summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/i915/gt/intel_gt_clock_utils.c
blob: a4242ca8dcd7247a3a07b31fa6c41bd3bf512cea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2020 Intel Corporation
 */

#include "i915_drv.h"
#include "intel_gt.h"
#include "intel_gt_clock_utils.h"

static u32 read_reference_ts_freq(struct intel_uncore *uncore)
{
	u32 ts_override = intel_uncore_read(uncore, GEN9_TIMESTAMP_OVERRIDE);
	u32 base_freq, frac_freq;

	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
	base_freq *= 1000000;

	frac_freq = ((ts_override &
		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
	frac_freq = 1000000 / (frac_freq + 1);

	return base_freq + frac_freq;
}

static u32 gen10_get_crystal_clock_freq(struct intel_uncore *uncore,
					u32 rpm_config_reg)
{
	u32 f19_2_mhz = 19200000;
	u32 f24_mhz = 24000000;
	u32 crystal_clock =
		(rpm_config_reg & GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
		GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;

	switch (crystal_clock) {
	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
		return f19_2_mhz;
	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
		return f24_mhz;
	default:
		MISSING_CASE(crystal_clock);
		return 0;
	}
}

static u32 gen11_get_crystal_clock_freq(struct intel_uncore *uncore,
					u32 rpm_config_reg)
{
	u32 f19_2_mhz = 19200000;
	u32 f24_mhz = 24000000;
	u32 f25_mhz = 25000000;
	u32 f38_4_mhz = 38400000;
	u32 crystal_clock =
		(rpm_config_reg & GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
		GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;

	switch (crystal_clock) {
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
		return f24_mhz;
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
		return f19_2_mhz;
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
		return f38_4_mhz;
	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
		return f25_mhz;
	default:
		MISSING_CASE(crystal_clock);
		return 0;
	}
}

static u32 read_clock_frequency(struct intel_uncore *uncore)
{
	u32 f12_5_mhz = 12500000;
	u32 f19_2_mhz = 19200000;
	u32 f24_mhz = 24000000;

	if (INTEL_GEN(uncore->i915) <= 4) {
		/*
		 * PRMs say:
		 *
		 *     "The value in this register increments once every 16
		 *      hclks." (through the “Clocking Configuration”
		 *      (“CLKCFG”) MCHBAR register)
		 */
		return RUNTIME_INFO(uncore->i915)->rawclk_freq * 1000 / 16;
	} else if (INTEL_GEN(uncore->i915) <= 8) {
		/*
		 * PRMs say:
		 *
		 *     "The PCU TSC counts 10ns increments; this timestamp
		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
		 *      rolling over every 1.5 hours).
		 */
		return f12_5_mhz;
	} else if (INTEL_GEN(uncore->i915) <= 9) {
		u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
		u32 freq = 0;

		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
			freq = read_reference_ts_freq(uncore);
		} else {
			freq = IS_GEN9_LP(uncore->i915) ? f19_2_mhz : f24_mhz;

			/*
			 * Now figure out how the command stream's timestamp
			 * register increments from this frequency (it might
			 * increment only every few clock cycle).
			 */
			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
				      CTC_SHIFT_PARAMETER_SHIFT);
		}

		return freq;
	} else if (INTEL_GEN(uncore->i915) <= 12) {
		u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
		u32 freq = 0;

		/*
		 * First figure out the reference frequency. There are 2 ways
		 * we can compute the frequency, either through the
		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
		 * tells us which one we should use.
		 */
		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
			freq = read_reference_ts_freq(uncore);
		} else {
			u32 c0 = intel_uncore_read(uncore, RPM_CONFIG0);

			if (INTEL_GEN(uncore->i915) <= 10)
				freq = gen10_get_crystal_clock_freq(uncore, c0);
			else
				freq = gen11_get_crystal_clock_freq(uncore, c0);

			/*
			 * Now figure out how the command stream's timestamp
			 * register increments from this frequency (it might
			 * increment only every few clock cycle).
			 */
			freq >>= 3 - ((c0 & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
		}

		return freq;
	}

	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
	return 0;
}

void intel_gt_init_clock_frequency(struct intel_gt *gt)
{
	/*
	 * Note that on gen11+, the clock frequency may be reconfigured.
	 * We do not, and we assume nobody else does.
	 */
	gt->clock_frequency = read_clock_frequency(gt->uncore);
	if (gt->clock_frequency)
		gt->clock_period_ns = intel_gt_clock_interval_to_ns(gt, 1);

	GT_TRACE(gt,
		 "Using clock frequency: %dkHz, period: %dns, wrap: %lldms\n",
		 gt->clock_frequency / 1000,
		 gt->clock_period_ns,
		 div_u64(mul_u32_u32(gt->clock_period_ns, S32_MAX),
			 USEC_PER_SEC));

}

#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
void intel_gt_check_clock_frequency(const struct intel_gt *gt)
{
	if (gt->clock_frequency != read_clock_frequency(gt->uncore)) {
		dev_err(gt->i915->drm.dev,
			"GT clock frequency changed, was %uHz, now %uHz!\n",
			gt->clock_frequency,
			read_clock_frequency(gt->uncore));
	}
}
#endif

static u64 div_u64_roundup(u64 nom, u32 den)
{
	return div_u64(nom + den - 1, den);
}

u64 intel_gt_clock_interval_to_ns(const struct intel_gt *gt, u64 count)
{
	return div_u64_roundup(count * NSEC_PER_SEC, gt->clock_frequency);
}

u64 intel_gt_pm_interval_to_ns(const struct intel_gt *gt, u64 count)
{
	return intel_gt_clock_interval_to_ns(gt, 16 * count);
}

u64 intel_gt_ns_to_clock_interval(const struct intel_gt *gt, u64 ns)
{
	return div_u64_roundup(gt->clock_frequency * ns, NSEC_PER_SEC);
}

u64 intel_gt_ns_to_pm_interval(const struct intel_gt *gt, u64 ns)
{
	u64 val;

	/*
	 * Make these a multiple of magic 25 to avoid SNB (eg. Dell XPS
	 * 8300) freezing up around GPU hangs. Looks as if even
	 * scheduling/timer interrupts start misbehaving if the RPS
	 * EI/thresholds are "bad", leading to a very sluggish or even
	 * frozen machine.
	 */
	val = div_u64_roundup(intel_gt_ns_to_clock_interval(gt, ns), 16);
	if (IS_GEN(gt->i915, 6))
		val = div_u64_roundup(val, 25) * 25;

	return val;
}