1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
|
// SPDX-License-Identifier: GPL-2.0
/*
* This file is part of STM32 ADC driver
*
* Copyright (C) 2016, STMicroelectronics - All Rights Reserved
* Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
*
* Inspired from: fsl-imx25-tsadc
*
*/
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/irqdesc.h>
#include <linux/irqdomain.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include "stm32-adc-core.h"
#define STM32_ADC_CORE_SLEEP_DELAY_MS 2000
/* SYSCFG registers */
#define STM32MP1_SYSCFG_PMCSETR 0x04
#define STM32MP1_SYSCFG_PMCCLRR 0x44
/* SYSCFG bit fields */
#define STM32MP1_SYSCFG_ANASWVDD_MASK BIT(9)
/* SYSCFG capability flags */
#define HAS_VBOOSTER BIT(0)
#define HAS_ANASWVDD BIT(1)
/**
* struct stm32_adc_common_regs - stm32 common registers
* @csr: common status register offset
* @ccr: common control register offset
* @eoc_msk: array of eoc (end of conversion flag) masks in csr for adc1..n
* @ovr_msk: array of ovr (overrun flag) masks in csr for adc1..n
* @ier: interrupt enable register offset for each adc
* @eocie_msk: end of conversion interrupt enable mask in @ier
*/
struct stm32_adc_common_regs {
u32 csr;
u32 ccr;
u32 eoc_msk[STM32_ADC_MAX_ADCS];
u32 ovr_msk[STM32_ADC_MAX_ADCS];
u32 ier;
u32 eocie_msk;
};
struct stm32_adc_priv;
/**
* struct stm32_adc_priv_cfg - stm32 core compatible configuration data
* @regs: common registers for all instances
* @clk_sel: clock selection routine
* @max_clk_rate_hz: maximum analog clock rate (Hz, from datasheet)
* @has_syscfg: SYSCFG capability flags
* @num_irqs: number of interrupt lines
*/
struct stm32_adc_priv_cfg {
const struct stm32_adc_common_regs *regs;
int (*clk_sel)(struct platform_device *, struct stm32_adc_priv *);
u32 max_clk_rate_hz;
unsigned int has_syscfg;
unsigned int num_irqs;
};
/**
* struct stm32_adc_priv - stm32 ADC core private data
* @irq: irq(s) for ADC block
* @domain: irq domain reference
* @aclk: clock reference for the analog circuitry
* @bclk: bus clock common for all ADCs, depends on part used
* @max_clk_rate: desired maximum clock rate
* @booster: booster supply reference
* @vdd: vdd supply reference
* @vdda: vdda analog supply reference
* @vref: regulator reference
* @vdd_uv: vdd supply voltage (microvolts)
* @vdda_uv: vdda supply voltage (microvolts)
* @cfg: compatible configuration data
* @common: common data for all ADC instances
* @ccr_bak: backup CCR in low power mode
* @syscfg: reference to syscon, system control registers
*/
struct stm32_adc_priv {
int irq[STM32_ADC_MAX_ADCS];
struct irq_domain *domain;
struct clk *aclk;
struct clk *bclk;
u32 max_clk_rate;
struct regulator *booster;
struct regulator *vdd;
struct regulator *vdda;
struct regulator *vref;
int vdd_uv;
int vdda_uv;
const struct stm32_adc_priv_cfg *cfg;
struct stm32_adc_common common;
u32 ccr_bak;
struct regmap *syscfg;
};
static struct stm32_adc_priv *to_stm32_adc_priv(struct stm32_adc_common *com)
{
return container_of(com, struct stm32_adc_priv, common);
}
/* STM32F4 ADC internal common clock prescaler division ratios */
static int stm32f4_pclk_div[] = {2, 4, 6, 8};
/**
* stm32f4_adc_clk_sel() - Select stm32f4 ADC common clock prescaler
* @pdev: platform device
* @priv: stm32 ADC core private data
* Select clock prescaler used for analog conversions, before using ADC.
*/
static int stm32f4_adc_clk_sel(struct platform_device *pdev,
struct stm32_adc_priv *priv)
{
unsigned long rate;
u32 val;
int i;
/* stm32f4 has one clk input for analog (mandatory), enforce it here */
if (!priv->aclk) {
dev_err(&pdev->dev, "No 'adc' clock found\n");
return -ENOENT;
}
rate = clk_get_rate(priv->aclk);
if (!rate) {
dev_err(&pdev->dev, "Invalid clock rate: 0\n");
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(stm32f4_pclk_div); i++) {
if ((rate / stm32f4_pclk_div[i]) <= priv->max_clk_rate)
break;
}
if (i >= ARRAY_SIZE(stm32f4_pclk_div)) {
dev_err(&pdev->dev, "adc clk selection failed\n");
return -EINVAL;
}
priv->common.rate = rate / stm32f4_pclk_div[i];
val = readl_relaxed(priv->common.base + STM32F4_ADC_CCR);
val &= ~STM32F4_ADC_ADCPRE_MASK;
val |= i << STM32F4_ADC_ADCPRE_SHIFT;
writel_relaxed(val, priv->common.base + STM32F4_ADC_CCR);
dev_dbg(&pdev->dev, "Using analog clock source at %ld kHz\n",
priv->common.rate / 1000);
return 0;
}
/**
* struct stm32h7_adc_ck_spec - specification for stm32h7 adc clock
* @ckmode: ADC clock mode, Async or sync with prescaler.
* @presc: prescaler bitfield for async clock mode
* @div: prescaler division ratio
*/
struct stm32h7_adc_ck_spec {
u32 ckmode;
u32 presc;
int div;
};
static const struct stm32h7_adc_ck_spec stm32h7_adc_ckmodes_spec[] = {
/* 00: CK_ADC[1..3]: Asynchronous clock modes */
{ 0, 0, 1 },
{ 0, 1, 2 },
{ 0, 2, 4 },
{ 0, 3, 6 },
{ 0, 4, 8 },
{ 0, 5, 10 },
{ 0, 6, 12 },
{ 0, 7, 16 },
{ 0, 8, 32 },
{ 0, 9, 64 },
{ 0, 10, 128 },
{ 0, 11, 256 },
/* HCLK used: Synchronous clock modes (1, 2 or 4 prescaler) */
{ 1, 0, 1 },
{ 2, 0, 2 },
{ 3, 0, 4 },
};
static int stm32h7_adc_clk_sel(struct platform_device *pdev,
struct stm32_adc_priv *priv)
{
u32 ckmode, presc, val;
unsigned long rate;
int i, div, duty;
/* stm32h7 bus clock is common for all ADC instances (mandatory) */
if (!priv->bclk) {
dev_err(&pdev->dev, "No 'bus' clock found\n");
return -ENOENT;
}
/*
* stm32h7 can use either 'bus' or 'adc' clock for analog circuitry.
* So, choice is to have bus clock mandatory and adc clock optional.
* If optional 'adc' clock has been found, then try to use it first.
*/
if (priv->aclk) {
/*
* Asynchronous clock modes (e.g. ckmode == 0)
* From spec: PLL output musn't exceed max rate
*/
rate = clk_get_rate(priv->aclk);
if (!rate) {
dev_err(&pdev->dev, "Invalid adc clock rate: 0\n");
return -EINVAL;
}
/* If duty is an error, kindly use at least /2 divider */
duty = clk_get_scaled_duty_cycle(priv->aclk, 100);
if (duty < 0)
dev_warn(&pdev->dev, "adc clock duty: %d\n", duty);
for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
presc = stm32h7_adc_ckmodes_spec[i].presc;
div = stm32h7_adc_ckmodes_spec[i].div;
if (ckmode)
continue;
/*
* For proper operation, clock duty cycle range is 49%
* to 51%. Apply at least /2 prescaler otherwise.
*/
if (div == 1 && (duty < 49 || duty > 51))
continue;
if ((rate / div) <= priv->max_clk_rate)
goto out;
}
}
/* Synchronous clock modes (e.g. ckmode is 1, 2 or 3) */
rate = clk_get_rate(priv->bclk);
if (!rate) {
dev_err(&pdev->dev, "Invalid bus clock rate: 0\n");
return -EINVAL;
}
duty = clk_get_scaled_duty_cycle(priv->bclk, 100);
if (duty < 0)
dev_warn(&pdev->dev, "bus clock duty: %d\n", duty);
for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
presc = stm32h7_adc_ckmodes_spec[i].presc;
div = stm32h7_adc_ckmodes_spec[i].div;
if (!ckmode)
continue;
if (div == 1 && (duty < 49 || duty > 51))
continue;
if ((rate / div) <= priv->max_clk_rate)
goto out;
}
dev_err(&pdev->dev, "adc clk selection failed\n");
return -EINVAL;
out:
/* rate used later by each ADC instance to control BOOST mode */
priv->common.rate = rate / div;
/* Set common clock mode and prescaler */
val = readl_relaxed(priv->common.base + STM32H7_ADC_CCR);
val &= ~(STM32H7_CKMODE_MASK | STM32H7_PRESC_MASK);
val |= ckmode << STM32H7_CKMODE_SHIFT;
val |= presc << STM32H7_PRESC_SHIFT;
writel_relaxed(val, priv->common.base + STM32H7_ADC_CCR);
dev_dbg(&pdev->dev, "Using %s clock/%d source at %ld kHz\n",
ckmode ? "bus" : "adc", div, priv->common.rate / 1000);
return 0;
}
/* STM32F4 common registers definitions */
static const struct stm32_adc_common_regs stm32f4_adc_common_regs = {
.csr = STM32F4_ADC_CSR,
.ccr = STM32F4_ADC_CCR,
.eoc_msk = { STM32F4_EOC1, STM32F4_EOC2, STM32F4_EOC3},
.ovr_msk = { STM32F4_OVR1, STM32F4_OVR2, STM32F4_OVR3},
.ier = STM32F4_ADC_CR1,
.eocie_msk = STM32F4_EOCIE,
};
/* STM32H7 common registers definitions */
static const struct stm32_adc_common_regs stm32h7_adc_common_regs = {
.csr = STM32H7_ADC_CSR,
.ccr = STM32H7_ADC_CCR,
.eoc_msk = { STM32H7_EOC_MST, STM32H7_EOC_SLV},
.ovr_msk = { STM32H7_OVR_MST, STM32H7_OVR_SLV},
.ier = STM32H7_ADC_IER,
.eocie_msk = STM32H7_EOCIE,
};
static const unsigned int stm32_adc_offset[STM32_ADC_MAX_ADCS] = {
0, STM32_ADC_OFFSET, STM32_ADC_OFFSET * 2,
};
static unsigned int stm32_adc_eoc_enabled(struct stm32_adc_priv *priv,
unsigned int adc)
{
u32 ier, offset = stm32_adc_offset[adc];
ier = readl_relaxed(priv->common.base + offset + priv->cfg->regs->ier);
return ier & priv->cfg->regs->eocie_msk;
}
/* ADC common interrupt for all instances */
static void stm32_adc_irq_handler(struct irq_desc *desc)
{
struct stm32_adc_priv *priv = irq_desc_get_handler_data(desc);
struct irq_chip *chip = irq_desc_get_chip(desc);
int i;
u32 status;
chained_irq_enter(chip, desc);
status = readl_relaxed(priv->common.base + priv->cfg->regs->csr);
/*
* End of conversion may be handled by using IRQ or DMA. There may be a
* race here when two conversions complete at the same time on several
* ADCs. EOC may be read 'set' for several ADCs, with:
* - an ADC configured to use DMA (EOC triggers the DMA request, and
* is then automatically cleared by DR read in hardware)
* - an ADC configured to use IRQs (EOCIE bit is set. The handler must
* be called in this case)
* So both EOC status bit in CSR and EOCIE control bit must be checked
* before invoking the interrupt handler (e.g. call ISR only for
* IRQ-enabled ADCs).
*/
for (i = 0; i < priv->cfg->num_irqs; i++) {
if ((status & priv->cfg->regs->eoc_msk[i] &&
stm32_adc_eoc_enabled(priv, i)) ||
(status & priv->cfg->regs->ovr_msk[i]))
generic_handle_irq(irq_find_mapping(priv->domain, i));
}
chained_irq_exit(chip, desc);
};
static int stm32_adc_domain_map(struct irq_domain *d, unsigned int irq,
irq_hw_number_t hwirq)
{
irq_set_chip_data(irq, d->host_data);
irq_set_chip_and_handler(irq, &dummy_irq_chip, handle_level_irq);
return 0;
}
static void stm32_adc_domain_unmap(struct irq_domain *d, unsigned int irq)
{
irq_set_chip_and_handler(irq, NULL, NULL);
irq_set_chip_data(irq, NULL);
}
static const struct irq_domain_ops stm32_adc_domain_ops = {
.map = stm32_adc_domain_map,
.unmap = stm32_adc_domain_unmap,
.xlate = irq_domain_xlate_onecell,
};
static int stm32_adc_irq_probe(struct platform_device *pdev,
struct stm32_adc_priv *priv)
{
struct device_node *np = pdev->dev.of_node;
unsigned int i;
/*
* Interrupt(s) must be provided, depending on the compatible:
* - stm32f4/h7 shares a common interrupt line.
* - stm32mp1, has one line per ADC
*/
for (i = 0; i < priv->cfg->num_irqs; i++) {
priv->irq[i] = platform_get_irq(pdev, i);
if (priv->irq[i] < 0)
return priv->irq[i];
}
priv->domain = irq_domain_add_simple(np, STM32_ADC_MAX_ADCS, 0,
&stm32_adc_domain_ops,
priv);
if (!priv->domain) {
dev_err(&pdev->dev, "Failed to add irq domain\n");
return -ENOMEM;
}
for (i = 0; i < priv->cfg->num_irqs; i++) {
irq_set_chained_handler(priv->irq[i], stm32_adc_irq_handler);
irq_set_handler_data(priv->irq[i], priv);
}
return 0;
}
static void stm32_adc_irq_remove(struct platform_device *pdev,
struct stm32_adc_priv *priv)
{
int hwirq;
unsigned int i;
for (hwirq = 0; hwirq < STM32_ADC_MAX_ADCS; hwirq++)
irq_dispose_mapping(irq_find_mapping(priv->domain, hwirq));
irq_domain_remove(priv->domain);
for (i = 0; i < priv->cfg->num_irqs; i++)
irq_set_chained_handler(priv->irq[i], NULL);
}
static int stm32_adc_core_switches_supply_en(struct stm32_adc_priv *priv,
struct device *dev)
{
int ret;
/*
* On STM32H7 and STM32MP1, the ADC inputs are multiplexed with analog
* switches (via PCSEL) which have reduced performances when their
* supply is below 2.7V (vdda by default):
* - Voltage booster can be used, to get full ADC performances
* (increases power consumption).
* - Vdd can be used to supply them, if above 2.7V (STM32MP1 only).
*
* Recommended settings for ANASWVDD and EN_BOOSTER:
* - vdda < 2.7V but vdd > 2.7V: ANASWVDD = 1, EN_BOOSTER = 0 (stm32mp1)
* - vdda < 2.7V and vdd < 2.7V: ANASWVDD = 0, EN_BOOSTER = 1
* - vdda >= 2.7V: ANASWVDD = 0, EN_BOOSTER = 0 (default)
*/
if (priv->vdda_uv < 2700000) {
if (priv->syscfg && priv->vdd_uv > 2700000) {
ret = regulator_enable(priv->vdd);
if (ret < 0) {
dev_err(dev, "vdd enable failed %d\n", ret);
return ret;
}
ret = regmap_write(priv->syscfg,
STM32MP1_SYSCFG_PMCSETR,
STM32MP1_SYSCFG_ANASWVDD_MASK);
if (ret < 0) {
regulator_disable(priv->vdd);
dev_err(dev, "vdd select failed, %d\n", ret);
return ret;
}
dev_dbg(dev, "analog switches supplied by vdd\n");
return 0;
}
if (priv->booster) {
/*
* This is optional, as this is a trade-off between
* analog performance and power consumption.
*/
ret = regulator_enable(priv->booster);
if (ret < 0) {
dev_err(dev, "booster enable failed %d\n", ret);
return ret;
}
dev_dbg(dev, "analog switches supplied by booster\n");
return 0;
}
}
/* Fallback using vdda (default), nothing to do */
dev_dbg(dev, "analog switches supplied by vdda (%d uV)\n",
priv->vdda_uv);
return 0;
}
static void stm32_adc_core_switches_supply_dis(struct stm32_adc_priv *priv)
{
if (priv->vdda_uv < 2700000) {
if (priv->syscfg && priv->vdd_uv > 2700000) {
regmap_write(priv->syscfg, STM32MP1_SYSCFG_PMCCLRR,
STM32MP1_SYSCFG_ANASWVDD_MASK);
regulator_disable(priv->vdd);
return;
}
if (priv->booster)
regulator_disable(priv->booster);
}
}
static int stm32_adc_core_hw_start(struct device *dev)
{
struct stm32_adc_common *common = dev_get_drvdata(dev);
struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
int ret;
ret = regulator_enable(priv->vdda);
if (ret < 0) {
dev_err(dev, "vdda enable failed %d\n", ret);
return ret;
}
ret = regulator_get_voltage(priv->vdda);
if (ret < 0) {
dev_err(dev, "vdda get voltage failed, %d\n", ret);
goto err_vdda_disable;
}
priv->vdda_uv = ret;
ret = stm32_adc_core_switches_supply_en(priv, dev);
if (ret < 0)
goto err_vdda_disable;
ret = regulator_enable(priv->vref);
if (ret < 0) {
dev_err(dev, "vref enable failed\n");
goto err_switches_dis;
}
ret = clk_prepare_enable(priv->bclk);
if (ret < 0) {
dev_err(dev, "bus clk enable failed\n");
goto err_regulator_disable;
}
ret = clk_prepare_enable(priv->aclk);
if (ret < 0) {
dev_err(dev, "adc clk enable failed\n");
goto err_bclk_disable;
}
writel_relaxed(priv->ccr_bak, priv->common.base + priv->cfg->regs->ccr);
return 0;
err_bclk_disable:
clk_disable_unprepare(priv->bclk);
err_regulator_disable:
regulator_disable(priv->vref);
err_switches_dis:
stm32_adc_core_switches_supply_dis(priv);
err_vdda_disable:
regulator_disable(priv->vdda);
return ret;
}
static void stm32_adc_core_hw_stop(struct device *dev)
{
struct stm32_adc_common *common = dev_get_drvdata(dev);
struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
/* Backup CCR that may be lost (depends on power state to achieve) */
priv->ccr_bak = readl_relaxed(priv->common.base + priv->cfg->regs->ccr);
clk_disable_unprepare(priv->aclk);
clk_disable_unprepare(priv->bclk);
regulator_disable(priv->vref);
stm32_adc_core_switches_supply_dis(priv);
regulator_disable(priv->vdda);
}
static int stm32_adc_core_switches_probe(struct device *dev,
struct stm32_adc_priv *priv)
{
struct device_node *np = dev->of_node;
int ret;
/* Analog switches supply can be controlled by syscfg (optional) */
priv->syscfg = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
if (IS_ERR(priv->syscfg)) {
ret = PTR_ERR(priv->syscfg);
if (ret != -ENODEV)
return dev_err_probe(dev, ret, "Can't probe syscfg\n");
priv->syscfg = NULL;
}
/* Booster can be used to supply analog switches (optional) */
if (priv->cfg->has_syscfg & HAS_VBOOSTER &&
of_property_read_bool(np, "booster-supply")) {
priv->booster = devm_regulator_get_optional(dev, "booster");
if (IS_ERR(priv->booster)) {
ret = PTR_ERR(priv->booster);
if (ret != -ENODEV)
return dev_err_probe(dev, ret, "can't get booster\n");
priv->booster = NULL;
}
}
/* Vdd can be used to supply analog switches (optional) */
if (priv->cfg->has_syscfg & HAS_ANASWVDD &&
of_property_read_bool(np, "vdd-supply")) {
priv->vdd = devm_regulator_get_optional(dev, "vdd");
if (IS_ERR(priv->vdd)) {
ret = PTR_ERR(priv->vdd);
if (ret != -ENODEV)
return dev_err_probe(dev, ret, "can't get vdd\n");
priv->vdd = NULL;
}
}
if (priv->vdd) {
ret = regulator_enable(priv->vdd);
if (ret < 0) {
dev_err(dev, "vdd enable failed %d\n", ret);
return ret;
}
ret = regulator_get_voltage(priv->vdd);
if (ret < 0) {
dev_err(dev, "vdd get voltage failed %d\n", ret);
regulator_disable(priv->vdd);
return ret;
}
priv->vdd_uv = ret;
regulator_disable(priv->vdd);
}
return 0;
}
static int stm32_adc_probe(struct platform_device *pdev)
{
struct stm32_adc_priv *priv;
struct device *dev = &pdev->dev;
struct device_node *np = pdev->dev.of_node;
struct resource *res;
u32 max_rate;
int ret;
if (!pdev->dev.of_node)
return -ENODEV;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
platform_set_drvdata(pdev, &priv->common);
priv->cfg = (const struct stm32_adc_priv_cfg *)
of_match_device(dev->driver->of_match_table, dev)->data;
spin_lock_init(&priv->common.lock);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->common.base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(priv->common.base))
return PTR_ERR(priv->common.base);
priv->common.phys_base = res->start;
priv->vdda = devm_regulator_get(&pdev->dev, "vdda");
if (IS_ERR(priv->vdda))
return dev_err_probe(&pdev->dev, PTR_ERR(priv->vdda),
"vdda get failed\n");
priv->vref = devm_regulator_get(&pdev->dev, "vref");
if (IS_ERR(priv->vref))
return dev_err_probe(&pdev->dev, PTR_ERR(priv->vref),
"vref get failed\n");
priv->aclk = devm_clk_get_optional(&pdev->dev, "adc");
if (IS_ERR(priv->aclk))
return dev_err_probe(&pdev->dev, PTR_ERR(priv->aclk),
"Can't get 'adc' clock\n");
priv->bclk = devm_clk_get_optional(&pdev->dev, "bus");
if (IS_ERR(priv->bclk))
return dev_err_probe(&pdev->dev, PTR_ERR(priv->bclk),
"Can't get 'bus' clock\n");
ret = stm32_adc_core_switches_probe(dev, priv);
if (ret)
return ret;
pm_runtime_get_noresume(dev);
pm_runtime_set_active(dev);
pm_runtime_set_autosuspend_delay(dev, STM32_ADC_CORE_SLEEP_DELAY_MS);
pm_runtime_use_autosuspend(dev);
pm_runtime_enable(dev);
ret = stm32_adc_core_hw_start(dev);
if (ret)
goto err_pm_stop;
ret = regulator_get_voltage(priv->vref);
if (ret < 0) {
dev_err(&pdev->dev, "vref get voltage failed, %d\n", ret);
goto err_hw_stop;
}
priv->common.vref_mv = ret / 1000;
dev_dbg(&pdev->dev, "vref+=%dmV\n", priv->common.vref_mv);
ret = of_property_read_u32(pdev->dev.of_node, "st,max-clk-rate-hz",
&max_rate);
if (!ret)
priv->max_clk_rate = min(max_rate, priv->cfg->max_clk_rate_hz);
else
priv->max_clk_rate = priv->cfg->max_clk_rate_hz;
ret = priv->cfg->clk_sel(pdev, priv);
if (ret < 0)
goto err_hw_stop;
ret = stm32_adc_irq_probe(pdev, priv);
if (ret < 0)
goto err_hw_stop;
ret = of_platform_populate(np, NULL, NULL, &pdev->dev);
if (ret < 0) {
dev_err(&pdev->dev, "failed to populate DT children\n");
goto err_irq_remove;
}
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
err_irq_remove:
stm32_adc_irq_remove(pdev, priv);
err_hw_stop:
stm32_adc_core_hw_stop(dev);
err_pm_stop:
pm_runtime_disable(dev);
pm_runtime_set_suspended(dev);
pm_runtime_put_noidle(dev);
return ret;
}
static int stm32_adc_remove(struct platform_device *pdev)
{
struct stm32_adc_common *common = platform_get_drvdata(pdev);
struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
pm_runtime_get_sync(&pdev->dev);
of_platform_depopulate(&pdev->dev);
stm32_adc_irq_remove(pdev, priv);
stm32_adc_core_hw_stop(&pdev->dev);
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
return 0;
}
static int stm32_adc_core_runtime_suspend(struct device *dev)
{
stm32_adc_core_hw_stop(dev);
return 0;
}
static int stm32_adc_core_runtime_resume(struct device *dev)
{
return stm32_adc_core_hw_start(dev);
}
static int stm32_adc_core_runtime_idle(struct device *dev)
{
pm_runtime_mark_last_busy(dev);
return 0;
}
static DEFINE_RUNTIME_DEV_PM_OPS(stm32_adc_core_pm_ops,
stm32_adc_core_runtime_suspend,
stm32_adc_core_runtime_resume,
stm32_adc_core_runtime_idle);
static const struct stm32_adc_priv_cfg stm32f4_adc_priv_cfg = {
.regs = &stm32f4_adc_common_regs,
.clk_sel = stm32f4_adc_clk_sel,
.max_clk_rate_hz = 36000000,
.num_irqs = 1,
};
static const struct stm32_adc_priv_cfg stm32h7_adc_priv_cfg = {
.regs = &stm32h7_adc_common_regs,
.clk_sel = stm32h7_adc_clk_sel,
.max_clk_rate_hz = 36000000,
.has_syscfg = HAS_VBOOSTER,
.num_irqs = 1,
};
static const struct stm32_adc_priv_cfg stm32mp1_adc_priv_cfg = {
.regs = &stm32h7_adc_common_regs,
.clk_sel = stm32h7_adc_clk_sel,
.max_clk_rate_hz = 40000000,
.has_syscfg = HAS_VBOOSTER | HAS_ANASWVDD,
.num_irqs = 2,
};
static const struct of_device_id stm32_adc_of_match[] = {
{
.compatible = "st,stm32f4-adc-core",
.data = (void *)&stm32f4_adc_priv_cfg
}, {
.compatible = "st,stm32h7-adc-core",
.data = (void *)&stm32h7_adc_priv_cfg
}, {
.compatible = "st,stm32mp1-adc-core",
.data = (void *)&stm32mp1_adc_priv_cfg
}, {
},
};
MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
static struct platform_driver stm32_adc_driver = {
.probe = stm32_adc_probe,
.remove = stm32_adc_remove,
.driver = {
.name = "stm32-adc-core",
.of_match_table = stm32_adc_of_match,
.pm = pm_ptr(&stm32_adc_core_pm_ops),
},
};
module_platform_driver(stm32_adc_driver);
MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 ADC core driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:stm32-adc-core");
|