1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2021 Intel Corporation
*/
#include "xe_ggtt.h"
#include <linux/sizes.h>
#include <drm/drm_managed.h>
#include <drm/i915_drm.h>
#include "regs/xe_gt_regs.h"
#include "regs/xe_regs.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_gt.h"
#include "xe_gt_tlb_invalidation.h"
#include "xe_map.h"
#include "xe_mmio.h"
#include "xe_wopcm.h"
#define XELPG_GGTT_PTE_PAT0 BIT_ULL(52)
#define XELPG_GGTT_PTE_PAT1 BIT_ULL(53)
/* GuC addresses above GUC_GGTT_TOP also don't map through the GTT */
#define GUC_GGTT_TOP 0xFEE00000
static u64 xelp_ggtt_pte_encode_bo(struct xe_bo *bo, u64 bo_offset,
enum xe_cache_level cache)
{
u64 pte;
pte = xe_bo_addr(bo, bo_offset, XE_PAGE_SIZE);
pte |= XE_PAGE_PRESENT;
if (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo))
pte |= XE_GGTT_PTE_DM;
return pte;
}
static u64 xelpg_ggtt_pte_encode_bo(struct xe_bo *bo, u64 bo_offset,
enum xe_cache_level cache)
{
struct xe_device *xe = xe_bo_device(bo);
u32 pat_index = xe->pat.idx[cache];
u64 pte;
pte = xelp_ggtt_pte_encode_bo(bo, bo_offset, cache);
xe_assert(xe, pat_index <= 3);
if (pat_index & BIT(0))
pte |= XELPG_GGTT_PTE_PAT0;
if (pat_index & BIT(1))
pte |= XELPG_GGTT_PTE_PAT1;
return pte;
}
static unsigned int probe_gsm_size(struct pci_dev *pdev)
{
u16 gmch_ctl, ggms;
pci_read_config_word(pdev, SNB_GMCH_CTRL, &gmch_ctl);
ggms = (gmch_ctl >> BDW_GMCH_GGMS_SHIFT) & BDW_GMCH_GGMS_MASK;
return ggms ? SZ_1M << ggms : 0;
}
void xe_ggtt_set_pte(struct xe_ggtt *ggtt, u64 addr, u64 pte)
{
xe_tile_assert(ggtt->tile, !(addr & XE_PTE_MASK));
xe_tile_assert(ggtt->tile, addr < ggtt->size);
writeq(pte, &ggtt->gsm[addr >> XE_PTE_SHIFT]);
}
static void xe_ggtt_clear(struct xe_ggtt *ggtt, u64 start, u64 size)
{
u64 end = start + size - 1;
u64 scratch_pte;
xe_tile_assert(ggtt->tile, start < end);
if (ggtt->scratch)
scratch_pte = ggtt->pt_ops->pte_encode_bo(ggtt->scratch, 0,
XE_CACHE_WB);
else
scratch_pte = 0;
while (start < end) {
xe_ggtt_set_pte(ggtt, start, scratch_pte);
start += XE_PAGE_SIZE;
}
}
static void ggtt_fini_noalloc(struct drm_device *drm, void *arg)
{
struct xe_ggtt *ggtt = arg;
mutex_destroy(&ggtt->lock);
drm_mm_takedown(&ggtt->mm);
xe_bo_unpin_map_no_vm(ggtt->scratch);
}
static void primelockdep(struct xe_ggtt *ggtt)
{
if (!IS_ENABLED(CONFIG_LOCKDEP))
return;
fs_reclaim_acquire(GFP_KERNEL);
might_lock(&ggtt->lock);
fs_reclaim_release(GFP_KERNEL);
}
static const struct xe_ggtt_pt_ops xelp_pt_ops = {
.pte_encode_bo = xelp_ggtt_pte_encode_bo,
};
static const struct xe_ggtt_pt_ops xelpg_pt_ops = {
.pte_encode_bo = xelpg_ggtt_pte_encode_bo,
};
int xe_ggtt_init_noalloc(struct xe_ggtt *ggtt)
{
struct xe_device *xe = tile_to_xe(ggtt->tile);
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
unsigned int gsm_size;
gsm_size = probe_gsm_size(pdev);
if (gsm_size == 0) {
drm_err(&xe->drm, "Hardware reported no preallocated GSM\n");
return -ENOMEM;
}
ggtt->gsm = ggtt->tile->mmio.regs + SZ_8M;
ggtt->size = (gsm_size / 8) * (u64) XE_PAGE_SIZE;
if (IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K)
ggtt->flags |= XE_GGTT_FLAGS_64K;
/*
* 8B per entry, each points to a 4KB page.
*
* The GuC address space is limited on both ends of the GGTT, because
* the GuC shim HW redirects accesses to those addresses to other HW
* areas instead of going through the GGTT. On the bottom end, the GuC
* can't access offsets below the WOPCM size, while on the top side the
* limit is fixed at GUC_GGTT_TOP. To keep things simple, instead of
* checking each object to see if they are accessed by GuC or not, we
* just exclude those areas from the allocator. Additionally, to
* simplify the driver load, we use the maximum WOPCM size in this logic
* instead of the programmed one, so we don't need to wait until the
* actual size to be programmed is determined (which requires FW fetch)
* before initializing the GGTT. These simplifications might waste space
* in the GGTT (about 20-25 MBs depending on the platform) but we can
* live with this.
*
* Another benifit of this is the GuC bootrom can't access anything
* below the WOPCM max size so anything the bootom needs to access (e.g.
* a RSA key) needs to be placed in the GGTT above the WOPCM max size.
* Starting the GGTT allocations above the WOPCM max give us the correct
* placement for free.
*/
if (ggtt->size > GUC_GGTT_TOP)
ggtt->size = GUC_GGTT_TOP;
if (GRAPHICS_VERx100(xe) >= 1270)
ggtt->pt_ops = &xelpg_pt_ops;
else
ggtt->pt_ops = &xelp_pt_ops;
drm_mm_init(&ggtt->mm, xe_wopcm_size(xe),
ggtt->size - xe_wopcm_size(xe));
mutex_init(&ggtt->lock);
primelockdep(ggtt);
return drmm_add_action_or_reset(&xe->drm, ggtt_fini_noalloc, ggtt);
}
static void xe_ggtt_initial_clear(struct xe_ggtt *ggtt)
{
struct drm_mm_node *hole;
u64 start, end;
/* Display may have allocated inside ggtt, so be careful with clearing here */
xe_device_mem_access_get(tile_to_xe(ggtt->tile));
mutex_lock(&ggtt->lock);
drm_mm_for_each_hole(hole, &ggtt->mm, start, end)
xe_ggtt_clear(ggtt, start, end - start);
xe_ggtt_invalidate(ggtt);
mutex_unlock(&ggtt->lock);
xe_device_mem_access_put(tile_to_xe(ggtt->tile));
}
int xe_ggtt_init(struct xe_ggtt *ggtt)
{
struct xe_device *xe = tile_to_xe(ggtt->tile);
unsigned int flags;
int err;
/*
* So we don't need to worry about 64K GGTT layout when dealing with
* scratch entires, rather keep the scratch page in system memory on
* platforms where 64K pages are needed for VRAM.
*/
flags = XE_BO_CREATE_PINNED_BIT;
if (ggtt->flags & XE_GGTT_FLAGS_64K)
flags |= XE_BO_CREATE_SYSTEM_BIT;
else
flags |= XE_BO_CREATE_VRAM_IF_DGFX(ggtt->tile);
ggtt->scratch = xe_bo_create_pin_map(xe, ggtt->tile, NULL, XE_PAGE_SIZE,
ttm_bo_type_kernel,
flags);
if (IS_ERR(ggtt->scratch)) {
err = PTR_ERR(ggtt->scratch);
goto err;
}
xe_map_memset(xe, &ggtt->scratch->vmap, 0, 0, ggtt->scratch->size);
xe_ggtt_initial_clear(ggtt);
return 0;
err:
ggtt->scratch = NULL;
return err;
}
#define GUC_TLB_INV_CR XE_REG(0xcee8)
#define GUC_TLB_INV_CR_INVALIDATE REG_BIT(0)
#define PVC_GUC_TLB_INV_DESC0 XE_REG(0xcf7c)
#define PVC_GUC_TLB_INV_DESC0_VALID REG_BIT(0)
#define PVC_GUC_TLB_INV_DESC1 XE_REG(0xcf80)
#define PVC_GUC_TLB_INV_DESC1_INVALIDATE REG_BIT(6)
static void ggtt_invalidate_gt_tlb(struct xe_gt *gt)
{
if (!gt)
return;
/*
* Invalidation can happen when there's no in-flight work keeping the
* GT awake. We need to explicitly grab forcewake to ensure the GT
* and GuC are accessible.
*/
xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
/* TODO: vfunc for GuC vs. non-GuC */
if (gt->uc.guc.submission_state.enabled) {
int seqno;
seqno = xe_gt_tlb_invalidation_guc(gt);
xe_gt_assert(gt, seqno > 0);
if (seqno > 0)
xe_gt_tlb_invalidation_wait(gt, seqno);
} else if (xe_device_uc_enabled(gt_to_xe(gt))) {
struct xe_device *xe = gt_to_xe(gt);
if (xe->info.platform == XE_PVC || GRAPHICS_VER(xe) >= 20) {
xe_mmio_write32(gt, PVC_GUC_TLB_INV_DESC1,
PVC_GUC_TLB_INV_DESC1_INVALIDATE);
xe_mmio_write32(gt, PVC_GUC_TLB_INV_DESC0,
PVC_GUC_TLB_INV_DESC0_VALID);
} else
xe_mmio_write32(gt, GUC_TLB_INV_CR,
GUC_TLB_INV_CR_INVALIDATE);
}
xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
}
void xe_ggtt_invalidate(struct xe_ggtt *ggtt)
{
/* Each GT in a tile has its own TLB to cache GGTT lookups */
ggtt_invalidate_gt_tlb(ggtt->tile->primary_gt);
ggtt_invalidate_gt_tlb(ggtt->tile->media_gt);
}
void xe_ggtt_printk(struct xe_ggtt *ggtt, const char *prefix)
{
u64 addr, scratch_pte;
scratch_pte = ggtt->pt_ops->pte_encode_bo(ggtt->scratch, 0, XE_CACHE_WB);
printk("%sGlobal GTT:", prefix);
for (addr = 0; addr < ggtt->size; addr += XE_PAGE_SIZE) {
unsigned int i = addr / XE_PAGE_SIZE;
xe_tile_assert(ggtt->tile, addr <= U32_MAX);
if (ggtt->gsm[i] == scratch_pte)
continue;
printk("%s ggtt[0x%08x] = 0x%016llx",
prefix, (u32)addr, ggtt->gsm[i]);
}
}
int xe_ggtt_insert_special_node_locked(struct xe_ggtt *ggtt, struct drm_mm_node *node,
u32 size, u32 align, u32 mm_flags)
{
return drm_mm_insert_node_generic(&ggtt->mm, node, size, align, 0,
mm_flags);
}
int xe_ggtt_insert_special_node(struct xe_ggtt *ggtt, struct drm_mm_node *node,
u32 size, u32 align)
{
int ret;
mutex_lock(&ggtt->lock);
ret = xe_ggtt_insert_special_node_locked(ggtt, node, size,
align, DRM_MM_INSERT_HIGH);
mutex_unlock(&ggtt->lock);
return ret;
}
void xe_ggtt_map_bo(struct xe_ggtt *ggtt, struct xe_bo *bo)
{
u64 start = bo->ggtt_node.start;
u64 offset, pte;
for (offset = 0; offset < bo->size; offset += XE_PAGE_SIZE) {
pte = ggtt->pt_ops->pte_encode_bo(bo, offset, XE_CACHE_WB);
xe_ggtt_set_pte(ggtt, start + offset, pte);
}
xe_ggtt_invalidate(ggtt);
}
static int __xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo,
u64 start, u64 end, u64 alignment)
{
int err;
if (XE_WARN_ON(bo->ggtt_node.size)) {
/* Someone's already inserted this BO in the GGTT */
xe_tile_assert(ggtt->tile, bo->ggtt_node.size == bo->size);
return 0;
}
err = xe_bo_validate(bo, NULL, false);
if (err)
return err;
xe_device_mem_access_get(tile_to_xe(ggtt->tile));
mutex_lock(&ggtt->lock);
err = drm_mm_insert_node_in_range(&ggtt->mm, &bo->ggtt_node, bo->size,
alignment, 0, start, end, 0);
if (!err)
xe_ggtt_map_bo(ggtt, bo);
mutex_unlock(&ggtt->lock);
xe_device_mem_access_put(tile_to_xe(ggtt->tile));
return err;
}
int xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo, u64 ofs)
{
if (xe_bo_is_vram(bo) && ggtt->flags & XE_GGTT_FLAGS_64K) {
if (XE_WARN_ON(!IS_ALIGNED(ofs, SZ_64K)) ||
XE_WARN_ON(!IS_ALIGNED(bo->size, SZ_64K)))
return -EINVAL;
}
return __xe_ggtt_insert_bo_at(ggtt, bo, ofs, ofs + bo->size, 0);
}
int xe_ggtt_insert_bo(struct xe_ggtt *ggtt, struct xe_bo *bo)
{
u64 alignment;
alignment = XE_PAGE_SIZE;
if (xe_bo_is_vram(bo) && ggtt->flags & XE_GGTT_FLAGS_64K)
alignment = SZ_64K;
return __xe_ggtt_insert_bo_at(ggtt, bo, 0, U64_MAX, alignment);
}
void xe_ggtt_remove_node(struct xe_ggtt *ggtt, struct drm_mm_node *node)
{
xe_device_mem_access_get(tile_to_xe(ggtt->tile));
mutex_lock(&ggtt->lock);
xe_ggtt_clear(ggtt, node->start, node->size);
drm_mm_remove_node(node);
node->size = 0;
xe_ggtt_invalidate(ggtt);
mutex_unlock(&ggtt->lock);
xe_device_mem_access_put(tile_to_xe(ggtt->tile));
}
void xe_ggtt_remove_bo(struct xe_ggtt *ggtt, struct xe_bo *bo)
{
if (XE_WARN_ON(!bo->ggtt_node.size))
return;
/* This BO is not currently in the GGTT */
xe_tile_assert(ggtt->tile, bo->ggtt_node.size == bo->size);
xe_ggtt_remove_node(ggtt, &bo->ggtt_node);
}
int xe_ggtt_dump(struct xe_ggtt *ggtt, struct drm_printer *p)
{
int err;
err = mutex_lock_interruptible(&ggtt->lock);
if (err)
return err;
drm_mm_print(&ggtt->mm, p);
mutex_unlock(&ggtt->lock);
return err;
}
|