summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/nouveau/nvkm/subdev/mmu/base.c
blob: 22264d3db22fb2e4fde142eee7438983d44e2886 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
/*
 * Copyright 2010 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Ben Skeggs
 */
#include "priv.h"
#include "vmm.h"

#include <core/gpuobj.h>
#include <subdev/fb.h>

struct nvkm_mmu_ptp {
	struct nvkm_mmu_pt *pt;
	struct list_head head;
	u8  shift;
	u16 mask;
	u16 free;
};

static void
nvkm_mmu_ptp_put(struct nvkm_mmu *mmu, bool force, struct nvkm_mmu_pt *pt)
{
	const int slot = pt->base >> pt->ptp->shift;
	struct nvkm_mmu_ptp *ptp = pt->ptp;

	/* If there were no free slots in the parent allocation before,
	 * there will be now, so return PTP to the cache.
	 */
	if (!ptp->free)
		list_add(&ptp->head, &mmu->ptp.list);
	ptp->free |= BIT(slot);

	/* If there's no more sub-allocations, destroy PTP. */
	if (ptp->free == ptp->mask) {
		nvkm_mmu_ptc_put(mmu, force, &ptp->pt);
		list_del(&ptp->head);
		kfree(ptp);
	}

	kfree(pt);
}

struct nvkm_mmu_pt *
nvkm_mmu_ptp_get(struct nvkm_mmu *mmu, u32 size, bool zero)
{
	struct nvkm_mmu_pt *pt;
	struct nvkm_mmu_ptp *ptp;
	int slot;

	if (!(pt = kzalloc(sizeof(*pt), GFP_KERNEL)))
		return NULL;

	ptp = list_first_entry_or_null(&mmu->ptp.list, typeof(*ptp), head);
	if (!ptp) {
		/* Need to allocate a new parent to sub-allocate from. */
		if (!(ptp = kmalloc(sizeof(*ptp), GFP_KERNEL))) {
			kfree(pt);
			return NULL;
		}

		ptp->pt = nvkm_mmu_ptc_get(mmu, 0x1000, 0x1000, false);
		if (!ptp->pt) {
			kfree(ptp);
			kfree(pt);
			return NULL;
		}

		ptp->shift = order_base_2(size);
		slot = nvkm_memory_size(ptp->pt->memory) >> ptp->shift;
		ptp->mask = (1 << slot) - 1;
		ptp->free = ptp->mask;
		list_add(&ptp->head, &mmu->ptp.list);
	}
	pt->ptp = ptp;
	pt->sub = true;

	/* Sub-allocate from parent object, removing PTP from cache
	 * if there's no more free slots left.
	 */
	slot = __ffs(ptp->free);
	ptp->free &= ~BIT(slot);
	if (!ptp->free)
		list_del(&ptp->head);

	pt->memory = pt->ptp->pt->memory;
	pt->base = slot << ptp->shift;
	pt->addr = pt->ptp->pt->addr + pt->base;
	return pt;
}

struct nvkm_mmu_ptc {
	struct list_head head;
	struct list_head item;
	u32 size;
	u32 refs;
};

static inline struct nvkm_mmu_ptc *
nvkm_mmu_ptc_find(struct nvkm_mmu *mmu, u32 size)
{
	struct nvkm_mmu_ptc *ptc;

	list_for_each_entry(ptc, &mmu->ptc.list, head) {
		if (ptc->size == size)
			return ptc;
	}

	ptc = kmalloc(sizeof(*ptc), GFP_KERNEL);
	if (ptc) {
		INIT_LIST_HEAD(&ptc->item);
		ptc->size = size;
		ptc->refs = 0;
		list_add(&ptc->head, &mmu->ptc.list);
	}

	return ptc;
}

void
nvkm_mmu_ptc_put(struct nvkm_mmu *mmu, bool force, struct nvkm_mmu_pt **ppt)
{
	struct nvkm_mmu_pt *pt = *ppt;
	if (pt) {
		/* Handle sub-allocated page tables. */
		if (pt->sub) {
			mutex_lock(&mmu->ptp.mutex);
			nvkm_mmu_ptp_put(mmu, force, pt);
			mutex_unlock(&mmu->ptp.mutex);
			return;
		}

		/* Either cache or free the object. */
		mutex_lock(&mmu->ptc.mutex);
		if (pt->ptc->refs < 8 /* Heuristic. */ && !force) {
			list_add_tail(&pt->head, &pt->ptc->item);
			pt->ptc->refs++;
		} else {
			nvkm_memory_unref(&pt->memory);
			kfree(pt);
		}
		mutex_unlock(&mmu->ptc.mutex);
	}
}

struct nvkm_mmu_pt *
nvkm_mmu_ptc_get(struct nvkm_mmu *mmu, u32 size, u32 align, bool zero)
{
	struct nvkm_mmu_ptc *ptc;
	struct nvkm_mmu_pt *pt;
	int ret;

	/* Sub-allocated page table (ie. GP100 LPT). */
	if (align < 0x1000) {
		mutex_lock(&mmu->ptp.mutex);
		pt = nvkm_mmu_ptp_get(mmu, align, zero);
		mutex_unlock(&mmu->ptp.mutex);
		return pt;
	}

	/* Lookup cache for this page table size. */
	mutex_lock(&mmu->ptc.mutex);
	ptc = nvkm_mmu_ptc_find(mmu, size);
	if (!ptc) {
		mutex_unlock(&mmu->ptc.mutex);
		return NULL;
	}

	/* If there's a free PT in the cache, reuse it. */
	pt = list_first_entry_or_null(&ptc->item, typeof(*pt), head);
	if (pt) {
		if (zero)
			nvkm_fo64(pt->memory, 0, 0, size >> 3);
		list_del(&pt->head);
		ptc->refs--;
		mutex_unlock(&mmu->ptc.mutex);
		return pt;
	}
	mutex_unlock(&mmu->ptc.mutex);

	/* No such luck, we need to allocate. */
	if (!(pt = kmalloc(sizeof(*pt), GFP_KERNEL)))
		return NULL;
	pt->ptc = ptc;
	pt->sub = false;

	ret = nvkm_memory_new(mmu->subdev.device, NVKM_MEM_TARGET_INST,
			      size, align, zero, &pt->memory);
	if (ret) {
		kfree(pt);
		return NULL;
	}

	pt->base = 0;
	pt->addr = nvkm_memory_addr(pt->memory);
	return pt;
}

void
nvkm_mmu_ptc_dump(struct nvkm_mmu *mmu)
{
	struct nvkm_mmu_ptc *ptc;
	list_for_each_entry(ptc, &mmu->ptc.list, head) {
		struct nvkm_mmu_pt *pt, *tt;
		list_for_each_entry_safe(pt, tt, &ptc->item, head) {
			nvkm_memory_unref(&pt->memory);
			list_del(&pt->head);
			kfree(pt);
		}
	}
}

static void
nvkm_mmu_ptc_fini(struct nvkm_mmu *mmu)
{
	struct nvkm_mmu_ptc *ptc, *ptct;

	list_for_each_entry_safe(ptc, ptct, &mmu->ptc.list, head) {
		WARN_ON(!list_empty(&ptc->item));
		list_del(&ptc->head);
		kfree(ptc);
	}
}

static void
nvkm_mmu_ptc_init(struct nvkm_mmu *mmu)
{
	mutex_init(&mmu->ptc.mutex);
	INIT_LIST_HEAD(&mmu->ptc.list);
	mutex_init(&mmu->ptp.mutex);
	INIT_LIST_HEAD(&mmu->ptp.list);
}

void
nvkm_vm_map_at(struct nvkm_vma *vma, u64 delta, struct nvkm_mem *node)
{
	struct nvkm_vm *vm = vma->vm;
	struct nvkm_mmu *mmu = vm->mmu;
	struct nvkm_mm_node *r = node->mem;
	int big = vma->node->type != mmu->func->spg_shift;
	u32 offset = vma->node->offset + (delta >> 12);
	u32 bits = vma->node->type - 12;
	u32 pde  = (offset >> mmu->func->pgt_bits) - vm->fpde;
	u32 pte  = (offset & ((1 << mmu->func->pgt_bits) - 1)) >> bits;
	u32 max  = 1 << (mmu->func->pgt_bits - bits);
	u32 end, len;

	delta = 0;
	while (r) {
		u64 phys = (u64)r->offset << 12;
		u32 num  = r->length >> bits;

		while (num) {
			struct nvkm_memory *pgt = vm->pgt[pde].mem[big];

			end = (pte + num);
			if (unlikely(end >= max))
				end = max;
			len = end - pte;

			mmu->func->map(vma, pgt, node, pte, len, phys, delta);

			num -= len;
			pte += len;
			if (unlikely(end >= max)) {
				phys += len << (bits + 12);
				pde++;
				pte = 0;
			}

			delta += (u64)len << vma->node->type;
		}
		r = r->next;
	}

	mmu->func->flush(vm);
}

static void
nvkm_vm_map_sg_table(struct nvkm_vma *vma, u64 delta, u64 length,
		     struct nvkm_mem *mem)
{
	struct nvkm_vm *vm = vma->vm;
	struct nvkm_mmu *mmu = vm->mmu;
	int big = vma->node->type != mmu->func->spg_shift;
	u32 offset = vma->node->offset + (delta >> 12);
	u32 bits = vma->node->type - 12;
	u32 num  = length >> vma->node->type;
	u32 pde  = (offset >> mmu->func->pgt_bits) - vm->fpde;
	u32 pte  = (offset & ((1 << mmu->func->pgt_bits) - 1)) >> bits;
	u32 max  = 1 << (mmu->func->pgt_bits - bits);
	unsigned m, sglen;
	u32 end, len;
	int i;
	struct scatterlist *sg;

	for_each_sg(mem->sg->sgl, sg, mem->sg->nents, i) {
		struct nvkm_memory *pgt = vm->pgt[pde].mem[big];
		sglen = sg_dma_len(sg) >> PAGE_SHIFT;

		end = pte + sglen;
		if (unlikely(end >= max))
			end = max;
		len = end - pte;

		for (m = 0; m < len; m++) {
			dma_addr_t addr = sg_dma_address(sg) + (m << PAGE_SHIFT);

			mmu->func->map_sg(vma, pgt, mem, pte, 1, &addr);
			num--;
			pte++;

			if (num == 0)
				goto finish;
		}
		if (unlikely(end >= max)) {
			pde++;
			pte = 0;
		}
		if (m < sglen) {
			for (; m < sglen; m++) {
				dma_addr_t addr = sg_dma_address(sg) + (m << PAGE_SHIFT);

				mmu->func->map_sg(vma, pgt, mem, pte, 1, &addr);
				num--;
				pte++;
				if (num == 0)
					goto finish;
			}
		}

	}
finish:
	mmu->func->flush(vm);
}

static void
nvkm_vm_map_sg(struct nvkm_vma *vma, u64 delta, u64 length,
	       struct nvkm_mem *mem)
{
	struct nvkm_vm *vm = vma->vm;
	struct nvkm_mmu *mmu = vm->mmu;
	dma_addr_t *list = mem->pages;
	int big = vma->node->type != mmu->func->spg_shift;
	u32 offset = vma->node->offset + (delta >> 12);
	u32 bits = vma->node->type - 12;
	u32 num  = length >> vma->node->type;
	u32 pde  = (offset >> mmu->func->pgt_bits) - vm->fpde;
	u32 pte  = (offset & ((1 << mmu->func->pgt_bits) - 1)) >> bits;
	u32 max  = 1 << (mmu->func->pgt_bits - bits);
	u32 end, len;

	while (num) {
		struct nvkm_memory *pgt = vm->pgt[pde].mem[big];

		end = (pte + num);
		if (unlikely(end >= max))
			end = max;
		len = end - pte;

		mmu->func->map_sg(vma, pgt, mem, pte, len, list);

		num  -= len;
		pte  += len;
		list += len;
		if (unlikely(end >= max)) {
			pde++;
			pte = 0;
		}
	}

	mmu->func->flush(vm);
}

void
nvkm_vm_map(struct nvkm_vma *vma, struct nvkm_mem *node)
{
	if (node->sg)
		nvkm_vm_map_sg_table(vma, 0, node->size << 12, node);
	else
	if (node->pages)
		nvkm_vm_map_sg(vma, 0, node->size << 12, node);
	else
		nvkm_vm_map_at(vma, 0, node);
}

void
nvkm_vm_unmap_at(struct nvkm_vma *vma, u64 delta, u64 length)
{
	struct nvkm_vm *vm = vma->vm;
	struct nvkm_mmu *mmu = vm->mmu;
	int big = vma->node->type != mmu->func->spg_shift;
	u32 offset = vma->node->offset + (delta >> 12);
	u32 bits = vma->node->type - 12;
	u32 num  = length >> vma->node->type;
	u32 pde  = (offset >> mmu->func->pgt_bits) - vm->fpde;
	u32 pte  = (offset & ((1 << mmu->func->pgt_bits) - 1)) >> bits;
	u32 max  = 1 << (mmu->func->pgt_bits - bits);
	u32 end, len;

	while (num) {
		struct nvkm_memory *pgt = vm->pgt[pde].mem[big];

		end = (pte + num);
		if (unlikely(end >= max))
			end = max;
		len = end - pte;

		mmu->func->unmap(vma, pgt, pte, len);

		num -= len;
		pte += len;
		if (unlikely(end >= max)) {
			pde++;
			pte = 0;
		}
	}

	mmu->func->flush(vm);
}

void
nvkm_vm_unmap(struct nvkm_vma *vma)
{
	nvkm_vm_unmap_at(vma, 0, (u64)vma->node->length << 12);
}

static void
nvkm_vm_unmap_pgt(struct nvkm_vm *vm, int big, u32 fpde, u32 lpde)
{
	struct nvkm_mmu *mmu = vm->mmu;
	struct nvkm_vm_pgt *vpgt;
	struct nvkm_memory *pgt;
	u32 pde;

	for (pde = fpde; pde <= lpde; pde++) {
		vpgt = &vm->pgt[pde - vm->fpde];
		if (--vpgt->refcount[big])
			continue;

		pgt = vpgt->mem[big];
		vpgt->mem[big] = NULL;

		if (mmu->func->map_pgt)
			mmu->func->map_pgt(vm, pde, vpgt->mem);

		mmu->func->flush(vm);

		nvkm_memory_unref(&pgt);
	}
}

static int
nvkm_vm_map_pgt(struct nvkm_vm *vm, u32 pde, u32 type)
{
	struct nvkm_mmu *mmu = vm->mmu;
	struct nvkm_vm_pgt *vpgt = &vm->pgt[pde - vm->fpde];
	int big = (type != mmu->func->spg_shift);
	u32 pgt_size;
	int ret;

	pgt_size  = (1 << (mmu->func->pgt_bits + 12)) >> type;
	pgt_size *= 8;

	ret = nvkm_memory_new(mmu->subdev.device, NVKM_MEM_TARGET_INST,
			      pgt_size, 0x1000, true, &vpgt->mem[big]);
	if (unlikely(ret))
		return ret;

	if (mmu->func->map_pgt)
		mmu->func->map_pgt(vm, pde, vpgt->mem);

	vpgt->refcount[big]++;
	return 0;
}

int
nvkm_vm_get(struct nvkm_vm *vm, u64 size, u32 page_shift, u32 access,
	    struct nvkm_vma *vma)
{
	struct nvkm_mmu *mmu = vm->mmu;
	u32 align = (1 << page_shift) >> 12;
	u32 msize = size >> 12;
	u32 fpde, lpde, pde;
	int ret;

	mutex_lock(&vm->mutex);
	ret = nvkm_mm_head(&vm->mm, 0, page_shift, msize, msize, align,
			   &vma->node);
	if (unlikely(ret != 0)) {
		mutex_unlock(&vm->mutex);
		return ret;
	}

	fpde = (vma->node->offset >> mmu->func->pgt_bits);
	lpde = (vma->node->offset + vma->node->length - 1) >> mmu->func->pgt_bits;

	for (pde = fpde; pde <= lpde; pde++) {
		struct nvkm_vm_pgt *vpgt = &vm->pgt[pde - vm->fpde];
		int big = (vma->node->type != mmu->func->spg_shift);

		if (likely(vpgt->refcount[big])) {
			vpgt->refcount[big]++;
			continue;
		}

		ret = nvkm_vm_map_pgt(vm, pde, vma->node->type);
		if (ret) {
			if (pde != fpde)
				nvkm_vm_unmap_pgt(vm, big, fpde, pde - 1);
			nvkm_mm_free(&vm->mm, &vma->node);
			mutex_unlock(&vm->mutex);
			return ret;
		}
	}
	mutex_unlock(&vm->mutex);

	vma->vm = NULL;
	nvkm_vm_ref(vm, &vma->vm, NULL);
	vma->offset = (u64)vma->node->offset << 12;
	vma->access = access;
	return 0;
}

void
nvkm_vm_put(struct nvkm_vma *vma)
{
	struct nvkm_mmu *mmu;
	struct nvkm_vm *vm;
	u32 fpde, lpde;

	if (unlikely(vma->node == NULL))
		return;
	vm = vma->vm;
	mmu = vm->mmu;

	fpde = (vma->node->offset >> mmu->func->pgt_bits);
	lpde = (vma->node->offset + vma->node->length - 1) >> mmu->func->pgt_bits;

	mutex_lock(&vm->mutex);
	nvkm_vm_unmap_pgt(vm, vma->node->type != mmu->func->spg_shift, fpde, lpde);
	nvkm_mm_free(&vm->mm, &vma->node);
	mutex_unlock(&vm->mutex);

	nvkm_vm_ref(NULL, &vma->vm, NULL);
}

int
nvkm_vm_boot(struct nvkm_vm *vm, u64 size)
{
	struct nvkm_mmu *mmu = vm->mmu;
	struct nvkm_memory *pgt;
	int ret;

	ret = nvkm_memory_new(mmu->subdev.device, NVKM_MEM_TARGET_INST,
			      (size >> mmu->func->spg_shift) * 8, 0x1000, true, &pgt);
	if (ret == 0) {
		vm->pgt[0].refcount[0] = 1;
		vm->pgt[0].mem[0] = pgt;
		nvkm_memory_boot(pgt, vm);
		vm->bootstrapped = true;
	}

	return ret;
}

static int
nvkm_vm_legacy(struct nvkm_mmu *mmu, u64 offset, u64 length, u64 mm_offset,
	       u32 block, struct nvkm_vm *vm)
{
	u64 mm_length = (offset + length) - mm_offset;
	int ret;

	kref_init(&vm->refcount);
	vm->fpde = offset >> (mmu->func->pgt_bits + 12);
	vm->lpde = (offset + length - 1) >> (mmu->func->pgt_bits + 12);

	vm->pgt  = vzalloc((vm->lpde - vm->fpde + 1) * sizeof(*vm->pgt));
	if (!vm->pgt) {
		kfree(vm);
		return -ENOMEM;
	}

	if (block > length)
		block = length;

	ret = nvkm_mm_init(&vm->mm, 0, mm_offset >> 12, mm_length >> 12,
			   block >> 12);
	if (ret) {
		vfree(vm->pgt);
		return ret;
	}

	return 0;
}

int
nvkm_vm_new(struct nvkm_device *device, u64 offset, u64 length, u64 mm_offset,
	    struct lock_class_key *key, struct nvkm_vm **pvm)
{
	struct nvkm_mmu *mmu = device->mmu;

	*pvm = NULL;
	if (mmu->func->vmm.ctor) {
		int ret = mmu->func->vmm.ctor(mmu, mm_offset,
					      offset + length - mm_offset,
					      NULL, 0, key, "legacy", pvm);
		if (ret) {
			nvkm_vm_ref(NULL, pvm, NULL);
			return ret;
		}

		ret = nvkm_vm_legacy(mmu, offset, length, mm_offset,
				     (*pvm)->func->page_block ?
				     (*pvm)->func->page_block : 4096, *pvm);
		if (ret)
			nvkm_vm_ref(NULL, pvm, NULL);

		return ret;
	}

	return -EINVAL;
}

static void
nvkm_vm_del(struct kref *kref)
{
	struct nvkm_vm *vm = container_of(kref, typeof(*vm), refcount);

	nvkm_mm_fini(&vm->mm);
	vfree(vm->pgt);
	if (vm->func)
		nvkm_vmm_dtor(vm);
	kfree(vm);
}

int
nvkm_vm_ref(struct nvkm_vm *ref, struct nvkm_vm **ptr, struct nvkm_memory *inst)
{
	if (ref) {
		if (ref->func->join && inst) {
			int ret = ref->func->join(ref, inst), i;
			if (ret)
				return ret;

			if (ref->mmu->func->map_pgt) {
				for (i = ref->fpde; i <= ref->lpde; i++)
					ref->mmu->func->map_pgt(ref, i, ref->pgt[i - ref->fpde].mem);
			}
		}

		kref_get(&ref->refcount);
	}

	if (*ptr) {
		if ((*ptr)->func->part && inst)
			(*ptr)->func->part(*ptr, inst);
		if ((*ptr)->bootstrapped && inst)
			nvkm_memory_unref(&(*ptr)->pgt[0].mem[0]);
		kref_put(&(*ptr)->refcount, nvkm_vm_del);
	}

	*ptr = ref;
	return 0;
}

static int
nvkm_mmu_oneinit(struct nvkm_subdev *subdev)
{
	struct nvkm_mmu *mmu = nvkm_mmu(subdev);

	if (mmu->func->vmm.global) {
		int ret = nvkm_vm_new(subdev->device, 0, mmu->limit, 0,
				      NULL, &mmu->vmm);
		if (ret)
			return ret;
	}

	if (mmu->func->oneinit)
		return mmu->func->oneinit(mmu);

	return 0;
}

static int
nvkm_mmu_init(struct nvkm_subdev *subdev)
{
	struct nvkm_mmu *mmu = nvkm_mmu(subdev);
	if (mmu->func->init)
		mmu->func->init(mmu);
	return 0;
}

static void *
nvkm_mmu_dtor(struct nvkm_subdev *subdev)
{
	struct nvkm_mmu *mmu = nvkm_mmu(subdev);

	nvkm_vm_ref(NULL, &mmu->vmm, NULL);

	nvkm_mmu_ptc_fini(mmu);
	return mmu;
}

static const struct nvkm_subdev_func
nvkm_mmu = {
	.dtor = nvkm_mmu_dtor,
	.oneinit = nvkm_mmu_oneinit,
	.init = nvkm_mmu_init,
};

void
nvkm_mmu_ctor(const struct nvkm_mmu_func *func, struct nvkm_device *device,
	      int index, struct nvkm_mmu *mmu)
{
	nvkm_subdev_ctor(&nvkm_mmu, device, index, &mmu->subdev);
	mmu->func = func;
	mmu->limit = func->limit;
	mmu->dma_bits = func->dma_bits;
	mmu->lpg_shift = func->lpg_shift;
	nvkm_mmu_ptc_init(mmu);
}

int
nvkm_mmu_new_(const struct nvkm_mmu_func *func, struct nvkm_device *device,
	      int index, struct nvkm_mmu **pmmu)
{
	if (!(*pmmu = kzalloc(sizeof(**pmmu), GFP_KERNEL)))
		return -ENOMEM;
	nvkm_mmu_ctor(func, device, index, *pmmu);
	return 0;
}