1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Freescale MXS I2C bus driver
*
* Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
* Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
*
* based on a (non-working) driver which was:
*
* Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
*/
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/platform_device.h>
#include <linux/jiffies.h>
#include <linux/io.h>
#include <linux/stmp_device.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/dma/mxs-dma.h>
#define DRIVER_NAME "mxs-i2c"
#define MXS_I2C_CTRL0 (0x00)
#define MXS_I2C_CTRL0_SET (0x04)
#define MXS_I2C_CTRL0_CLR (0x08)
#define MXS_I2C_CTRL0_SFTRST 0x80000000
#define MXS_I2C_CTRL0_RUN 0x20000000
#define MXS_I2C_CTRL0_SEND_NAK_ON_LAST 0x02000000
#define MXS_I2C_CTRL0_PIO_MODE 0x01000000
#define MXS_I2C_CTRL0_RETAIN_CLOCK 0x00200000
#define MXS_I2C_CTRL0_POST_SEND_STOP 0x00100000
#define MXS_I2C_CTRL0_PRE_SEND_START 0x00080000
#define MXS_I2C_CTRL0_MASTER_MODE 0x00020000
#define MXS_I2C_CTRL0_DIRECTION 0x00010000
#define MXS_I2C_CTRL0_XFER_COUNT(v) ((v) & 0x0000FFFF)
#define MXS_I2C_TIMING0 (0x10)
#define MXS_I2C_TIMING1 (0x20)
#define MXS_I2C_TIMING2 (0x30)
#define MXS_I2C_CTRL1 (0x40)
#define MXS_I2C_CTRL1_SET (0x44)
#define MXS_I2C_CTRL1_CLR (0x48)
#define MXS_I2C_CTRL1_CLR_GOT_A_NAK 0x10000000
#define MXS_I2C_CTRL1_BUS_FREE_IRQ 0x80
#define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ 0x40
#define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ 0x20
#define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ 0x10
#define MXS_I2C_CTRL1_EARLY_TERM_IRQ 0x08
#define MXS_I2C_CTRL1_MASTER_LOSS_IRQ 0x04
#define MXS_I2C_CTRL1_SLAVE_STOP_IRQ 0x02
#define MXS_I2C_CTRL1_SLAVE_IRQ 0x01
#define MXS_I2C_STAT (0x50)
#define MXS_I2C_STAT_GOT_A_NAK 0x10000000
#define MXS_I2C_STAT_BUS_BUSY 0x00000800
#define MXS_I2C_STAT_CLK_GEN_BUSY 0x00000400
#define MXS_I2C_DATA(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)
#define MXS_I2C_DEBUG0_CLR(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)
#define MXS_I2C_DEBUG0_DMAREQ 0x80000000
#define MXS_I2C_IRQ_MASK (MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
MXS_I2C_CTRL1_SLAVE_IRQ)
#define MXS_CMD_I2C_SELECT (MXS_I2C_CTRL0_RETAIN_CLOCK | \
MXS_I2C_CTRL0_PRE_SEND_START | \
MXS_I2C_CTRL0_MASTER_MODE | \
MXS_I2C_CTRL0_DIRECTION | \
MXS_I2C_CTRL0_XFER_COUNT(1))
#define MXS_CMD_I2C_WRITE (MXS_I2C_CTRL0_PRE_SEND_START | \
MXS_I2C_CTRL0_MASTER_MODE | \
MXS_I2C_CTRL0_DIRECTION)
#define MXS_CMD_I2C_READ (MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
MXS_I2C_CTRL0_MASTER_MODE)
enum mxs_i2c_devtype {
MXS_I2C_UNKNOWN = 0,
MXS_I2C_V1,
MXS_I2C_V2,
};
/**
* struct mxs_i2c_dev - per device, private MXS-I2C data
*
* @dev: driver model device node
* @dev_type: distinguish i.MX23/i.MX28 features
* @regs: IO registers pointer
* @cmd_complete: completion object for transaction wait
* @cmd_err: error code for last transaction
* @adapter: i2c subsystem adapter node
*/
struct mxs_i2c_dev {
struct device *dev;
enum mxs_i2c_devtype dev_type;
void __iomem *regs;
struct completion cmd_complete;
int cmd_err;
struct i2c_adapter adapter;
uint32_t timing0;
uint32_t timing1;
uint32_t timing2;
/* DMA support components */
struct dma_chan *dmach;
uint32_t pio_data[2];
uint32_t addr_data;
struct scatterlist sg_io[2];
bool dma_read;
};
static int mxs_i2c_reset(struct mxs_i2c_dev *i2c)
{
int ret = stmp_reset_block(i2c->regs);
if (ret)
return ret;
/*
* Configure timing for the I2C block. The I2C TIMING2 register has to
* be programmed with this particular magic number. The rest is derived
* from the XTAL speed and requested I2C speed.
*
* For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
*/
writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2);
writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
return 0;
}
static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
{
if (i2c->dma_read) {
dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
} else {
dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
}
}
static void mxs_i2c_dma_irq_callback(void *param)
{
struct mxs_i2c_dev *i2c = param;
complete(&i2c->cmd_complete);
mxs_i2c_dma_finish(i2c);
}
static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
struct i2c_msg *msg, uint32_t flags)
{
struct dma_async_tx_descriptor *desc;
struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
i2c->addr_data = i2c_8bit_addr_from_msg(msg);
if (msg->flags & I2C_M_RD) {
i2c->dma_read = true;
/*
* SELECT command.
*/
/* Queue the PIO register write transfer. */
i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
desc = dmaengine_prep_slave_sg(i2c->dmach,
(struct scatterlist *)&i2c->pio_data[0],
1, DMA_TRANS_NONE, 0);
if (!desc) {
dev_err(i2c->dev,
"Failed to get PIO reg. write descriptor.\n");
goto select_init_pio_fail;
}
/* Queue the DMA data transfer. */
sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT |
MXS_DMA_CTRL_WAIT4END);
if (!desc) {
dev_err(i2c->dev,
"Failed to get DMA data write descriptor.\n");
goto select_init_dma_fail;
}
/*
* READ command.
*/
/* Queue the PIO register write transfer. */
i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
MXS_I2C_CTRL0_XFER_COUNT(msg->len);
desc = dmaengine_prep_slave_sg(i2c->dmach,
(struct scatterlist *)&i2c->pio_data[1],
1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
if (!desc) {
dev_err(i2c->dev,
"Failed to get PIO reg. write descriptor.\n");
goto select_init_dma_fail;
}
/* Queue the DMA data transfer. */
sg_init_one(&i2c->sg_io[1], msg->buf, msg->len);
dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT |
MXS_DMA_CTRL_WAIT4END);
if (!desc) {
dev_err(i2c->dev,
"Failed to get DMA data write descriptor.\n");
goto read_init_dma_fail;
}
} else {
i2c->dma_read = false;
/*
* WRITE command.
*/
/* Queue the PIO register write transfer. */
i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
desc = dmaengine_prep_slave_sg(i2c->dmach,
(struct scatterlist *)&i2c->pio_data[0],
1, DMA_TRANS_NONE, 0);
if (!desc) {
dev_err(i2c->dev,
"Failed to get PIO reg. write descriptor.\n");
goto write_init_pio_fail;
}
/* Queue the DMA data transfer. */
sg_init_table(i2c->sg_io, 2);
sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
sg_set_buf(&i2c->sg_io[1], msg->buf, msg->len);
dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT |
MXS_DMA_CTRL_WAIT4END);
if (!desc) {
dev_err(i2c->dev,
"Failed to get DMA data write descriptor.\n");
goto write_init_dma_fail;
}
}
/*
* The last descriptor must have this callback,
* to finish the DMA transaction.
*/
desc->callback = mxs_i2c_dma_irq_callback;
desc->callback_param = i2c;
/* Start the transfer. */
dmaengine_submit(desc);
dma_async_issue_pending(i2c->dmach);
return 0;
/* Read failpath. */
read_init_dma_fail:
dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
select_init_dma_fail:
dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
select_init_pio_fail:
dmaengine_terminate_sync(i2c->dmach);
return -EINVAL;
/* Write failpath. */
write_init_dma_fail:
dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
write_init_pio_fail:
dmaengine_terminate_sync(i2c->dmach);
return -EINVAL;
}
static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c)
{
unsigned long timeout = jiffies + msecs_to_jiffies(1000);
while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) {
if (readl(i2c->regs + MXS_I2C_CTRL1) &
MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
return -ENXIO;
if (time_after(jiffies, timeout))
return -ETIMEDOUT;
cond_resched();
}
return 0;
}
static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c)
{
u32 state;
state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK;
if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
i2c->cmd_err = -ENXIO;
else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
MXS_I2C_CTRL1_SLAVE_STOP_IRQ |
MXS_I2C_CTRL1_SLAVE_IRQ))
i2c->cmd_err = -EIO;
return i2c->cmd_err;
}
static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd)
{
u32 reg;
writel(cmd, i2c->regs + MXS_I2C_CTRL0);
/* readback makes sure the write is latched into hardware */
reg = readl(i2c->regs + MXS_I2C_CTRL0);
reg |= MXS_I2C_CTRL0_RUN;
writel(reg, i2c->regs + MXS_I2C_CTRL0);
}
/*
* Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
* CTRL0::PIO_MODE bit description clarifies the order in which the registers
* must be written during PIO mode operation. First, the CTRL0 register has
* to be programmed with all the necessary bits but the RUN bit. Then the
* payload has to be written into the DATA register. Finally, the transmission
* is executed by setting the RUN bit in CTRL0.
*/
static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd,
u32 data)
{
writel(cmd, i2c->regs + MXS_I2C_CTRL0);
if (i2c->dev_type == MXS_I2C_V1)
writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET);
writel(data, i2c->regs + MXS_I2C_DATA(i2c));
writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET);
}
static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
struct i2c_msg *msg, uint32_t flags)
{
struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
uint32_t addr_data = i2c_8bit_addr_from_msg(msg);
uint32_t data = 0;
int i, ret, xlen = 0, xmit = 0;
uint32_t start;
/* Mute IRQs coming from this block. */
writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);
/*
* MX23 idea:
* - Enable CTRL0::PIO_MODE (1 << 24)
* - Enable CTRL1::ACK_MODE (1 << 27)
*
* WARNING! The MX23 is broken in some way, even if it claims
* to support PIO, when we try to transfer any amount of data
* that is not aligned to 4 bytes, the DMA engine will have
* bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
* transfer. This in turn will mess up the next transfer as
* the block it emit one byte write onto the bus terminated
* with a NAK+STOP. A possible workaround is to reset the IP
* block after every PIO transmission, which might just work.
*
* NOTE: The CTRL0::PIO_MODE description is important, since
* it outlines how the PIO mode is really supposed to work.
*/
if (msg->flags & I2C_M_RD) {
/*
* PIO READ transfer:
*
* This transfer MUST be limited to 4 bytes maximum. It is not
* possible to transfer more than four bytes via PIO, since we
* can not in any way make sure we can read the data from the
* DATA register fast enough. Besides, the RX FIFO is only four
* bytes deep, thus we can only really read up to four bytes at
* time. Finally, there is no bit indicating us that new data
* arrived at the FIFO and can thus be fetched from the DATA
* register.
*/
BUG_ON(msg->len > 4);
/* SELECT command. */
mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT,
addr_data);
ret = mxs_i2c_pio_wait_xfer_end(i2c);
if (ret) {
dev_dbg(i2c->dev,
"PIO: Failed to send SELECT command!\n");
goto cleanup;
}
/* READ command. */
mxs_i2c_pio_trigger_cmd(i2c,
MXS_CMD_I2C_READ | flags |
MXS_I2C_CTRL0_XFER_COUNT(msg->len));
ret = mxs_i2c_pio_wait_xfer_end(i2c);
if (ret) {
dev_dbg(i2c->dev,
"PIO: Failed to send READ command!\n");
goto cleanup;
}
data = readl(i2c->regs + MXS_I2C_DATA(i2c));
for (i = 0; i < msg->len; i++) {
msg->buf[i] = data & 0xff;
data >>= 8;
}
} else {
/*
* PIO WRITE transfer:
*
* The code below implements clock stretching to circumvent
* the possibility of kernel not being able to supply data
* fast enough. It is possible to transfer arbitrary amount
* of data using PIO write.
*/
/*
* The LSB of data buffer is the first byte blasted across
* the bus. Higher order bytes follow. Thus the following
* filling schematic.
*/
data = addr_data << 24;
/* Start the transfer with START condition. */
start = MXS_I2C_CTRL0_PRE_SEND_START;
/* If the transfer is long, use clock stretching. */
if (msg->len > 3)
start |= MXS_I2C_CTRL0_RETAIN_CLOCK;
for (i = 0; i < msg->len; i++) {
data >>= 8;
data |= (msg->buf[i] << 24);
xmit = 0;
/* This is the last transfer of the message. */
if (i + 1 == msg->len) {
/* Add optional STOP flag. */
start |= flags;
/* Remove RETAIN_CLOCK bit. */
start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK;
xmit = 1;
}
/* Four bytes are ready in the "data" variable. */
if ((i & 3) == 2)
xmit = 1;
/* Nothing interesting happened, continue stuffing. */
if (!xmit)
continue;
/*
* Compute the size of the transfer and shift the
* data accordingly.
*
* i = (4k + 0) .... xlen = 2
* i = (4k + 1) .... xlen = 3
* i = (4k + 2) .... xlen = 4
* i = (4k + 3) .... xlen = 1
*/
if ((i % 4) == 3)
xlen = 1;
else
xlen = (i % 4) + 2;
data >>= (4 - xlen) * 8;
dev_dbg(i2c->dev,
"PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
xlen, i, msg->len,
start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "",
start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "",
start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : "");
writel(MXS_I2C_DEBUG0_DMAREQ,
i2c->regs + MXS_I2C_DEBUG0_CLR(i2c));
mxs_i2c_pio_trigger_write_cmd(i2c,
start | MXS_I2C_CTRL0_MASTER_MODE |
MXS_I2C_CTRL0_DIRECTION |
MXS_I2C_CTRL0_XFER_COUNT(xlen), data);
/* The START condition is sent only once. */
start &= ~MXS_I2C_CTRL0_PRE_SEND_START;
/* Wait for the end of the transfer. */
ret = mxs_i2c_pio_wait_xfer_end(i2c);
if (ret) {
dev_dbg(i2c->dev,
"PIO: Failed to finish WRITE cmd!\n");
break;
}
/* Check NAK here. */
ret = readl(i2c->regs + MXS_I2C_STAT) &
MXS_I2C_STAT_GOT_A_NAK;
if (ret) {
ret = -ENXIO;
goto cleanup;
}
}
}
/* make sure we capture any occurred error into cmd_err */
ret = mxs_i2c_pio_check_error_state(i2c);
cleanup:
/* Clear any dangling IRQs and re-enable interrupts. */
writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
/* Clear the PIO_MODE on i.MX23 */
if (i2c->dev_type == MXS_I2C_V1)
writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR);
return ret;
}
/*
* Low level master read/write transaction.
*/
static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
int stop)
{
struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
int ret;
int flags;
int use_pio = 0;
unsigned long time_left;
flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;
dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
msg->addr, msg->len, msg->flags, stop);
/*
* The MX28 I2C IP block can only do PIO READ for transfer of to up
* 4 bytes of length. The write transfer is not limited as it can use
* clock stretching to avoid FIFO underruns.
*/
if ((msg->flags & I2C_M_RD) && (msg->len <= 4))
use_pio = 1;
if (!(msg->flags & I2C_M_RD) && (msg->len < 7))
use_pio = 1;
i2c->cmd_err = 0;
if (use_pio) {
ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
/* No need to reset the block if NAK was received. */
if (ret && (ret != -ENXIO))
mxs_i2c_reset(i2c);
} else {
reinit_completion(&i2c->cmd_complete);
ret = mxs_i2c_dma_setup_xfer(adap, msg, flags);
if (ret)
return ret;
time_left = wait_for_completion_timeout(&i2c->cmd_complete,
msecs_to_jiffies(1000));
if (!time_left)
goto timeout;
ret = i2c->cmd_err;
}
if (ret == -ENXIO) {
/*
* If the transfer fails with a NAK from the slave the
* controller halts until it gets told to return to idle state.
*/
writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK,
i2c->regs + MXS_I2C_CTRL1_SET);
}
/*
* WARNING!
* The i.MX23 is strange. After each and every operation, it's I2C IP
* block must be reset, otherwise the IP block will misbehave. This can
* be observed on the bus by the block sending out one single byte onto
* the bus. In case such an error happens, bit 27 will be set in the
* DEBUG0 register. This bit is not documented in the i.MX23 datasheet
* and is marked as "TBD" instead. To reset this bit to a correct state,
* reset the whole block. Since the block reset does not take long, do
* reset the block after every transfer to play safe.
*/
if (i2c->dev_type == MXS_I2C_V1)
mxs_i2c_reset(i2c);
dev_dbg(i2c->dev, "Done with err=%d\n", ret);
return ret;
timeout:
dev_dbg(i2c->dev, "Timeout!\n");
mxs_i2c_dma_finish(i2c);
ret = mxs_i2c_reset(i2c);
if (ret)
return ret;
return -ETIMEDOUT;
}
static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
int num)
{
int i;
int err;
for (i = 0; i < num; i++) {
err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
if (err)
return err;
}
return num;
}
static u32 mxs_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
{
struct mxs_i2c_dev *i2c = dev_id;
u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;
if (!stat)
return IRQ_NONE;
if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
i2c->cmd_err = -ENXIO;
else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
/* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
i2c->cmd_err = -EIO;
writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);
return IRQ_HANDLED;
}
static const struct i2c_algorithm mxs_i2c_algo = {
.master_xfer = mxs_i2c_xfer,
.functionality = mxs_i2c_func,
};
static const struct i2c_adapter_quirks mxs_i2c_quirks = {
.flags = I2C_AQ_NO_ZERO_LEN,
};
static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed)
{
/* The I2C block clock runs at 24MHz */
const uint32_t clk = 24000000;
uint32_t divider;
uint16_t high_count, low_count, rcv_count, xmit_count;
uint32_t bus_free, leadin;
struct device *dev = i2c->dev;
divider = DIV_ROUND_UP(clk, speed);
if (divider < 25) {
/*
* limit the divider, so that min(low_count, high_count)
* is >= 1
*/
divider = 25;
dev_warn(dev,
"Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
speed / 1000, speed % 1000,
clk / divider / 1000, clk / divider % 1000);
} else if (divider > 1897) {
/*
* limit the divider, so that max(low_count, high_count)
* cannot exceed 1023
*/
divider = 1897;
dev_warn(dev,
"Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
speed / 1000, speed % 1000,
clk / divider / 1000, clk / divider % 1000);
}
/*
* The I2C spec specifies the following timing data:
* standard mode fast mode Bitfield name
* tLOW (SCL LOW period) 4700 ns 1300 ns
* tHIGH (SCL HIGH period) 4000 ns 600 ns
* tSU;DAT (data setup time) 250 ns 100 ns
* tHD;STA (START hold time) 4000 ns 600 ns
* tBUF (bus free time) 4700 ns 1300 ns
*
* The hardware (of the i.MX28 at least) seems to add 2 additional
* clock cycles to the low_count and 7 cycles to the high_count.
* This is compensated for by subtracting the respective constants
* from the values written to the timing registers.
*/
if (speed > I2C_MAX_STANDARD_MODE_FREQ) {
/* fast mode */
low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6));
high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6));
leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000);
bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000);
} else {
/* normal mode */
low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40));
high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40));
leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
}
rcv_count = high_count * 3 / 8;
xmit_count = low_count * 3 / 8;
dev_dbg(dev,
"speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
speed, clk / divider, divider, low_count, high_count,
xmit_count, rcv_count, leadin, bus_free);
low_count -= 2;
high_count -= 7;
i2c->timing0 = (high_count << 16) | rcv_count;
i2c->timing1 = (low_count << 16) | xmit_count;
i2c->timing2 = (bus_free << 16 | leadin);
}
static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
{
uint32_t speed;
struct device *dev = i2c->dev;
struct device_node *node = dev->of_node;
int ret;
ret = of_property_read_u32(node, "clock-frequency", &speed);
if (ret) {
dev_warn(dev, "No I2C speed selected, using 100kHz\n");
speed = I2C_MAX_STANDARD_MODE_FREQ;
}
mxs_i2c_derive_timing(i2c, speed);
return 0;
}
static const struct of_device_id mxs_i2c_dt_ids[] = {
{ .compatible = "fsl,imx23-i2c", .data = (void *)MXS_I2C_V1, },
{ .compatible = "fsl,imx28-i2c", .data = (void *)MXS_I2C_V2, },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);
static int mxs_i2c_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct mxs_i2c_dev *i2c;
struct i2c_adapter *adap;
int err, irq;
i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL);
if (!i2c)
return -ENOMEM;
i2c->dev_type = (enum mxs_i2c_devtype)of_device_get_match_data(&pdev->dev);
i2c->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(i2c->regs))
return PTR_ERR(i2c->regs);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
if (err)
return err;
i2c->dev = dev;
init_completion(&i2c->cmd_complete);
if (dev->of_node) {
err = mxs_i2c_get_ofdata(i2c);
if (err)
return err;
}
/* Setup the DMA */
i2c->dmach = dma_request_chan(dev, "rx-tx");
if (IS_ERR(i2c->dmach)) {
dev_err(dev, "Failed to request dma\n");
return PTR_ERR(i2c->dmach);
}
platform_set_drvdata(pdev, i2c);
/* Do reset to enforce correct startup after pinmuxing */
err = mxs_i2c_reset(i2c);
if (err)
return err;
adap = &i2c->adapter;
strlcpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
adap->owner = THIS_MODULE;
adap->algo = &mxs_i2c_algo;
adap->quirks = &mxs_i2c_quirks;
adap->dev.parent = dev;
adap->nr = pdev->id;
adap->dev.of_node = pdev->dev.of_node;
i2c_set_adapdata(adap, i2c);
err = i2c_add_numbered_adapter(adap);
if (err) {
writel(MXS_I2C_CTRL0_SFTRST,
i2c->regs + MXS_I2C_CTRL0_SET);
return err;
}
return 0;
}
static int mxs_i2c_remove(struct platform_device *pdev)
{
struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);
i2c_del_adapter(&i2c->adapter);
if (i2c->dmach)
dma_release_channel(i2c->dmach);
writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);
return 0;
}
static struct platform_driver mxs_i2c_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = mxs_i2c_dt_ids,
},
.probe = mxs_i2c_probe,
.remove = mxs_i2c_remove,
};
static int __init mxs_i2c_init(void)
{
return platform_driver_register(&mxs_i2c_driver);
}
subsys_initcall(mxs_i2c_init);
static void __exit mxs_i2c_exit(void)
{
platform_driver_unregister(&mxs_i2c_driver);
}
module_exit(mxs_i2c_exit);
MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>");
MODULE_DESCRIPTION("MXS I2C Bus Driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);
|