1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* drivers/media/i2c/ccs/ccs-reg-access.c
*
* Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors
*
* Copyright (C) 2020 Intel Corporation
* Copyright (C) 2011--2012 Nokia Corporation
* Contact: Sakari Ailus <sakari.ailus@linux.intel.com>
*/
#include <asm/unaligned.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include "ccs.h"
#include "ccs-limits.h"
static u32 float_to_u32_mul_1000000(struct i2c_client *client, u32 phloat)
{
s32 exp;
u64 man;
if (phloat >= 0x80000000) {
dev_err(&client->dev, "this is a negative number\n");
return 0;
}
if (phloat == 0x7f800000)
return ~0; /* Inf. */
if ((phloat & 0x7f800000) == 0x7f800000) {
dev_err(&client->dev, "NaN or other special number\n");
return 0;
}
/* Valid cases begin here */
if (phloat == 0)
return 0; /* Valid zero */
if (phloat > 0x4f800000)
return ~0; /* larger than 4294967295 */
/*
* Unbias exponent (note how phloat is now guaranteed to
* have 0 in the high bit)
*/
exp = ((int32_t)phloat >> 23) - 127;
/* Extract mantissa, add missing '1' bit and it's in MHz */
man = ((phloat & 0x7fffff) | 0x800000) * 1000000ULL;
if (exp < 0)
man >>= -exp;
else
man <<= exp;
man >>= 23; /* Remove mantissa bias */
return man & 0xffffffff;
}
/*
* Read a 8/16/32-bit i2c register. The value is returned in 'val'.
* Returns zero if successful, or non-zero otherwise.
*/
static int ____ccs_read_addr(struct ccs_sensor *sensor, u16 reg, u16 len,
u32 *val)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
struct i2c_msg msg;
unsigned char data_buf[sizeof(u32)] = { 0 };
unsigned char offset_buf[sizeof(u16)];
int r;
if (len > sizeof(data_buf))
return -EINVAL;
msg.addr = client->addr;
msg.flags = 0;
msg.len = sizeof(offset_buf);
msg.buf = offset_buf;
put_unaligned_be16(reg, offset_buf);
r = i2c_transfer(client->adapter, &msg, 1);
if (r != 1) {
if (r >= 0)
r = -EBUSY;
goto err;
}
msg.len = len;
msg.flags = I2C_M_RD;
msg.buf = &data_buf[sizeof(data_buf) - len];
r = i2c_transfer(client->adapter, &msg, 1);
if (r != 1) {
if (r >= 0)
r = -EBUSY;
goto err;
}
*val = get_unaligned_be32(data_buf);
return 0;
err:
dev_err(&client->dev, "read from offset 0x%x error %d\n", reg, r);
return r;
}
/* Read a register using 8-bit access only. */
static int ____ccs_read_addr_8only(struct ccs_sensor *sensor, u16 reg,
u16 len, u32 *val)
{
unsigned int i;
int rval;
*val = 0;
for (i = 0; i < len; i++) {
u32 val8;
rval = ____ccs_read_addr(sensor, reg + i, 1, &val8);
if (rval < 0)
return rval;
*val |= val8 << ((len - i - 1) << 3);
}
return 0;
}
unsigned int ccs_reg_width(u32 reg)
{
if (reg & CCS_FL_16BIT)
return sizeof(u16);
if (reg & CCS_FL_32BIT)
return sizeof(u32);
return sizeof(u8);
}
static u32 ireal32_to_u32_mul_1000000(struct i2c_client *client, u32 val)
{
if (val >> 10 > U32_MAX / 15625) {
dev_warn(&client->dev, "value %u overflows!\n", val);
return U32_MAX;
}
return ((val >> 10) * 15625) +
(val & GENMASK(9, 0)) * 15625 / 1024;
}
u32 ccs_reg_conv(struct ccs_sensor *sensor, u32 reg, u32 val)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
if (reg & CCS_FL_FLOAT_IREAL) {
if (CCS_LIM(sensor, CLOCK_CAPA_TYPE_CAPABILITY) &
CCS_CLOCK_CAPA_TYPE_CAPABILITY_IREAL)
val = ireal32_to_u32_mul_1000000(client, val);
else
val = float_to_u32_mul_1000000(client, val);
} else if (reg & CCS_FL_IREAL) {
val = ireal32_to_u32_mul_1000000(client, val);
}
return val;
}
/*
* Read a 8/16/32-bit i2c register. The value is returned in 'val'.
* Returns zero if successful, or non-zero otherwise.
*/
static int __ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val,
bool only8, bool conv)
{
unsigned int len = ccs_reg_width(reg);
int rval;
if (!only8)
rval = ____ccs_read_addr(sensor, CCS_REG_ADDR(reg), len, val);
else
rval = ____ccs_read_addr_8only(sensor, CCS_REG_ADDR(reg), len,
val);
if (rval < 0)
return rval;
if (!conv)
return 0;
*val = ccs_reg_conv(sensor, reg, *val);
return 0;
}
static int __ccs_read_data(struct ccs_reg *regs, size_t num_regs,
u32 reg, u32 *val)
{
unsigned int width = ccs_reg_width(reg);
size_t i;
for (i = 0; i < num_regs; i++, regs++) {
u8 *data;
if (regs->addr + regs->len < CCS_REG_ADDR(reg) + width)
continue;
if (regs->addr > CCS_REG_ADDR(reg))
break;
data = ®s->value[CCS_REG_ADDR(reg) - regs->addr];
switch (width) {
case sizeof(u8):
*val = *data;
break;
case sizeof(u16):
*val = get_unaligned_be16(data);
break;
case sizeof(u32):
*val = get_unaligned_be32(data);
break;
default:
WARN_ON(1);
return -EINVAL;
}
return 0;
}
return -ENOENT;
}
static int ccs_read_data(struct ccs_sensor *sensor, u32 reg, u32 *val)
{
if (!__ccs_read_data(sensor->sdata.sensor_read_only_regs,
sensor->sdata.num_sensor_read_only_regs,
reg, val))
return 0;
return __ccs_read_data(sensor->mdata.module_read_only_regs,
sensor->mdata.num_module_read_only_regs,
reg, val);
}
static int ccs_read_addr_raw(struct ccs_sensor *sensor, u32 reg, u32 *val,
bool force8, bool quirk, bool conv, bool data)
{
int rval;
if (data) {
rval = ccs_read_data(sensor, reg, val);
if (!rval)
return 0;
}
if (quirk) {
*val = 0;
rval = ccs_call_quirk(sensor, reg_access, false, ®, val);
if (rval == -ENOIOCTLCMD)
return 0;
if (rval < 0)
return rval;
if (force8)
return __ccs_read_addr(sensor, reg, val, true, conv);
}
return __ccs_read_addr(sensor, reg, val,
ccs_needs_quirk(sensor,
CCS_QUIRK_FLAG_8BIT_READ_ONLY),
conv);
}
int ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val)
{
return ccs_read_addr_raw(sensor, reg, val, false, true, true, true);
}
int ccs_read_addr_8only(struct ccs_sensor *sensor, u32 reg, u32 *val)
{
return ccs_read_addr_raw(sensor, reg, val, true, true, true, true);
}
int ccs_read_addr_noconv(struct ccs_sensor *sensor, u32 reg, u32 *val)
{
return ccs_read_addr_raw(sensor, reg, val, false, true, false, true);
}
static int ccs_write_retry(struct i2c_client *client, struct i2c_msg *msg)
{
unsigned int retries;
int r;
for (retries = 0; retries < 10; retries++) {
/*
* Due to unknown reason sensor stops responding. This
* loop is a temporaty solution until the root cause
* is found.
*/
r = i2c_transfer(client->adapter, msg, 1);
if (r != 1) {
usleep_range(1000, 2000);
continue;
}
if (retries)
dev_err(&client->dev,
"sensor i2c stall encountered. retries: %d\n",
retries);
return 0;
}
return r;
}
int ccs_write_addr_no_quirk(struct ccs_sensor *sensor, u32 reg, u32 val)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
struct i2c_msg msg;
unsigned char data[6];
unsigned int len = ccs_reg_width(reg);
int r;
if (len > sizeof(data) - 2)
return -EINVAL;
msg.addr = client->addr;
msg.flags = 0; /* Write */
msg.len = 2 + len;
msg.buf = data;
put_unaligned_be16(CCS_REG_ADDR(reg), data);
put_unaligned_be32(val << (8 * (sizeof(val) - len)), data + 2);
dev_dbg(&client->dev, "writing reg 0x%4.4x value 0x%*.*x (%u)\n",
CCS_REG_ADDR(reg), ccs_reg_width(reg) << 1,
ccs_reg_width(reg) << 1, val, val);
r = ccs_write_retry(client, &msg);
if (r)
dev_err(&client->dev,
"wrote 0x%x to offset 0x%x error %d\n", val,
CCS_REG_ADDR(reg), r);
return r;
}
/*
* Write to a 8/16-bit register.
* Returns zero if successful, or non-zero otherwise.
*/
int ccs_write_addr(struct ccs_sensor *sensor, u32 reg, u32 val)
{
int rval;
rval = ccs_call_quirk(sensor, reg_access, true, ®, &val);
if (rval == -ENOIOCTLCMD)
return 0;
if (rval < 0)
return rval;
return ccs_write_addr_no_quirk(sensor, reg, val);
}
#define MAX_WRITE_LEN 32U
int ccs_write_data_regs(struct ccs_sensor *sensor, struct ccs_reg *regs,
size_t num_regs)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
unsigned char buf[2 + MAX_WRITE_LEN];
struct i2c_msg msg = {
.addr = client->addr,
.buf = buf,
};
size_t i;
for (i = 0; i < num_regs; i++, regs++) {
unsigned char *regdata = regs->value;
unsigned int j;
for (j = 0; j < regs->len;
j += msg.len - 2, regdata += msg.len - 2) {
char printbuf[(MAX_WRITE_LEN << 1) +
1 /* \0 */] = { 0 };
int rval;
msg.len = min(regs->len - j, MAX_WRITE_LEN);
bin2hex(printbuf, regdata, msg.len);
dev_dbg(&client->dev,
"writing msr reg 0x%4.4x value 0x%s\n",
regs->addr + j, printbuf);
put_unaligned_be16(regs->addr + j, buf);
memcpy(buf + 2, regdata, msg.len);
msg.len += 2;
rval = ccs_write_retry(client, &msg);
if (rval) {
dev_err(&client->dev,
"error writing %u octets to address 0x%4.4x\n",
msg.len, regs->addr + j);
return rval;
}
}
}
return 0;
}
|