces the original virtual-address when mapped
* in the MMU tables.
* @unscrambled_paddr: The un-scrambled physical address.
* @hop_info: Array holding the per-hop information used for the translation.
* @used_hops: The number of hops used for the translation.
* @range_type: virtual address range type.
*/
struct hl_mmu_hop_info {
u64 scrambled_vaddr;
u64 unscrambled_paddr;
struct hl_mmu_per_hop_info hop_info[MMU_ARCH_5_HOPS];
u32 used_hops;
enum hl_va_range_type range_type;
};
/**
* struct hl_mmu_funcs - Device related MMU functions.
* @init: initialize the MMU module.
* @fini: release the MMU module.
* @ctx_init: Initialize a context for using the MMU module.
* @ctx_fini: disable a ctx from using the mmu module.
* @map: maps a virtual address to physical address for a context.
* @unmap: unmap a virtual address of a context.
* @flush: flush all writes from all cores to reach device MMU.
* @swap_out: marks all mapping of the given context as swapped out.
* @swap_in: marks all mapping of the given context as swapped in.
* @get_tlb_info: returns the list of hops and hop-entries used that were
* created in order to translate the giver virtual address to a
* physical one.
*/
struct hl_mmu_funcs {
int (*init)(struct hl_device *hdev);
void (*fini)(struct hl_device *hdev);
int (*ctx_init)(struct hl_ctx *ctx);
void (*ctx_fini)(struct hl_ctx *ctx);
int (*map)(struct hl_ctx *ctx,
u64 virt_addr, u64 phys_addr, u32 page_size,
bool is_dram_addr);
int (*unmap)(struct hl_ctx *ctx,
u64 virt_addr, bool is_dram_addr);
void (*flush)(struct hl_ctx *ctx);
void (*swap_out)(struct hl_ctx *ctx);
void (*swap_in)(struct hl_ctx *ctx);
int (*get_tlb_info)(struct hl_ctx *ctx,
u64 virt_addr, struct hl_mmu_hop_info *hops);
};
/**
* struct hl_device - habanalabs device structure.
* @pdev: pointer to PCI device, can be NULL in case of simulator device.
* @pcie_bar_phys: array of available PCIe bars physical addresses.
* (required only for PCI address match mode)
* @pcie_bar: array of available PCIe bars virtual addresses.
* @rmmio: configuration area address on SRAM.
* @cdev: related char device.
* @cdev_ctrl: char device for control operations only (INFO IOCTL)
* @dev: related kernel basic device structure.
* @dev_ctrl: related kernel device structure for the control device
* @work_freq: delayed work to lower device frequency if possible.
* @work_heartbeat: delayed work for CPU-CP is-alive check.
* @device_reset_work: delayed work which performs hard reset
* @asic_name: ASIC specific name.
* @asic_type: ASIC specific type.
* @completion_queue: array of hl_cq.
* @user_interrupt: array of hl_user_interrupt. upon the corresponding user
* interrupt, driver will monitor the list of fences
* registered to this interrupt.
* @common_user_interrupt: common user interrupt for all user interrupts.
* upon any user interrupt, driver will monitor the
* list of fences registered to this common structure.
* @cq_wq: work queues of completion queues for executing work in process
* context.
* @eq_wq: work queue of event queue for executing work in process context.
* @sob_reset_wq: work queue for sob reset executions.
* @kernel_ctx: Kernel driver context structure.
* @kernel_queues: array of hl_hw_queue.
* @cs_mirror_list: CS mirror list for TDR.
* @cs_mirror_lock: protects cs_mirror_list.
* @kernel_cb_mgr: command buffer manager for creating/destroying/handling CGs.
* @event_queue: event queue for IRQ from CPU-CP.
* @dma_pool: DMA pool for small allocations.
* @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
* @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
* @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
* @asid_bitmap: holds used/available ASIDs.
* @asid_mutex: protects asid_bitmap.
* @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
* @debug_lock: protects critical section of setting debug mode for device
* @asic_prop: ASIC specific immutable properties.
* @asic_funcs: ASIC specific functions.
* @asic_specific: ASIC specific information to use only from ASIC files.
* @vm: virtual memory manager for MMU.
* @hwmon_dev: H/W monitor device.
* @pm_mng_profile: current power management profile.
* @hl_chip_info: ASIC's sensors information.
* @device_status_description: device status description.
* @hl_debugfs: device's debugfs manager.
* @cb_pool: list of preallocated CBs.
* @cb_pool_lock: protects the CB pool.
* @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
* @internal_cb_pool_dma_addr: internal command buffer pool dma address.
* @internal_cb_pool: internal command buffer memory pool.
* @internal_cb_va_base: internal cb pool mmu virtual address base
* @fpriv_list: list of file private data structures. Each structure is created
* when a user opens the device
* @fpriv_list_lock: protects the fpriv_list
* @compute_ctx: current compute context executing.
* @aggregated_cs_counters: aggregated cs counters among all contexts
* @mmu_priv: device-specific MMU data.
* @mmu_func: device-related MMU functions.
* @legacy_pll_map: map holding map between dynamic (common) PLL indexes and
* static (asic specific) PLL indexes.
* @dram_used_mem: current DRAM memory consumption.
* @timeout_jiffies: device CS timeout value.
* @max_power: the max power of the device, as configured by the sysadmin. This
* value is saved so in case of hard-reset, the driver will restore
* this value and update the F/W after the re-initialization
* @clock_gating_mask: is clock gating enabled. bitmask that represents the
* different engines. See debugfs-driver-habanalabs for
* details.
* @in_reset: is device in reset flow.
* @curr_pll_profile: current PLL profile.
* @card_type: Various ASICs have several card types. This indicates the card
* type of the current device.
* @major: habanalabs kernel driver major.
* @high_pll: high PLL profile frequency.
* @soft_reset_cnt: number of soft reset since the driver was loaded.
* @hard_reset_cnt: number of hard reset since the driver was loaded.
* @clk_throttling_reason: bitmask represents the current clk throttling reasons
* @id: device minor.
* @id_control: minor of the control device
* @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
* addresses.
* @disabled: is device disabled.
* @late_init_done: is late init stage was done during initialization.
* @hwmon_initialized: is H/W monitor sensors was initialized.
* @hard_reset_pending: is there a hard reset work pending.
* @heartbeat: is heartbeat sanity check towards CPU-CP enabled.
* @reset_on_lockup: true if a reset should be done in case of stuck CS, false
* otherwise.
* @dram_default_page_mapping: is DRAM default page mapping enabled.
* @memory_scrub: true to perform device memory scrub in various locations,
* such as context-switch, context close, page free, etc.
* @pmmu_huge_range: is a different virtual addresses range used for PMMU with
* huge pages.
* @init_done: is the initialization of the device done.
* @device_cpu_disabled: is the device CPU disabled (due to timeouts)
* @dma_mask: the dma mask that was set for this device
* @in_debug: is device under debug. This, together with fpriv_list, enforces
* that only a single user is configuring the debug infrastructure.
* @power9_64bit_dma_enable: true to enable 64-bit DMA mask support. Relevant
* only to POWER9 machines.
* @cdev_sysfs_created: were char devices and sysfs nodes created.
* @stop_on_err: true if engines should stop on error.
* @supports_sync_stream: is sync stream supported.
* @sync_stream_queue_idx: helper index for sync stream queues initialization.
* @collective_mon_idx: helper index for collective initialization
* @supports_coresight: is CoreSight supported.
* @supports_soft_reset: is soft reset supported.
* @supports_cb_mapping: is mapping a CB to the device's MMU supported.
* @needs_reset: true if reset_on_lockup is false and device should be reset
* due to lockup.
* @process_kill_trial_cnt: number of trials reset thread tried killing
* user processes
* @device_fini_pending: true if device_fini was called and might be
* waiting for the reset thread to finish
* @supports_staged_submission: true if staged submissions are supported
*/
struct hl_device {
struct pci_dev *pdev;
u64 pcie_bar_phys[HL_PCI_NUM_BARS];
void __iomem *pcie_bar[HL_PCI_NUM_BARS];
void __iomem *rmmio;
struct cdev cdev;
struct cdev cdev_ctrl;
struct device *dev;
struct device *dev_ctrl;
struct delayed_work work_freq;
struct delayed_work work_heartbeat;
struct hl_device_reset_work device_reset_work;
char asic_name[HL_STR_MAX];
char status[HL_DEV_STS_MAX][HL_STR_MAX];
enum hl_asic_type asic_type;
struct hl_cq *completion_queue;
struct hl_user_interrupt *user_interrupt;
struct hl_user_interrupt common_user_interrupt;
struct workqueue_struct **cq_wq;
struct workqueue_struct *eq_wq;
struct workqueue_struct *sob_reset_wq;
struct hl_ctx *kernel_ctx;
struct hl_hw_queue *kernel_queues;
struct list_head cs_mirror_list;
spinlock_t cs_mirror_lock;
struct hl_cb_mgr kernel_cb_mgr;
struct hl_eq event_queue;
struct dma_pool *dma_pool;
void *cpu_accessible_dma_mem;
dma_addr_t cpu_accessible_dma_address;
struct gen_pool *cpu_accessible_dma_pool;
unsigned long *asid_bitmap;
struct mutex asid_mutex;
struct mutex send_cpu_message_lock;
struct mutex debug_lock;
struct asic_fixed_properties asic_prop;
const struct hl_asic_funcs *asic_funcs;
void *asic_specific;
struct hl_vm vm;
struct device *hwmon_dev;
enum hl_pm_mng_profile pm_mng_profile;
struct hwmon_chip_info *hl_chip_info;
struct hl_dbg_device_entry hl_debugfs;
struct list_head cb_pool;
spinlock_t cb_pool_lock;
void *internal_cb_pool_virt_addr;
dma_addr_t internal_cb_pool_dma_addr;
struct gen_pool *internal_cb_pool;
u64 internal_cb_va_base;
struct list_head fpriv_list;
struct mutex fpriv_list_lock;
struct hl_ctx *compute_ctx;
struct hl_cs_counters_atomic aggregated_cs_counters;
struct hl_mmu_priv mmu_priv;
struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS];
enum pll_index *legacy_pll_map;
atomic64_t dram_used_mem;
u64 timeout_jiffies;
u64 max_power;
u64 clock_gating_mask;
atomic_t in_reset;
enum hl_pll_frequency curr_pll_profile;
enum cpucp_card_types card_type;
u32 major;
u32 high_pll;
u32 soft_reset_cnt;
u32 hard_reset_cnt;
u32 clk_throttling_reason;
u16 id;
u16 id_control;
u16 cpu_pci_msb_addr;
u8 disabled;
u8 late_init_done;
u8 hwmon_initialized;
u8 hard_reset_pending;
u8 heartbeat;
u8 reset_on_lockup;
u8 dram_default_page_mapping;
u8 memory_scrub;
u8 pmmu_huge_range;
u8 init_done;
u8 device_cpu_disabled;
u8 dma_mask;
u8 in_debug;
u8 power9_64bit_dma_enable;
u8 cdev_sysfs_created;
u8 stop_on_err;
u8 supports_sync_stream;
u8 sync_stream_queue_idx;
u8 collective_mon_idx;
u8 supports_coresight;
u8 supports_soft_reset;
u8 supports_cb_mapping;
u8 needs_reset;
u8 process_kill_trial_cnt;
u8 device_fini_pending;
u8 supports_staged_submission;
/* Parameters for bring-up */
u64 nic_ports_mask;
u64 fw_components;
u8 mmu_enable;
u8 mmu_huge_page_opt;
u8 reset_pcilink;
u8 cpu_queues_enable;
u8 pldm;
u8 axi_drain;
u8 sram_scrambler_enable;
u8 dram_scrambler_enable;
u8 hard_reset_on_fw_events;
u8 bmc_enable;
u8 rl_enable;
u8 reset_on_preboot_fail;
u8 reset_upon_device_release;
};
/*
* IOCTLs
*/
/**
* typedef hl_ioctl_t - typedef for ioctl function in the driver
* @hpriv: pointer to the FD's private data, which contains state of
* user process
* @data: pointer to the input/output arguments structure of the IOCTL
*
* Return: 0 for success, negative value for error
*/
typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
/**
* struct hl_ioctl_desc - describes an IOCTL entry of the driver.
* @cmd: the IOCTL code as created by the kernel macros.
* @func: pointer to the driver's function that should be called for this IOCTL.
*/
struct hl_ioctl_desc {
unsigned int cmd;
hl_ioctl_t *func;
};
/*
* Kernel module functions that can be accessed by entire module
*/
/**
* hl_mem_area_inside_range() - Checks whether address+size are inside a range.
* @address: The start address of the area we want to validate.
* @size: The size in bytes of the area we want to validate.
* @range_start_address: The start address of the valid range.
* @range_end_address: The end address of the valid range.
*
* Return: true if the area is inside the valid range, false otherwise.
*/
static inline bool hl_mem_area_inside_range(u64 address, u64 size,
u64 range_start_address, u64 range_end_address)
{
u64 end_address = address + size;
if ((address >= range_start_address) &&
(end_address <= range_end_address) &&
(end_address > address))
return true;
return false;
}
/**
* hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
* @address: The start address of the area we want to validate.
* @size: The size in bytes of the area we want to validate.
* @range_start_address: The start address of the valid range.
* @range_end_address: The end address of the valid range.
*
* Return: true if the area overlaps part or all of the valid range,
* false otherwise.
*/
static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
u64 range_start_address, u64 range_end_address)
{
u64 end_address = address + size;
if ((address >= range_start_address) &&
(address < range_end_address))
return true;
if ((end_address >= range_start_address) &&
(end_address < range_end_address))
return true;
if ((address < range_start_address) &&
(end_address >= range_end_address))
return true;
return false;
}
int hl_device_open(struct inode *inode, struct file *filp);
int hl_device_open_ctrl(struct inode *inode, struct file *filp);
bool hl_device_operational(struct hl_device *hdev,
enum hl_device_status *status);
enum hl_device_status hl_device_status(struct hl_device *hdev);
int hl_device_set_debug_mode(struct hl_device *hdev, bool enable);
int create_hdev(struct hl_device **dev, struct pci_dev *pdev,
enum hl_asic_type asic_type, int minor);
void destroy_hdev(struct hl_device *hdev);
int hl_hw_queues_create(struct hl_device *hdev);
void hl_hw_queues_destroy(struct hl_device *hdev);
int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
u32 cb_size, u64 cb_ptr);
int hl_hw_queue_schedule_cs(struct hl_cs *cs);
u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
void hl_hw_queue_update_ci(struct hl_cs *cs);
void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
#define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1)
#define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1))
int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
irqreturn_t hl_irq_handler_cq(int irq, void *arg);
irqreturn_t hl_irq_handler_eq(int irq, void *arg);
irqreturn_t hl_irq_handler_user_cq(int irq, void *arg);
irqreturn_t hl_irq_handler_default(int irq, void *arg);
u32 hl_cq_inc_ptr(u32 ptr);
int hl_asid_init(struct hl_device *hdev);
void hl_asid_fini(struct hl_device *hdev);
unsigned long hl_asid_alloc(struct hl_device *hdev);
void hl_asid_free(struct hl_device *hdev, unsigned long asid);
int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
void hl_ctx_do_release(struct kref *ref);
void hl_ctx_get(struct hl_device *hdev, struct hl_ctx *ctx);
int hl_ctx_put(struct hl_ctx *ctx);
struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
int hl_device_init(struct hl_device *hdev, struct class *hclass);
void hl_device_fini(struct hl_device *hdev);
int hl_device_suspend(struct hl_device *hdev);
int hl_device_resume(struct hl_device *hdev);
int hl_device_reset(struct hl_device *hdev, u32 flags);
void hl_hpriv_get(struct hl_fpriv *hpriv);
int hl_hpriv_put(struct hl_fpriv *hpriv);
int hl_device_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq);
int hl_device_utilization(struct hl_device *hdev, u32 *utilization);
int hl_build_hwmon_channel_info(struct hl_device *hdev,
struct cpucp_sensor *sensors_arr);
int hl_sysfs_init(struct hl_device *hdev);
void hl_sysfs_fini(struct hl_device *hdev);
int hl_hwmon_init(struct hl_device *hdev);
void hl_hwmon_fini(struct hl_device *hdev);
int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr,
struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
bool map_cb, u64 *handle);
int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle);
int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
struct hl_cb *hl_cb_get(struct hl_device *hdev, struct hl_cb_mgr *mgr,
u32 handle);
void hl_cb_put(struct hl_cb *cb);
void hl_cb_mgr_init(struct hl_cb_mgr *mgr);
void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr);
struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
bool internal_cb);
int hl_cb_pool_init(struct hl_device *hdev);
int hl_cb_pool_fini(struct hl_device *hdev);
int hl_cb_va_pool_init(struct hl_ctx *ctx);
void hl_cb_va_pool_fini(struct hl_ctx *ctx);
void hl_cs_rollback_all(struct hl_device *hdev);
void hl_pending_cb_list_flush(struct hl_ctx *ctx);
struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
void hl_sob_reset_error(struct kref *ref);
int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
void hl_fence_put(struct hl_fence *fence);
void hl_fence_get(struct hl_fence *fence);
void cs_get(struct hl_cs *cs);
bool cs_needs_completion(struct hl_cs *cs);
bool cs_needs_timeout(struct hl_cs *cs);
bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs);
struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq);
void goya_set_asic_funcs(struct hl_device *hdev);
void gaudi_set_asic_funcs(struct hl_device *hdev);
int hl_vm_ctx_init(struct hl_ctx *ctx);
void hl_vm_ctx_fini(struct hl_ctx *ctx);
int hl_vm_init(struct hl_device *hdev);
void hl_vm_fini(struct hl_device *hdev);
void hl_hw_block_mem_init(struct hl_ctx *ctx);
void hl_hw_block_mem_fini(struct hl_ctx *ctx);
u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
enum hl_va_range_type type, u32 size, u32 alignment);
int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
u64 start_addr, u64 size);
int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
struct hl_userptr *userptr);
void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
void hl_userptr_delete_list(struct hl_device *hdev,
struct list_head *userptr_list);
bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
struct list_head *userptr_list,
struct hl_userptr **userptr);
int hl_mmu_init(struct hl_device *hdev);
void hl_mmu_fini(struct hl_device *hdev);
int hl_mmu_ctx_init(struct hl_ctx *ctx);
void hl_mmu_ctx_fini(struct hl_ctx *ctx);
int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
u32 page_size, bool flush_pte);
int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
bool flush_pte);
int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
u64 phys_addr, u32 size);
int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size);
void hl_mmu_swap_out(struct hl_ctx *ctx);
void hl_mmu_swap_in(struct hl_ctx *ctx);
int hl_mmu_if_set_funcs(struct hl_device *hdev);
void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr);
int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
struct hl_mmu_hop_info *hops);
u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr);
u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr);
bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr);
int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
void __iomem *dst, u32 src_offset, u32 size);
int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode);
int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
u16 len, u32 timeout, u64 *result);
int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
size_t irq_arr_size);
int hl_fw_test_cpu_queue(struct hl_device *hdev);
void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle);
void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
void *vaddr);
int hl_fw_send_heartbeat(struct hl_device *hdev);
int hl_fw_cpucp_info_get(struct hl_device *hdev,
u32 cpu_security_boot_status_reg,
u32 boot_err0_reg);
int hl_fw_cpucp_handshake(struct hl_device *hdev,
u32 cpu_security_boot_status_reg,
u32 boot_err0_reg);
int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
struct hl_info_pci_counters *counters);
int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
u64 *total_energy);
int get_used_pll_index(struct hl_device *hdev, enum pll_index input_pll_index,
enum pll_index *pll_index);
int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, enum pll_index pll_index,
u16 *pll_freq_arr);
int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power);
int hl_fw_init_cpu(struct hl_device *hdev, u32 cpu_boot_status_reg,
u32 msg_to_cpu_reg, u32 cpu_msg_status_reg,
u32 cpu_security_boot_status_reg, u32 boot_err0_reg,
bool skip_bmc, u32 cpu_timeout, u32 boot_fit_timeout);
int hl_fw_read_preboot_status(struct hl_device *hdev, u32 cpu_boot_status_reg,
u32 cpu_security_boot_status_reg, u32 boot_err0_reg,
u32 timeout);
int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
bool is_wc[3]);
int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data);
int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
struct hl_inbound_pci_region *pci_region);
int hl_pci_set_outbound_region(struct hl_device *hdev,
struct hl_outbound_pci_region *pci_region);
int hl_pci_init(struct hl_device *hdev);
void hl_pci_fini(struct hl_device *hdev);
long hl_get_frequency(struct hl_device *hdev, enum pll_index pll_index,
bool curr);
void hl_set_frequency(struct hl_device *hdev, enum pll_index pll_index,
u64 freq);
int hl_get_temperature(struct hl_device *hdev,
int sensor_index, u32 attr, long *value);
int hl_set_temperature(struct hl_device *hdev,
int sensor_index, u32 attr, long value);
int hl_get_voltage(struct hl_device *hdev,
int sensor_index, u32 attr, long *value);
int hl_get_current(struct hl_device *hdev,
int sensor_index, u32 attr, long *value);
int hl_get_fan_speed(struct hl_device *hdev,
int sensor_index, u32 attr, long *value);
int hl_get_pwm_info(struct hl_device *hdev,
int sensor_index, u32 attr, long *value);
void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr,
long value);
u64 hl_get_max_power(struct hl_device *hdev);
void hl_set_max_power(struct hl_device *hdev);
int hl_set_voltage(struct hl_device *hdev,
int sensor_index, u32 attr, long value);
int hl_set_current(struct hl_device *hdev,
int sensor_index, u32 attr, long value);
void hl_release_pending_user_interrupts(struct hl_device *hdev);
#ifdef CONFIG_DEBUG_FS
void hl_debugfs_init(void);
void hl_debugfs_fini(void);
void hl_debugfs_add_device(struct hl_device *hdev);
void hl_debugfs_remove_device(struct hl_device *hdev);
void hl_debugfs_add_file(struct hl_fpriv *hpriv);
void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
void hl_debugfs_add_cb(struct hl_cb *cb);
void hl_debugfs_remove_cb(struct hl_cb *cb);
void hl_debugfs_add_cs(struct hl_cs *cs);
void hl_debugfs_remove_cs(struct hl_cs *cs);
void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
void hl_debugfs_remove_userptr(struct hl_device *hdev,
struct hl_userptr *userptr);
void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
#else
static inline void __init hl_debugfs_init(void)
{
}
static inline void hl_debugfs_fini(void)
{
}
static inline void hl_debugfs_add_device(struct hl_device *hdev)
{
}
static inline void hl_debugfs_remove_device(struct hl_device *hdev)
{
}
static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
{
}
static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
{
}
static inline void hl_debugfs_add_cb(struct hl_cb *cb)
{
}
static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
{
}
static inline void hl_debugfs_add_cs(struct hl_cs *cs)
{
}
static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
{
}
static inline void hl_debugfs_add_job(struct hl_device *hdev,
struct hl_cs_job *job)
{
}
static inline void hl_debugfs_remove_job(struct hl_device *hdev,
struct hl_cs_job *job)
{
}
static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
struct hl_userptr *userptr)
{
}
static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
struct hl_userptr *userptr)
{
}
static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
struct hl_ctx *ctx)
{
}
static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
struct hl_ctx *ctx)
{
}
#endif
/* IOCTLs */
long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data);
int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
#endif /* HABANALABSP_H_ */
|