summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/xe/xe_gt_pagefault.c
blob: 73f08f1924df2ea8d4aaabb87eceaa13eff81d78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2022 Intel Corporation
 */

#include "xe_gt_pagefault.h"

#include <linux/bitfield.h>
#include <linux/circ_buf.h>

#include <drm/drm_exec.h>
#include <drm/drm_managed.h>
#include <drm/ttm/ttm_execbuf_util.h>

#include "abi/guc_actions_abi.h"
#include "xe_bo.h"
#include "xe_gt.h"
#include "xe_gt_tlb_invalidation.h"
#include "xe_guc.h"
#include "xe_guc_ct.h"
#include "xe_migrate.h"
#include "xe_pt.h"
#include "xe_trace.h"
#include "xe_vm.h"

struct pagefault {
	u64 page_addr;
	u32 asid;
	u16 pdata;
	u8 vfid;
	u8 access_type;
	u8 fault_type;
	u8 fault_level;
	u8 engine_class;
	u8 engine_instance;
	u8 fault_unsuccessful;
	bool trva_fault;
};

enum access_type {
	ACCESS_TYPE_READ = 0,
	ACCESS_TYPE_WRITE = 1,
	ACCESS_TYPE_ATOMIC = 2,
	ACCESS_TYPE_RESERVED = 3,
};

enum fault_type {
	NOT_PRESENT = 0,
	WRITE_ACCESS_VIOLATION = 1,
	ATOMIC_ACCESS_VIOLATION = 2,
};

struct acc {
	u64 va_range_base;
	u32 asid;
	u32 sub_granularity;
	u8 granularity;
	u8 vfid;
	u8 access_type;
	u8 engine_class;
	u8 engine_instance;
};

static bool access_is_atomic(enum access_type access_type)
{
	return access_type == ACCESS_TYPE_ATOMIC;
}

static bool vma_is_valid(struct xe_tile *tile, struct xe_vma *vma)
{
	return BIT(tile->id) & vma->tile_present &&
		!(BIT(tile->id) & vma->usm.tile_invalidated);
}

static bool vma_matches(struct xe_vma *vma, u64 page_addr)
{
	if (page_addr > xe_vma_end(vma) - 1 ||
	    page_addr + SZ_4K - 1 < xe_vma_start(vma))
		return false;

	return true;
}

static struct xe_vma *lookup_vma(struct xe_vm *vm, u64 page_addr)
{
	struct xe_vma *vma = NULL;

	if (vm->usm.last_fault_vma) {   /* Fast lookup */
		if (vma_matches(vm->usm.last_fault_vma, page_addr))
			vma = vm->usm.last_fault_vma;
	}
	if (!vma)
		vma = xe_vm_find_overlapping_vma(vm, page_addr, SZ_4K);

	return vma;
}

static int xe_pf_begin(struct drm_exec *exec, struct xe_vma *vma,
		       bool atomic, unsigned int id)
{
	struct xe_bo *bo = xe_vma_bo(vma);
	struct xe_vm *vm = xe_vma_vm(vma);
	unsigned int num_shared = 2; /* slots for bind + move */
	int err;

	err = xe_vm_prepare_vma(exec, vma, num_shared);
	if (err)
		return err;

	if (atomic && IS_DGFX(vm->xe)) {
		if (xe_vma_is_userptr(vma)) {
			err = -EACCES;
			return err;
		}

		/* Migrate to VRAM, move should invalidate the VMA first */
		err = xe_bo_migrate(bo, XE_PL_VRAM0 + id);
		if (err)
			return err;
	} else if (bo) {
		/* Create backing store if needed */
		err = xe_bo_validate(bo, vm, true);
		if (err)
			return err;
	}

	return 0;
}

static int handle_pagefault(struct xe_gt *gt, struct pagefault *pf)
{
	struct xe_device *xe = gt_to_xe(gt);
	struct xe_tile *tile = gt_to_tile(gt);
	struct drm_exec exec;
	struct xe_vm *vm;
	struct xe_vma *vma = NULL;
	struct dma_fence *fence;
	bool write_locked;
	int ret = 0;
	bool atomic;

	/* SW isn't expected to handle TRTT faults */
	if (pf->trva_fault)
		return -EFAULT;

	/* ASID to VM */
	mutex_lock(&xe->usm.lock);
	vm = xa_load(&xe->usm.asid_to_vm, pf->asid);
	if (vm)
		xe_vm_get(vm);
	mutex_unlock(&xe->usm.lock);
	if (!vm || !xe_vm_in_fault_mode(vm))
		return -EINVAL;

retry_userptr:
	/*
	 * TODO: Avoid exclusive lock if VM doesn't have userptrs, or
	 * start out read-locked?
	 */
	down_write(&vm->lock);
	write_locked = true;
	vma = lookup_vma(vm, pf->page_addr);
	if (!vma) {
		ret = -EINVAL;
		goto unlock_vm;
	}

	if (!xe_vma_is_userptr(vma) ||
	    !xe_vma_userptr_check_repin(to_userptr_vma(vma))) {
		downgrade_write(&vm->lock);
		write_locked = false;
	}

	trace_xe_vma_pagefault(vma);

	atomic = access_is_atomic(pf->access_type);

	/* Check if VMA is valid */
	if (vma_is_valid(tile, vma) && !atomic)
		goto unlock_vm;

	/* TODO: Validate fault */

	if (xe_vma_is_userptr(vma) && write_locked) {
		struct xe_userptr_vma *uvma = to_userptr_vma(vma);

		spin_lock(&vm->userptr.invalidated_lock);
		list_del_init(&uvma->userptr.invalidate_link);
		spin_unlock(&vm->userptr.invalidated_lock);

		ret = xe_vma_userptr_pin_pages(uvma);
		if (ret)
			goto unlock_vm;

		downgrade_write(&vm->lock);
		write_locked = false;
	}

	/* Lock VM and BOs dma-resv */
	drm_exec_init(&exec, 0, 0);
	drm_exec_until_all_locked(&exec) {
		ret = xe_pf_begin(&exec, vma, atomic, tile->id);
		drm_exec_retry_on_contention(&exec);
		if (ret)
			goto unlock_dma_resv;
	}

	/* Bind VMA only to the GT that has faulted */
	trace_xe_vma_pf_bind(vma);
	fence = __xe_pt_bind_vma(tile, vma, xe_tile_migrate_engine(tile), NULL, 0,
				 vma->tile_present & BIT(tile->id));
	if (IS_ERR(fence)) {
		ret = PTR_ERR(fence);
		goto unlock_dma_resv;
	}

	/*
	 * XXX: Should we drop the lock before waiting? This only helps if doing
	 * GPU binds which is currently only done if we have to wait for more
	 * than 10ms on a move.
	 */
	dma_fence_wait(fence, false);
	dma_fence_put(fence);

	if (xe_vma_is_userptr(vma))
		ret = xe_vma_userptr_check_repin(to_userptr_vma(vma));
	vma->usm.tile_invalidated &= ~BIT(tile->id);

unlock_dma_resv:
	drm_exec_fini(&exec);
unlock_vm:
	if (!ret)
		vm->usm.last_fault_vma = vma;
	if (write_locked)
		up_write(&vm->lock);
	else
		up_read(&vm->lock);
	if (ret == -EAGAIN)
		goto retry_userptr;

	if (!ret) {
		ret = xe_gt_tlb_invalidation_vma(gt, NULL, vma);
		if (ret >= 0)
			ret = 0;
	}
	xe_vm_put(vm);

	return ret;
}

static int send_pagefault_reply(struct xe_guc *guc,
				struct xe_guc_pagefault_reply *reply)
{
	u32 action[] = {
		XE_GUC_ACTION_PAGE_FAULT_RES_DESC,
		reply->dw0,
		reply->dw1,
	};

	return xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0);
}

static void print_pagefault(struct xe_device *xe, struct pagefault *pf)
{
	drm_dbg(&xe->drm, "\n\tASID: %d\n"
		 "\tVFID: %d\n"
		 "\tPDATA: 0x%04x\n"
		 "\tFaulted Address: 0x%08x%08x\n"
		 "\tFaultType: %d\n"
		 "\tAccessType: %d\n"
		 "\tFaultLevel: %d\n"
		 "\tEngineClass: %d\n"
		 "\tEngineInstance: %d\n",
		 pf->asid, pf->vfid, pf->pdata, upper_32_bits(pf->page_addr),
		 lower_32_bits(pf->page_addr),
		 pf->fault_type, pf->access_type, pf->fault_level,
		 pf->engine_class, pf->engine_instance);
}

#define PF_MSG_LEN_DW	4

static bool get_pagefault(struct pf_queue *pf_queue, struct pagefault *pf)
{
	const struct xe_guc_pagefault_desc *desc;
	bool ret = false;

	spin_lock_irq(&pf_queue->lock);
	if (pf_queue->head != pf_queue->tail) {
		desc = (const struct xe_guc_pagefault_desc *)
			(pf_queue->data + pf_queue->head);

		pf->fault_level = FIELD_GET(PFD_FAULT_LEVEL, desc->dw0);
		pf->trva_fault = FIELD_GET(XE2_PFD_TRVA_FAULT, desc->dw0);
		pf->engine_class = FIELD_GET(PFD_ENG_CLASS, desc->dw0);
		pf->engine_instance = FIELD_GET(PFD_ENG_INSTANCE, desc->dw0);
		pf->pdata = FIELD_GET(PFD_PDATA_HI, desc->dw1) <<
			PFD_PDATA_HI_SHIFT;
		pf->pdata |= FIELD_GET(PFD_PDATA_LO, desc->dw0);
		pf->asid = FIELD_GET(PFD_ASID, desc->dw1);
		pf->vfid = FIELD_GET(PFD_VFID, desc->dw2);
		pf->access_type = FIELD_GET(PFD_ACCESS_TYPE, desc->dw2);
		pf->fault_type = FIELD_GET(PFD_FAULT_TYPE, desc->dw2);
		pf->page_addr = (u64)(FIELD_GET(PFD_VIRTUAL_ADDR_HI, desc->dw3)) <<
			PFD_VIRTUAL_ADDR_HI_SHIFT;
		pf->page_addr |= FIELD_GET(PFD_VIRTUAL_ADDR_LO, desc->dw2) <<
			PFD_VIRTUAL_ADDR_LO_SHIFT;

		pf_queue->head = (pf_queue->head + PF_MSG_LEN_DW) %
			PF_QUEUE_NUM_DW;
		ret = true;
	}
	spin_unlock_irq(&pf_queue->lock);

	return ret;
}

static bool pf_queue_full(struct pf_queue *pf_queue)
{
	lockdep_assert_held(&pf_queue->lock);

	return CIRC_SPACE(pf_queue->tail, pf_queue->head, PF_QUEUE_NUM_DW) <=
		PF_MSG_LEN_DW;
}

int xe_guc_pagefault_handler(struct xe_guc *guc, u32 *msg, u32 len)
{
	struct xe_gt *gt = guc_to_gt(guc);
	struct xe_device *xe = gt_to_xe(gt);
	struct pf_queue *pf_queue;
	unsigned long flags;
	u32 asid;
	bool full;

	if (unlikely(len != PF_MSG_LEN_DW))
		return -EPROTO;

	asid = FIELD_GET(PFD_ASID, msg[1]);
	pf_queue = gt->usm.pf_queue + (asid % NUM_PF_QUEUE);

	spin_lock_irqsave(&pf_queue->lock, flags);
	full = pf_queue_full(pf_queue);
	if (!full) {
		memcpy(pf_queue->data + pf_queue->tail, msg, len * sizeof(u32));
		pf_queue->tail = (pf_queue->tail + len) % PF_QUEUE_NUM_DW;
		queue_work(gt->usm.pf_wq, &pf_queue->worker);
	} else {
		drm_warn(&xe->drm, "PF Queue full, shouldn't be possible");
	}
	spin_unlock_irqrestore(&pf_queue->lock, flags);

	return full ? -ENOSPC : 0;
}

#define USM_QUEUE_MAX_RUNTIME_MS	20

static void pf_queue_work_func(struct work_struct *w)
{
	struct pf_queue *pf_queue = container_of(w, struct pf_queue, worker);
	struct xe_gt *gt = pf_queue->gt;
	struct xe_device *xe = gt_to_xe(gt);
	struct xe_guc_pagefault_reply reply = {};
	struct pagefault pf = {};
	unsigned long threshold;
	int ret;

	threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS);

	while (get_pagefault(pf_queue, &pf)) {
		ret = handle_pagefault(gt, &pf);
		if (unlikely(ret)) {
			print_pagefault(xe, &pf);
			pf.fault_unsuccessful = 1;
			drm_dbg(&xe->drm, "Fault response: Unsuccessful %d\n", ret);
		}

		reply.dw0 = FIELD_PREP(PFR_VALID, 1) |
			FIELD_PREP(PFR_SUCCESS, pf.fault_unsuccessful) |
			FIELD_PREP(PFR_REPLY, PFR_ACCESS) |
			FIELD_PREP(PFR_DESC_TYPE, FAULT_RESPONSE_DESC) |
			FIELD_PREP(PFR_ASID, pf.asid);

		reply.dw1 = FIELD_PREP(PFR_VFID, pf.vfid) |
			FIELD_PREP(PFR_ENG_INSTANCE, pf.engine_instance) |
			FIELD_PREP(PFR_ENG_CLASS, pf.engine_class) |
			FIELD_PREP(PFR_PDATA, pf.pdata);

		send_pagefault_reply(&gt->uc.guc, &reply);

		if (time_after(jiffies, threshold) &&
		    pf_queue->head != pf_queue->tail) {
			queue_work(gt->usm.pf_wq, w);
			break;
		}
	}
}

static void acc_queue_work_func(struct work_struct *w);

int xe_gt_pagefault_init(struct xe_gt *gt)
{
	struct xe_device *xe = gt_to_xe(gt);
	int i;

	if (!xe->info.has_usm)
		return 0;

	for (i = 0; i < NUM_PF_QUEUE; ++i) {
		gt->usm.pf_queue[i].gt = gt;
		spin_lock_init(&gt->usm.pf_queue[i].lock);
		INIT_WORK(&gt->usm.pf_queue[i].worker, pf_queue_work_func);
	}
	for (i = 0; i < NUM_ACC_QUEUE; ++i) {
		gt->usm.acc_queue[i].gt = gt;
		spin_lock_init(&gt->usm.acc_queue[i].lock);
		INIT_WORK(&gt->usm.acc_queue[i].worker, acc_queue_work_func);
	}

	gt->usm.pf_wq = alloc_workqueue("xe_gt_page_fault_work_queue",
					WQ_UNBOUND | WQ_HIGHPRI, NUM_PF_QUEUE);
	if (!gt->usm.pf_wq)
		return -ENOMEM;

	gt->usm.acc_wq = alloc_workqueue("xe_gt_access_counter_work_queue",
					 WQ_UNBOUND | WQ_HIGHPRI,
					 NUM_ACC_QUEUE);
	if (!gt->usm.acc_wq)
		return -ENOMEM;

	return 0;
}

void xe_gt_pagefault_reset(struct xe_gt *gt)
{
	struct xe_device *xe = gt_to_xe(gt);
	int i;

	if (!xe->info.has_usm)
		return;

	for (i = 0; i < NUM_PF_QUEUE; ++i) {
		spin_lock_irq(&gt->usm.pf_queue[i].lock);
		gt->usm.pf_queue[i].head = 0;
		gt->usm.pf_queue[i].tail = 0;
		spin_unlock_irq(&gt->usm.pf_queue[i].lock);
	}

	for (i = 0; i < NUM_ACC_QUEUE; ++i) {
		spin_lock(&gt->usm.acc_queue[i].lock);
		gt->usm.acc_queue[i].head = 0;
		gt->usm.acc_queue[i].tail = 0;
		spin_unlock(&gt->usm.acc_queue[i].lock);
	}
}

static int granularity_in_byte(int val)
{
	switch (val) {
	case 0:
		return SZ_128K;
	case 1:
		return SZ_2M;
	case 2:
		return SZ_16M;
	case 3:
		return SZ_64M;
	default:
		return 0;
	}
}

static int sub_granularity_in_byte(int val)
{
	return (granularity_in_byte(val) / 32);
}

static void print_acc(struct xe_device *xe, struct acc *acc)
{
	drm_warn(&xe->drm, "Access counter request:\n"
		 "\tType: %s\n"
		 "\tASID: %d\n"
		 "\tVFID: %d\n"
		 "\tEngine: %d:%d\n"
		 "\tGranularity: 0x%x KB Region/ %d KB sub-granularity\n"
		 "\tSub_Granularity Vector: 0x%08x\n"
		 "\tVA Range base: 0x%016llx\n",
		 acc->access_type ? "AC_NTFY_VAL" : "AC_TRIG_VAL",
		 acc->asid, acc->vfid, acc->engine_class, acc->engine_instance,
		 granularity_in_byte(acc->granularity) / SZ_1K,
		 sub_granularity_in_byte(acc->granularity) / SZ_1K,
		 acc->sub_granularity, acc->va_range_base);
}

static struct xe_vma *get_acc_vma(struct xe_vm *vm, struct acc *acc)
{
	u64 page_va = acc->va_range_base + (ffs(acc->sub_granularity) - 1) *
		sub_granularity_in_byte(acc->granularity);

	return xe_vm_find_overlapping_vma(vm, page_va, SZ_4K);
}

static int handle_acc(struct xe_gt *gt, struct acc *acc)
{
	struct xe_device *xe = gt_to_xe(gt);
	struct xe_tile *tile = gt_to_tile(gt);
	struct drm_exec exec;
	struct xe_vm *vm;
	struct xe_vma *vma;
	int ret = 0;

	/* We only support ACC_TRIGGER at the moment */
	if (acc->access_type != ACC_TRIGGER)
		return -EINVAL;

	/* ASID to VM */
	mutex_lock(&xe->usm.lock);
	vm = xa_load(&xe->usm.asid_to_vm, acc->asid);
	if (vm)
		xe_vm_get(vm);
	mutex_unlock(&xe->usm.lock);
	if (!vm || !xe_vm_in_fault_mode(vm))
		return -EINVAL;

	down_read(&vm->lock);

	/* Lookup VMA */
	vma = get_acc_vma(vm, acc);
	if (!vma) {
		ret = -EINVAL;
		goto unlock_vm;
	}

	trace_xe_vma_acc(vma);

	/* Userptr or null can't be migrated, nothing to do */
	if (xe_vma_has_no_bo(vma))
		goto unlock_vm;

	/* Lock VM and BOs dma-resv */
	drm_exec_init(&exec, 0, 0);
	drm_exec_until_all_locked(&exec) {
		ret = xe_pf_begin(&exec, vma, true, tile->id);
		drm_exec_retry_on_contention(&exec);
		if (ret)
			break;
	}

	drm_exec_fini(&exec);
unlock_vm:
	up_read(&vm->lock);
	xe_vm_put(vm);

	return ret;
}

#define make_u64(hi__, low__)  ((u64)(hi__) << 32 | (u64)(low__))

#define ACC_MSG_LEN_DW        4

static bool get_acc(struct acc_queue *acc_queue, struct acc *acc)
{
	const struct xe_guc_acc_desc *desc;
	bool ret = false;

	spin_lock(&acc_queue->lock);
	if (acc_queue->head != acc_queue->tail) {
		desc = (const struct xe_guc_acc_desc *)
			(acc_queue->data + acc_queue->head);

		acc->granularity = FIELD_GET(ACC_GRANULARITY, desc->dw2);
		acc->sub_granularity = FIELD_GET(ACC_SUBG_HI, desc->dw1) << 31 |
			FIELD_GET(ACC_SUBG_LO, desc->dw0);
		acc->engine_class = FIELD_GET(ACC_ENG_CLASS, desc->dw1);
		acc->engine_instance = FIELD_GET(ACC_ENG_INSTANCE, desc->dw1);
		acc->asid =  FIELD_GET(ACC_ASID, desc->dw1);
		acc->vfid =  FIELD_GET(ACC_VFID, desc->dw2);
		acc->access_type = FIELD_GET(ACC_TYPE, desc->dw0);
		acc->va_range_base = make_u64(desc->dw3 & ACC_VIRTUAL_ADDR_RANGE_HI,
					      desc->dw2 & ACC_VIRTUAL_ADDR_RANGE_LO);

		acc_queue->head = (acc_queue->head + ACC_MSG_LEN_DW) %
				  ACC_QUEUE_NUM_DW;
		ret = true;
	}
	spin_unlock(&acc_queue->lock);

	return ret;
}

static void acc_queue_work_func(struct work_struct *w)
{
	struct acc_queue *acc_queue = container_of(w, struct acc_queue, worker);
	struct xe_gt *gt = acc_queue->gt;
	struct xe_device *xe = gt_to_xe(gt);
	struct acc acc = {};
	unsigned long threshold;
	int ret;

	threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS);

	while (get_acc(acc_queue, &acc)) {
		ret = handle_acc(gt, &acc);
		if (unlikely(ret)) {
			print_acc(xe, &acc);
			drm_warn(&xe->drm, "ACC: Unsuccessful %d\n", ret);
		}

		if (time_after(jiffies, threshold) &&
		    acc_queue->head != acc_queue->tail) {
			queue_work(gt->usm.acc_wq, w);
			break;
		}
	}
}

static bool acc_queue_full(struct acc_queue *acc_queue)
{
	lockdep_assert_held(&acc_queue->lock);

	return CIRC_SPACE(acc_queue->tail, acc_queue->head, ACC_QUEUE_NUM_DW) <=
		ACC_MSG_LEN_DW;
}

int xe_guc_access_counter_notify_handler(struct xe_guc *guc, u32 *msg, u32 len)
{
	struct xe_gt *gt = guc_to_gt(guc);
	struct acc_queue *acc_queue;
	u32 asid;
	bool full;

	if (unlikely(len != ACC_MSG_LEN_DW))
		return -EPROTO;

	asid = FIELD_GET(ACC_ASID, msg[1]);
	acc_queue = &gt->usm.acc_queue[asid % NUM_ACC_QUEUE];

	spin_lock(&acc_queue->lock);
	full = acc_queue_full(acc_queue);
	if (!full) {
		memcpy(acc_queue->data + acc_queue->tail, msg,
		       len * sizeof(u32));
		acc_queue->tail = (acc_queue->tail + len) % ACC_QUEUE_NUM_DW;
		queue_work(gt->usm.acc_wq, &acc_queue->worker);
	} else {
		drm_warn(&gt_to_xe(gt)->drm, "ACC Queue full, dropping ACC");
	}
	spin_unlock(&acc_queue->lock);

	return full ? -ENOSPC : 0;
}