1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2014-2015 The Linux Foundation. All rights reserved.
*/
#include "mdp5_kms.h"
#include "mdp5_ctl.h"
/*
* CTL - MDP Control Pool Manager
*
* Controls are shared between all display interfaces.
*
* They are intended to be used for data path configuration.
* The top level register programming describes the complete data path for
* a specific data path ID - REG_MDP5_CTL_*(<id>, ...)
*
* Hardware capabilities determine the number of concurrent data paths
*
* In certain use cases (high-resolution dual pipe), one single CTL can be
* shared across multiple CRTCs.
*/
#define CTL_STAT_BUSY 0x1
#define CTL_STAT_BOOKED 0x2
struct mdp5_ctl {
struct mdp5_ctl_manager *ctlm;
u32 id;
/* CTL status bitmask */
u32 status;
bool encoder_enabled;
/* pending flush_mask bits */
u32 flush_mask;
/* REG_MDP5_CTL_*(<id>) registers access info + lock: */
spinlock_t hw_lock;
u32 reg_offset;
/* when do CTL registers need to be flushed? (mask of trigger bits) */
u32 pending_ctl_trigger;
bool cursor_on;
/* True if the current CTL has FLUSH bits pending for single FLUSH. */
bool flush_pending;
struct mdp5_ctl *pair; /* Paired CTL to be flushed together */
};
struct mdp5_ctl_manager {
struct drm_device *dev;
/* number of CTL / Layer Mixers in this hw config: */
u32 nlm;
u32 nctl;
/* to filter out non-present bits in the current hardware config */
u32 flush_hw_mask;
/* status for single FLUSH */
bool single_flush_supported;
u32 single_flush_pending_mask;
/* pool of CTLs + lock to protect resource allocation (ctls[i].busy) */
spinlock_t pool_lock;
struct mdp5_ctl ctls[MAX_CTL];
};
static inline
struct mdp5_kms *get_kms(struct mdp5_ctl_manager *ctl_mgr)
{
struct msm_drm_private *priv = ctl_mgr->dev->dev_private;
return to_mdp5_kms(to_mdp_kms(priv->kms));
}
static inline
void ctl_write(struct mdp5_ctl *ctl, u32 reg, u32 data)
{
struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
(void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
mdp5_write(mdp5_kms, reg, data);
}
static inline
u32 ctl_read(struct mdp5_ctl *ctl, u32 reg)
{
struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
(void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
return mdp5_read(mdp5_kms, reg);
}
static void set_display_intf(struct mdp5_kms *mdp5_kms,
struct mdp5_interface *intf)
{
unsigned long flags;
u32 intf_sel;
spin_lock_irqsave(&mdp5_kms->resource_lock, flags);
intf_sel = mdp5_read(mdp5_kms, REG_MDP5_DISP_INTF_SEL);
switch (intf->num) {
case 0:
intf_sel &= ~MDP5_DISP_INTF_SEL_INTF0__MASK;
intf_sel |= MDP5_DISP_INTF_SEL_INTF0(intf->type);
break;
case 1:
intf_sel &= ~MDP5_DISP_INTF_SEL_INTF1__MASK;
intf_sel |= MDP5_DISP_INTF_SEL_INTF1(intf->type);
break;
case 2:
intf_sel &= ~MDP5_DISP_INTF_SEL_INTF2__MASK;
intf_sel |= MDP5_DISP_INTF_SEL_INTF2(intf->type);
break;
case 3:
intf_sel &= ~MDP5_DISP_INTF_SEL_INTF3__MASK;
intf_sel |= MDP5_DISP_INTF_SEL_INTF3(intf->type);
break;
default:
BUG();
break;
}
mdp5_write(mdp5_kms, REG_MDP5_DISP_INTF_SEL, intf_sel);
spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags);
}
static void set_ctl_op(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline)
{
unsigned long flags;
struct mdp5_interface *intf = pipeline->intf;
u32 ctl_op = 0;
if (!mdp5_cfg_intf_is_virtual(intf->type))
ctl_op |= MDP5_CTL_OP_INTF_NUM(INTF0 + intf->num);
switch (intf->type) {
case INTF_DSI:
if (intf->mode == MDP5_INTF_DSI_MODE_COMMAND)
ctl_op |= MDP5_CTL_OP_CMD_MODE;
break;
case INTF_WB:
if (intf->mode == MDP5_INTF_WB_MODE_LINE)
ctl_op |= MDP5_CTL_OP_MODE(MODE_WB_2_LINE);
break;
default:
break;
}
if (pipeline->r_mixer)
ctl_op |= MDP5_CTL_OP_PACK_3D_ENABLE |
MDP5_CTL_OP_PACK_3D(1);
spin_lock_irqsave(&ctl->hw_lock, flags);
ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), ctl_op);
spin_unlock_irqrestore(&ctl->hw_lock, flags);
}
int mdp5_ctl_set_pipeline(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline)
{
struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
struct mdp5_interface *intf = pipeline->intf;
/* Virtual interfaces need not set a display intf (e.g.: Writeback) */
if (!mdp5_cfg_intf_is_virtual(intf->type))
set_display_intf(mdp5_kms, intf);
set_ctl_op(ctl, pipeline);
return 0;
}
static bool start_signal_needed(struct mdp5_ctl *ctl,
struct mdp5_pipeline *pipeline)
{
struct mdp5_interface *intf = pipeline->intf;
if (!ctl->encoder_enabled)
return false;
switch (intf->type) {
case INTF_WB:
return true;
case INTF_DSI:
return intf->mode == MDP5_INTF_DSI_MODE_COMMAND;
default:
return false;
}
}
/*
* send_start_signal() - Overlay Processor Start Signal
*
* For a given control operation (display pipeline), a START signal needs to be
* executed in order to kick off operation and activate all layers.
* e.g.: DSI command mode, Writeback
*/
static void send_start_signal(struct mdp5_ctl *ctl)
{
unsigned long flags;
spin_lock_irqsave(&ctl->hw_lock, flags);
ctl_write(ctl, REG_MDP5_CTL_START(ctl->id), 1);
spin_unlock_irqrestore(&ctl->hw_lock, flags);
}
/**
* mdp5_ctl_set_encoder_state() - set the encoder state
*
* @enable: true, when encoder is ready for data streaming; false, otherwise.
*
* Note:
* This encoder state is needed to trigger START signal (data path kickoff).
*/
int mdp5_ctl_set_encoder_state(struct mdp5_ctl *ctl,
struct mdp5_pipeline *pipeline,
bool enabled)
{
struct mdp5_interface *intf = pipeline->intf;
if (WARN_ON(!ctl))
return -EINVAL;
ctl->encoder_enabled = enabled;
DBG("intf_%d: %s", intf->num, enabled ? "on" : "off");
if (start_signal_needed(ctl, pipeline)) {
send_start_signal(ctl);
}
return 0;
}
/*
* Note:
* CTL registers need to be flushed after calling this function
* (call mdp5_ctl_commit() with mdp_ctl_flush_mask_ctl() mask)
*/
int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
int cursor_id, bool enable)
{
struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
unsigned long flags;
u32 blend_cfg;
struct mdp5_hw_mixer *mixer = pipeline->mixer;
if (WARN_ON(!mixer)) {
DRM_DEV_ERROR(ctl_mgr->dev->dev, "CTL %d cannot find LM",
ctl->id);
return -EINVAL;
}
if (pipeline->r_mixer) {
DRM_DEV_ERROR(ctl_mgr->dev->dev, "unsupported configuration");
return -EINVAL;
}
spin_lock_irqsave(&ctl->hw_lock, flags);
blend_cfg = ctl_read(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm));
if (enable)
blend_cfg |= MDP5_CTL_LAYER_REG_CURSOR_OUT;
else
blend_cfg &= ~MDP5_CTL_LAYER_REG_CURSOR_OUT;
ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg);
ctl->cursor_on = enable;
spin_unlock_irqrestore(&ctl->hw_lock, flags);
ctl->pending_ctl_trigger = mdp_ctl_flush_mask_cursor(cursor_id);
return 0;
}
static u32 mdp_ctl_blend_mask(enum mdp5_pipe pipe,
enum mdp_mixer_stage_id stage)
{
switch (pipe) {
case SSPP_VIG0: return MDP5_CTL_LAYER_REG_VIG0(stage);
case SSPP_VIG1: return MDP5_CTL_LAYER_REG_VIG1(stage);
case SSPP_VIG2: return MDP5_CTL_LAYER_REG_VIG2(stage);
case SSPP_RGB0: return MDP5_CTL_LAYER_REG_RGB0(stage);
case SSPP_RGB1: return MDP5_CTL_LAYER_REG_RGB1(stage);
case SSPP_RGB2: return MDP5_CTL_LAYER_REG_RGB2(stage);
case SSPP_DMA0: return MDP5_CTL_LAYER_REG_DMA0(stage);
case SSPP_DMA1: return MDP5_CTL_LAYER_REG_DMA1(stage);
case SSPP_VIG3: return MDP5_CTL_LAYER_REG_VIG3(stage);
case SSPP_RGB3: return MDP5_CTL_LAYER_REG_RGB3(stage);
case SSPP_CURSOR0:
case SSPP_CURSOR1:
default: return 0;
}
}
static u32 mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe,
enum mdp_mixer_stage_id stage)
{
if (stage < STAGE6 && (pipe != SSPP_CURSOR0 && pipe != SSPP_CURSOR1))
return 0;
switch (pipe) {
case SSPP_VIG0: return MDP5_CTL_LAYER_EXT_REG_VIG0_BIT3;
case SSPP_VIG1: return MDP5_CTL_LAYER_EXT_REG_VIG1_BIT3;
case SSPP_VIG2: return MDP5_CTL_LAYER_EXT_REG_VIG2_BIT3;
case SSPP_RGB0: return MDP5_CTL_LAYER_EXT_REG_RGB0_BIT3;
case SSPP_RGB1: return MDP5_CTL_LAYER_EXT_REG_RGB1_BIT3;
case SSPP_RGB2: return MDP5_CTL_LAYER_EXT_REG_RGB2_BIT3;
case SSPP_DMA0: return MDP5_CTL_LAYER_EXT_REG_DMA0_BIT3;
case SSPP_DMA1: return MDP5_CTL_LAYER_EXT_REG_DMA1_BIT3;
case SSPP_VIG3: return MDP5_CTL_LAYER_EXT_REG_VIG3_BIT3;
case SSPP_RGB3: return MDP5_CTL_LAYER_EXT_REG_RGB3_BIT3;
case SSPP_CURSOR0: return MDP5_CTL_LAYER_EXT_REG_CURSOR0(stage);
case SSPP_CURSOR1: return MDP5_CTL_LAYER_EXT_REG_CURSOR1(stage);
default: return 0;
}
}
static void mdp5_ctl_reset_blend_regs(struct mdp5_ctl *ctl)
{
unsigned long flags;
struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
int i;
spin_lock_irqsave(&ctl->hw_lock, flags);
for (i = 0; i < ctl_mgr->nlm; i++) {
ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, i), 0x0);
ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, i), 0x0);
}
spin_unlock_irqrestore(&ctl->hw_lock, flags);
}
#define PIPE_LEFT 0
#define PIPE_RIGHT 1
int mdp5_ctl_blend(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
enum mdp5_pipe stage[][MAX_PIPE_STAGE],
enum mdp5_pipe r_stage[][MAX_PIPE_STAGE],
u32 stage_cnt, u32 ctl_blend_op_flags)
{
struct mdp5_hw_mixer *mixer = pipeline->mixer;
struct mdp5_hw_mixer *r_mixer = pipeline->r_mixer;
unsigned long flags;
u32 blend_cfg = 0, blend_ext_cfg = 0;
u32 r_blend_cfg = 0, r_blend_ext_cfg = 0;
int i, start_stage;
mdp5_ctl_reset_blend_regs(ctl);
if (ctl_blend_op_flags & MDP5_CTL_BLEND_OP_FLAG_BORDER_OUT) {
start_stage = STAGE0;
blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR;
if (r_mixer)
r_blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR;
} else {
start_stage = STAGE_BASE;
}
for (i = start_stage; stage_cnt && i <= STAGE_MAX; i++) {
blend_cfg |=
mdp_ctl_blend_mask(stage[i][PIPE_LEFT], i) |
mdp_ctl_blend_mask(stage[i][PIPE_RIGHT], i);
blend_ext_cfg |=
mdp_ctl_blend_ext_mask(stage[i][PIPE_LEFT], i) |
mdp_ctl_blend_ext_mask(stage[i][PIPE_RIGHT], i);
if (r_mixer) {
r_blend_cfg |=
mdp_ctl_blend_mask(r_stage[i][PIPE_LEFT], i) |
mdp_ctl_blend_mask(r_stage[i][PIPE_RIGHT], i);
r_blend_ext_cfg |=
mdp_ctl_blend_ext_mask(r_stage[i][PIPE_LEFT], i) |
mdp_ctl_blend_ext_mask(r_stage[i][PIPE_RIGHT], i);
}
}
spin_lock_irqsave(&ctl->hw_lock, flags);
if (ctl->cursor_on)
blend_cfg |= MDP5_CTL_LAYER_REG_CURSOR_OUT;
ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg);
ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, mixer->lm),
blend_ext_cfg);
if (r_mixer) {
ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, r_mixer->lm),
r_blend_cfg);
ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, r_mixer->lm),
r_blend_ext_cfg);
}
spin_unlock_irqrestore(&ctl->hw_lock, flags);
ctl->pending_ctl_trigger = mdp_ctl_flush_mask_lm(mixer->lm);
if (r_mixer)
ctl->pending_ctl_trigger |= mdp_ctl_flush_mask_lm(r_mixer->lm);
DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x", mixer->lm,
blend_cfg, blend_ext_cfg);
if (r_mixer)
DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x",
r_mixer->lm, r_blend_cfg, r_blend_ext_cfg);
return 0;
}
u32 mdp_ctl_flush_mask_encoder(struct mdp5_interface *intf)
{
if (intf->type == INTF_WB)
return MDP5_CTL_FLUSH_WB;
switch (intf->num) {
case 0: return MDP5_CTL_FLUSH_TIMING_0;
case 1: return MDP5_CTL_FLUSH_TIMING_1;
case 2: return MDP5_CTL_FLUSH_TIMING_2;
case 3: return MDP5_CTL_FLUSH_TIMING_3;
default: return 0;
}
}
u32 mdp_ctl_flush_mask_cursor(int cursor_id)
{
switch (cursor_id) {
case 0: return MDP5_CTL_FLUSH_CURSOR_0;
case 1: return MDP5_CTL_FLUSH_CURSOR_1;
default: return 0;
}
}
u32 mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)
{
switch (pipe) {
case SSPP_VIG0: return MDP5_CTL_FLUSH_VIG0;
case SSPP_VIG1: return MDP5_CTL_FLUSH_VIG1;
case SSPP_VIG2: return MDP5_CTL_FLUSH_VIG2;
case SSPP_RGB0: return MDP5_CTL_FLUSH_RGB0;
case SSPP_RGB1: return MDP5_CTL_FLUSH_RGB1;
case SSPP_RGB2: return MDP5_CTL_FLUSH_RGB2;
case SSPP_DMA0: return MDP5_CTL_FLUSH_DMA0;
case SSPP_DMA1: return MDP5_CTL_FLUSH_DMA1;
case SSPP_VIG3: return MDP5_CTL_FLUSH_VIG3;
case SSPP_RGB3: return MDP5_CTL_FLUSH_RGB3;
case SSPP_CURSOR0: return MDP5_CTL_FLUSH_CURSOR_0;
case SSPP_CURSOR1: return MDP5_CTL_FLUSH_CURSOR_1;
default: return 0;
}
}
u32 mdp_ctl_flush_mask_lm(int lm)
{
switch (lm) {
case 0: return MDP5_CTL_FLUSH_LM0;
case 1: return MDP5_CTL_FLUSH_LM1;
case 2: return MDP5_CTL_FLUSH_LM2;
case 3: return MDP5_CTL_FLUSH_LM3;
case 4: return MDP5_CTL_FLUSH_LM4;
case 5: return MDP5_CTL_FLUSH_LM5;
default: return 0;
}
}
static u32 fix_sw_flush(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
u32 flush_mask)
{
struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
u32 sw_mask = 0;
#define BIT_NEEDS_SW_FIX(bit) \
(!(ctl_mgr->flush_hw_mask & bit) && (flush_mask & bit))
/* for some targets, cursor bit is the same as LM bit */
if (BIT_NEEDS_SW_FIX(MDP5_CTL_FLUSH_CURSOR_0))
sw_mask |= mdp_ctl_flush_mask_lm(pipeline->mixer->lm);
return sw_mask;
}
static void fix_for_single_flush(struct mdp5_ctl *ctl, u32 *flush_mask,
u32 *flush_id)
{
struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
if (ctl->pair) {
DBG("CTL %d FLUSH pending mask %x", ctl->id, *flush_mask);
ctl->flush_pending = true;
ctl_mgr->single_flush_pending_mask |= (*flush_mask);
*flush_mask = 0;
if (ctl->pair->flush_pending) {
*flush_id = min_t(u32, ctl->id, ctl->pair->id);
*flush_mask = ctl_mgr->single_flush_pending_mask;
ctl->flush_pending = false;
ctl->pair->flush_pending = false;
ctl_mgr->single_flush_pending_mask = 0;
DBG("Single FLUSH mask %x,ID %d", *flush_mask,
*flush_id);
}
}
}
/**
* mdp5_ctl_commit() - Register Flush
*
* The flush register is used to indicate several registers are all
* programmed, and are safe to update to the back copy of the double
* buffered registers.
*
* Some registers FLUSH bits are shared when the hardware does not have
* dedicated bits for them; handling these is the job of fix_sw_flush().
*
* CTL registers need to be flushed in some circumstances; if that is the
* case, some trigger bits will be present in both flush mask and
* ctl->pending_ctl_trigger.
*
* Return H/W flushed bit mask.
*/
u32 mdp5_ctl_commit(struct mdp5_ctl *ctl,
struct mdp5_pipeline *pipeline,
u32 flush_mask, bool start)
{
struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
unsigned long flags;
u32 flush_id = ctl->id;
u32 curr_ctl_flush_mask;
VERB("flush_mask=%x, trigger=%x", flush_mask, ctl->pending_ctl_trigger);
if (ctl->pending_ctl_trigger & flush_mask) {
flush_mask |= MDP5_CTL_FLUSH_CTL;
ctl->pending_ctl_trigger = 0;
}
flush_mask |= fix_sw_flush(ctl, pipeline, flush_mask);
flush_mask &= ctl_mgr->flush_hw_mask;
curr_ctl_flush_mask = flush_mask;
fix_for_single_flush(ctl, &flush_mask, &flush_id);
if (!start) {
ctl->flush_mask |= flush_mask;
return curr_ctl_flush_mask;
} else {
flush_mask |= ctl->flush_mask;
ctl->flush_mask = 0;
}
if (flush_mask) {
spin_lock_irqsave(&ctl->hw_lock, flags);
ctl_write(ctl, REG_MDP5_CTL_FLUSH(flush_id), flush_mask);
spin_unlock_irqrestore(&ctl->hw_lock, flags);
}
if (start_signal_needed(ctl, pipeline)) {
send_start_signal(ctl);
}
return curr_ctl_flush_mask;
}
u32 mdp5_ctl_get_commit_status(struct mdp5_ctl *ctl)
{
return ctl_read(ctl, REG_MDP5_CTL_FLUSH(ctl->id));
}
int mdp5_ctl_get_ctl_id(struct mdp5_ctl *ctl)
{
return WARN_ON(!ctl) ? -EINVAL : ctl->id;
}
/*
* mdp5_ctl_pair() - Associate 2 booked CTLs for single FLUSH
*/
int mdp5_ctl_pair(struct mdp5_ctl *ctlx, struct mdp5_ctl *ctly, bool enable)
{
struct mdp5_ctl_manager *ctl_mgr = ctlx->ctlm;
struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr);
/* do nothing silently if hw doesn't support */
if (!ctl_mgr->single_flush_supported)
return 0;
if (!enable) {
ctlx->pair = NULL;
ctly->pair = NULL;
mdp5_write(mdp5_kms, REG_MDP5_SPARE_0, 0);
return 0;
} else if ((ctlx->pair != NULL) || (ctly->pair != NULL)) {
DRM_DEV_ERROR(ctl_mgr->dev->dev, "CTLs already paired\n");
return -EINVAL;
} else if (!(ctlx->status & ctly->status & CTL_STAT_BOOKED)) {
DRM_DEV_ERROR(ctl_mgr->dev->dev, "Only pair booked CTLs\n");
return -EINVAL;
}
ctlx->pair = ctly;
ctly->pair = ctlx;
mdp5_write(mdp5_kms, REG_MDP5_SPARE_0,
MDP5_SPARE_0_SPLIT_DPL_SINGLE_FLUSH_EN);
return 0;
}
/*
* mdp5_ctl_request() - CTL allocation
*
* Try to return booked CTL for @intf_num is 1 or 2, unbooked for other INTFs.
* If no CTL is available in preferred category, allocate from the other one.
*
* @return fail if no CTL is available.
*/
struct mdp5_ctl *mdp5_ctlm_request(struct mdp5_ctl_manager *ctl_mgr,
int intf_num)
{
struct mdp5_ctl *ctl = NULL;
const u32 checkm = CTL_STAT_BUSY | CTL_STAT_BOOKED;
u32 match = ((intf_num == 1) || (intf_num == 2)) ? CTL_STAT_BOOKED : 0;
unsigned long flags;
int c;
spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
/* search the preferred */
for (c = 0; c < ctl_mgr->nctl; c++)
if ((ctl_mgr->ctls[c].status & checkm) == match)
goto found;
dev_warn(ctl_mgr->dev->dev,
"fall back to the other CTL category for INTF %d!\n", intf_num);
match ^= CTL_STAT_BOOKED;
for (c = 0; c < ctl_mgr->nctl; c++)
if ((ctl_mgr->ctls[c].status & checkm) == match)
goto found;
DRM_DEV_ERROR(ctl_mgr->dev->dev, "No more CTL available!");
goto unlock;
found:
ctl = &ctl_mgr->ctls[c];
ctl->status |= CTL_STAT_BUSY;
ctl->pending_ctl_trigger = 0;
DBG("CTL %d allocated", ctl->id);
unlock:
spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
return ctl;
}
void mdp5_ctlm_hw_reset(struct mdp5_ctl_manager *ctl_mgr)
{
unsigned long flags;
int c;
for (c = 0; c < ctl_mgr->nctl; c++) {
struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
spin_lock_irqsave(&ctl->hw_lock, flags);
ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), 0);
spin_unlock_irqrestore(&ctl->hw_lock, flags);
}
}
void mdp5_ctlm_destroy(struct mdp5_ctl_manager *ctl_mgr)
{
kfree(ctl_mgr);
}
struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev,
void __iomem *mmio_base, struct mdp5_cfg_handler *cfg_hnd)
{
struct mdp5_ctl_manager *ctl_mgr;
const struct mdp5_cfg_hw *hw_cfg = mdp5_cfg_get_hw_config(cfg_hnd);
int rev = mdp5_cfg_get_hw_rev(cfg_hnd);
unsigned dsi_cnt = 0;
const struct mdp5_ctl_block *ctl_cfg = &hw_cfg->ctl;
unsigned long flags;
int c, ret;
ctl_mgr = kzalloc(sizeof(*ctl_mgr), GFP_KERNEL);
if (!ctl_mgr) {
DRM_DEV_ERROR(dev->dev, "failed to allocate CTL manager\n");
ret = -ENOMEM;
goto fail;
}
if (WARN_ON(ctl_cfg->count > MAX_CTL)) {
DRM_DEV_ERROR(dev->dev, "Increase static pool size to at least %d\n",
ctl_cfg->count);
ret = -ENOSPC;
goto fail;
}
/* initialize the CTL manager: */
ctl_mgr->dev = dev;
ctl_mgr->nlm = hw_cfg->lm.count;
ctl_mgr->nctl = ctl_cfg->count;
ctl_mgr->flush_hw_mask = ctl_cfg->flush_hw_mask;
spin_lock_init(&ctl_mgr->pool_lock);
/* initialize each CTL of the pool: */
spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
for (c = 0; c < ctl_mgr->nctl; c++) {
struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
if (WARN_ON(!ctl_cfg->base[c])) {
DRM_DEV_ERROR(dev->dev, "CTL_%d: base is null!\n", c);
ret = -EINVAL;
spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
goto fail;
}
ctl->ctlm = ctl_mgr;
ctl->id = c;
ctl->reg_offset = ctl_cfg->base[c];
ctl->status = 0;
spin_lock_init(&ctl->hw_lock);
}
/*
* In Dual DSI case, CTL0 and CTL1 are always assigned to two DSI
* interfaces to support single FLUSH feature (Flush CTL0 and CTL1 when
* only write into CTL0's FLUSH register) to keep two DSI pipes in sync.
* Single FLUSH is supported from hw rev v3.0.
*/
for (c = 0; c < ARRAY_SIZE(hw_cfg->intf.connect); c++)
if (hw_cfg->intf.connect[c] == INTF_DSI)
dsi_cnt++;
if ((rev >= 3) && (dsi_cnt > 1)) {
ctl_mgr->single_flush_supported = true;
/* Reserve CTL0/1 for INTF1/2 */
ctl_mgr->ctls[0].status |= CTL_STAT_BOOKED;
ctl_mgr->ctls[1].status |= CTL_STAT_BOOKED;
}
spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
DBG("Pool of %d CTLs created.", ctl_mgr->nctl);
return ctl_mgr;
fail:
if (ctl_mgr)
mdp5_ctlm_destroy(ctl_mgr);
return ERR_PTR(ret);
}
|