1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include <linux/slab.h> /* fault-inject.h is not standalone! */
#include <linux/fault-inject.h>
#include "i915_trace.h"
#include "intel_gt.h"
#include "intel_gtt.h"
void stash_init(struct pagestash *stash)
{
pagevec_init(&stash->pvec);
spin_lock_init(&stash->lock);
}
static struct page *stash_pop_page(struct pagestash *stash)
{
struct page *page = NULL;
spin_lock(&stash->lock);
if (likely(stash->pvec.nr))
page = stash->pvec.pages[--stash->pvec.nr];
spin_unlock(&stash->lock);
return page;
}
static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
unsigned int nr;
spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
memcpy(stash->pvec.pages + stash->pvec.nr,
pvec->pages + pvec->nr - nr,
sizeof(pvec->pages[0]) * nr);
stash->pvec.nr += nr;
spin_unlock(&stash->lock);
pvec->nr -= nr;
}
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
{
struct pagevec stack;
struct page *page;
if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
i915_gem_shrink_all(vm->i915);
page = stash_pop_page(&vm->free_pages);
if (page)
return page;
if (!vm->pt_kmap_wc)
return alloc_page(gfp);
/* Look in our global stash of WC pages... */
page = stash_pop_page(&vm->i915->mm.wc_stash);
if (page)
return page;
/*
* Otherwise batch allocate pages to amortize cost of set_pages_wc.
*
* We have to be careful as page allocation may trigger the shrinker
* (via direct reclaim) which will fill up the WC stash underneath us.
* So we add our WB pages into a temporary pvec on the stack and merge
* them into the WC stash after all the allocations are complete.
*/
pagevec_init(&stack);
do {
struct page *page;
page = alloc_page(gfp);
if (unlikely(!page))
break;
stack.pages[stack.nr++] = page;
} while (pagevec_space(&stack));
if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
page = stack.pages[--stack.nr];
/* Merge spare WC pages to the global stash */
if (stack.nr)
stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
/* Push any surplus WC pages onto the local VM stash */
if (stack.nr)
stash_push_pagevec(&vm->free_pages, &stack);
}
/* Return unwanted leftovers */
if (unlikely(stack.nr)) {
WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
__pagevec_release(&stack);
}
return page;
}
static void vm_free_pages_release(struct i915_address_space *vm,
bool immediate)
{
struct pagevec *pvec = &vm->free_pages.pvec;
struct pagevec stack;
lockdep_assert_held(&vm->free_pages.lock);
GEM_BUG_ON(!pagevec_count(pvec));
if (vm->pt_kmap_wc) {
/*
* When we use WC, first fill up the global stash and then
* only if full immediately free the overflow.
*/
stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
/*
* As we have made some room in the VM's free_pages,
* we can wait for it to fill again. Unless we are
* inside i915_address_space_fini() and must
* immediately release the pages!
*/
if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
return;
/*
* We have to drop the lock to allow ourselves to sleep,
* so take a copy of the pvec and clear the stash for
* others to use it as we sleep.
*/
stack = *pvec;
pagevec_reinit(pvec);
spin_unlock(&vm->free_pages.lock);
pvec = &stack;
set_pages_array_wb(pvec->pages, pvec->nr);
spin_lock(&vm->free_pages.lock);
}
__pagevec_release(pvec);
}
static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
/*
* On !llc, we need to change the pages back to WB. We only do so
* in bulk, so we rarely need to change the page attributes here,
* but doing so requires a stop_machine() from deep inside arch/x86/mm.
* To make detection of the possible sleep more likely, use an
* unconditional might_sleep() for everybody.
*/
might_sleep();
spin_lock(&vm->free_pages.lock);
while (!pagevec_space(&vm->free_pages.pvec))
vm_free_pages_release(vm, false);
GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
pagevec_add(&vm->free_pages.pvec, page);
spin_unlock(&vm->free_pages.lock);
}
void __i915_vm_close(struct i915_address_space *vm)
{
struct i915_vma *vma, *vn;
mutex_lock(&vm->mutex);
list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
struct drm_i915_gem_object *obj = vma->obj;
/* Keep the obj (and hence the vma) alive as _we_ destroy it */
if (!kref_get_unless_zero(&obj->base.refcount))
continue;
atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
WARN_ON(__i915_vma_unbind(vma));
__i915_vma_put(vma);
i915_gem_object_put(obj);
}
GEM_BUG_ON(!list_empty(&vm->bound_list));
mutex_unlock(&vm->mutex);
}
void i915_address_space_fini(struct i915_address_space *vm)
{
spin_lock(&vm->free_pages.lock);
if (pagevec_count(&vm->free_pages.pvec))
vm_free_pages_release(vm, true);
GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
spin_unlock(&vm->free_pages.lock);
drm_mm_takedown(&vm->mm);
mutex_destroy(&vm->mutex);
}
static void __i915_vm_release(struct work_struct *work)
{
struct i915_address_space *vm =
container_of(work, struct i915_address_space, rcu.work);
vm->cleanup(vm);
i915_address_space_fini(vm);
kfree(vm);
}
void i915_vm_release(struct kref *kref)
{
struct i915_address_space *vm =
container_of(kref, struct i915_address_space, ref);
GEM_BUG_ON(i915_is_ggtt(vm));
trace_i915_ppgtt_release(vm);
queue_rcu_work(vm->i915->wq, &vm->rcu);
}
void i915_address_space_init(struct i915_address_space *vm, int subclass)
{
kref_init(&vm->ref);
INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
atomic_set(&vm->open, 1);
/*
* The vm->mutex must be reclaim safe (for use in the shrinker).
* Do a dummy acquire now under fs_reclaim so that any allocation
* attempt holding the lock is immediately reported by lockdep.
*/
mutex_init(&vm->mutex);
lockdep_set_subclass(&vm->mutex, subclass);
i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
GEM_BUG_ON(!vm->total);
drm_mm_init(&vm->mm, 0, vm->total);
vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
stash_init(&vm->free_pages);
INIT_LIST_HEAD(&vm->bound_list);
}
void clear_pages(struct i915_vma *vma)
{
GEM_BUG_ON(!vma->pages);
if (vma->pages != vma->obj->mm.pages) {
sg_free_table(vma->pages);
kfree(vma->pages);
}
vma->pages = NULL;
memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
}
static int __setup_page_dma(struct i915_address_space *vm,
struct i915_page_dma *p,
gfp_t gfp)
{
p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
if (unlikely(!p->page))
return -ENOMEM;
p->daddr = dma_map_page_attrs(vm->dma,
p->page, 0, PAGE_SIZE,
PCI_DMA_BIDIRECTIONAL,
DMA_ATTR_SKIP_CPU_SYNC |
DMA_ATTR_NO_WARN);
if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
vm_free_page(vm, p->page);
return -ENOMEM;
}
return 0;
}
int setup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p)
{
return __setup_page_dma(vm, p, __GFP_HIGHMEM);
}
void cleanup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p)
{
dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
vm_free_page(vm, p->page);
}
void
fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count)
{
kunmap_atomic(memset64(kmap_atomic(p->page), val, count));
}
int setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
{
unsigned long size;
/*
* In order to utilize 64K pages for an object with a size < 2M, we will
* need to support a 64K scratch page, given that every 16th entry for a
* page-table operating in 64K mode must point to a properly aligned 64K
* region, including any PTEs which happen to point to scratch.
*
* This is only relevant for the 48b PPGTT where we support
* huge-gtt-pages, see also i915_vma_insert(). However, as we share the
* scratch (read-only) between all vm, we create one 64k scratch page
* for all.
*/
size = I915_GTT_PAGE_SIZE_4K;
if (i915_vm_is_4lvl(vm) &&
HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
size = I915_GTT_PAGE_SIZE_64K;
gfp |= __GFP_NOWARN;
}
gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
do {
unsigned int order = get_order(size);
struct page *page;
dma_addr_t addr;
page = alloc_pages(gfp, order);
if (unlikely(!page))
goto skip;
addr = dma_map_page_attrs(vm->dma,
page, 0, size,
PCI_DMA_BIDIRECTIONAL,
DMA_ATTR_SKIP_CPU_SYNC |
DMA_ATTR_NO_WARN);
if (unlikely(dma_mapping_error(vm->dma, addr)))
goto free_page;
if (unlikely(!IS_ALIGNED(addr, size)))
goto unmap_page;
vm->scratch[0].base.page = page;
vm->scratch[0].base.daddr = addr;
vm->scratch_order = order;
return 0;
unmap_page:
dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
__free_pages(page, order);
skip:
if (size == I915_GTT_PAGE_SIZE_4K)
return -ENOMEM;
size = I915_GTT_PAGE_SIZE_4K;
gfp &= ~__GFP_NOWARN;
} while (1);
}
void cleanup_scratch_page(struct i915_address_space *vm)
{
struct i915_page_dma *p = px_base(&vm->scratch[0]);
unsigned int order = vm->scratch_order;
dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
PCI_DMA_BIDIRECTIONAL);
__free_pages(p->page, order);
}
void free_scratch(struct i915_address_space *vm)
{
int i;
if (!px_dma(&vm->scratch[0])) /* set to 0 on clones */
return;
for (i = 1; i <= vm->top; i++) {
if (!px_dma(&vm->scratch[i]))
break;
cleanup_page_dma(vm, px_base(&vm->scratch[i]));
}
cleanup_scratch_page(vm);
}
void gtt_write_workarounds(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
struct intel_uncore *uncore = gt->uncore;
/*
* This function is for gtt related workarounds. This function is
* called on driver load and after a GPU reset, so you can place
* workarounds here even if they get overwritten by GPU reset.
*/
/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
if (IS_BROADWELL(i915))
intel_uncore_write(uncore,
GEN8_L3_LRA_1_GPGPU,
GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
else if (IS_CHERRYVIEW(i915))
intel_uncore_write(uncore,
GEN8_L3_LRA_1_GPGPU,
GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
else if (IS_GEN9_LP(i915))
intel_uncore_write(uncore,
GEN8_L3_LRA_1_GPGPU,
GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
else if (INTEL_GEN(i915) >= 9 && INTEL_GEN(i915) <= 11)
intel_uncore_write(uncore,
GEN8_L3_LRA_1_GPGPU,
GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
/*
* To support 64K PTEs we need to first enable the use of the
* Intermediate-Page-Size(IPS) bit of the PDE field via some magical
* mmio, otherwise the page-walker will simply ignore the IPS bit. This
* shouldn't be needed after GEN10.
*
* 64K pages were first introduced from BDW+, although technically they
* only *work* from gen9+. For pre-BDW we instead have the option for
* 32K pages, but we don't currently have any support for it in our
* driver.
*/
if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
INTEL_GEN(i915) <= 10)
intel_uncore_rmw(uncore,
GEN8_GAMW_ECO_DEV_RW_IA,
0,
GAMW_ECO_ENABLE_64K_IPS_FIELD);
if (IS_GEN_RANGE(i915, 8, 11)) {
bool can_use_gtt_cache = true;
/*
* According to the BSpec if we use 2M/1G pages then we also
* need to disable the GTT cache. At least on BDW we can see
* visual corruption when using 2M pages, and not disabling the
* GTT cache.
*/
if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
can_use_gtt_cache = false;
/* WaGttCachingOffByDefault */
intel_uncore_write(uncore,
HSW_GTT_CACHE_EN,
can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
WARN_ON_ONCE(can_use_gtt_cache &&
intel_uncore_read(uncore,
HSW_GTT_CACHE_EN) == 0);
}
}
u64 gen8_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 flags)
{
gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
if (unlikely(flags & PTE_READ_ONLY))
pte &= ~_PAGE_RW;
switch (level) {
case I915_CACHE_NONE:
pte |= PPAT_UNCACHED;
break;
case I915_CACHE_WT:
pte |= PPAT_DISPLAY_ELLC;
break;
default:
pte |= PPAT_CACHED;
break;
}
return pte;
}
static void tgl_setup_private_ppat(struct intel_uncore *uncore)
{
/* TGL doesn't support LLC or AGE settings */
intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
}
static void cnl_setup_private_ppat(struct intel_uncore *uncore)
{
intel_uncore_write(uncore,
GEN10_PAT_INDEX(0),
GEN8_PPAT_WB | GEN8_PPAT_LLC);
intel_uncore_write(uncore,
GEN10_PAT_INDEX(1),
GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
intel_uncore_write(uncore,
GEN10_PAT_INDEX(2),
GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
intel_uncore_write(uncore,
GEN10_PAT_INDEX(3),
GEN8_PPAT_UC);
intel_uncore_write(uncore,
GEN10_PAT_INDEX(4),
GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
intel_uncore_write(uncore,
GEN10_PAT_INDEX(5),
GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
intel_uncore_write(uncore,
GEN10_PAT_INDEX(6),
GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
intel_uncore_write(uncore,
GEN10_PAT_INDEX(7),
GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
}
/*
* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
* bits. When using advanced contexts each context stores its own PAT, but
* writing this data shouldn't be harmful even in those cases.
*/
static void bdw_setup_private_ppat(struct intel_uncore *uncore)
{
u64 pat;
pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}
static void chv_setup_private_ppat(struct intel_uncore *uncore)
{
u64 pat;
/*
* Map WB on BDW to snooped on CHV.
*
* Only the snoop bit has meaning for CHV, the rest is
* ignored.
*
* The hardware will never snoop for certain types of accesses:
* - CPU GTT (GMADR->GGTT->no snoop->memory)
* - PPGTT page tables
* - some other special cycles
*
* As with BDW, we also need to consider the following for GT accesses:
* "For GGTT, there is NO pat_sel[2:0] from the entry,
* so RTL will always use the value corresponding to
* pat_sel = 000".
* Which means we must set the snoop bit in PAT entry 0
* in order to keep the global status page working.
*/
pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
GEN8_PPAT(1, 0) |
GEN8_PPAT(2, 0) |
GEN8_PPAT(3, 0) |
GEN8_PPAT(4, CHV_PPAT_SNOOP) |
GEN8_PPAT(5, CHV_PPAT_SNOOP) |
GEN8_PPAT(6, CHV_PPAT_SNOOP) |
GEN8_PPAT(7, CHV_PPAT_SNOOP);
intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}
void setup_private_pat(struct intel_uncore *uncore)
{
struct drm_i915_private *i915 = uncore->i915;
GEM_BUG_ON(INTEL_GEN(i915) < 8);
if (INTEL_GEN(i915) >= 12)
tgl_setup_private_ppat(uncore);
else if (INTEL_GEN(i915) >= 10)
cnl_setup_private_ppat(uncore);
else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
chv_setup_private_ppat(uncore);
else
bdw_setup_private_ppat(uncore);
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
#endif
|