1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2019 Intel Corporation
*/
#include <drm/drm_atomic_state_helper.h>
#include "intel_bw.h"
#include "intel_drv.h"
#include "intel_sideband.h"
/* Parameters for Qclk Geyserville (QGV) */
struct intel_qgv_point {
u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd;
};
struct intel_qgv_info {
struct intel_qgv_point points[3];
u8 num_points;
u8 num_channels;
u8 t_bl;
enum intel_dram_type dram_type;
};
static int icl_pcode_read_mem_global_info(struct drm_i915_private *dev_priv,
struct intel_qgv_info *qi)
{
u32 val = 0;
int ret;
ret = sandybridge_pcode_read(dev_priv,
ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
ICL_PCODE_MEM_SS_READ_GLOBAL_INFO,
&val, NULL);
if (ret)
return ret;
switch (val & 0xf) {
case 0:
qi->dram_type = INTEL_DRAM_DDR4;
break;
case 1:
qi->dram_type = INTEL_DRAM_DDR3;
break;
case 2:
qi->dram_type = INTEL_DRAM_LPDDR3;
break;
case 3:
qi->dram_type = INTEL_DRAM_LPDDR3;
break;
default:
MISSING_CASE(val & 0xf);
break;
}
qi->num_channels = (val & 0xf0) >> 4;
qi->num_points = (val & 0xf00) >> 8;
qi->t_bl = qi->dram_type == INTEL_DRAM_DDR4 ? 4 : 8;
return 0;
}
static int icl_pcode_read_qgv_point_info(struct drm_i915_private *dev_priv,
struct intel_qgv_point *sp,
int point)
{
u32 val = 0, val2;
int ret;
ret = sandybridge_pcode_read(dev_priv,
ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point),
&val, &val2);
if (ret)
return ret;
sp->dclk = val & 0xffff;
sp->t_rp = (val & 0xff0000) >> 16;
sp->t_rcd = (val & 0xff000000) >> 24;
sp->t_rdpre = val2 & 0xff;
sp->t_ras = (val2 & 0xff00) >> 8;
sp->t_rc = sp->t_rp + sp->t_ras;
return 0;
}
static int icl_get_qgv_points(struct drm_i915_private *dev_priv,
struct intel_qgv_info *qi)
{
int i, ret;
ret = icl_pcode_read_mem_global_info(dev_priv, qi);
if (ret)
return ret;
if (WARN_ON(qi->num_points > ARRAY_SIZE(qi->points)))
qi->num_points = ARRAY_SIZE(qi->points);
for (i = 0; i < qi->num_points; i++) {
struct intel_qgv_point *sp = &qi->points[i];
ret = icl_pcode_read_qgv_point_info(dev_priv, sp, i);
if (ret)
return ret;
DRM_DEBUG_KMS("QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n",
i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras,
sp->t_rcd, sp->t_rc);
}
return 0;
}
static int icl_calc_bw(int dclk, int num, int den)
{
/* multiples of 16.666MHz (100/6) */
return DIV_ROUND_CLOSEST(num * dclk * 100, den * 6);
}
static int icl_sagv_max_dclk(const struct intel_qgv_info *qi)
{
u16 dclk = 0;
int i;
for (i = 0; i < qi->num_points; i++)
dclk = max(dclk, qi->points[i].dclk);
return dclk;
}
struct intel_sa_info {
u8 deburst, mpagesize, deprogbwlimit, displayrtids;
};
static const struct intel_sa_info icl_sa_info = {
.deburst = 8,
.mpagesize = 16,
.deprogbwlimit = 25, /* GB/s */
.displayrtids = 128,
};
static int icl_get_bw_info(struct drm_i915_private *dev_priv)
{
struct intel_qgv_info qi = {};
const struct intel_sa_info *sa = &icl_sa_info;
bool is_y_tile = true; /* assume y tile may be used */
int num_channels;
int deinterleave;
int ipqdepth, ipqdepthpch;
int dclk_max;
int maxdebw;
int i, ret;
ret = icl_get_qgv_points(dev_priv, &qi);
if (ret) {
DRM_DEBUG_KMS("Failed to get memory subsystem information, ignoring bandwidth limits");
return ret;
}
num_channels = qi.num_channels;
deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
dclk_max = icl_sagv_max_dclk(&qi);
ipqdepthpch = 16;
maxdebw = min(sa->deprogbwlimit * 1000,
icl_calc_bw(dclk_max, 16, 1) * 6 / 10); /* 60% */
ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) {
struct intel_bw_info *bi = &dev_priv->max_bw[i];
int clpchgroup;
int j;
clpchgroup = (sa->deburst * deinterleave / num_channels) << i;
bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;
for (j = 0; j < qi.num_points; j++) {
const struct intel_qgv_point *sp = &qi.points[j];
int ct, bw;
/*
* Max row cycle time
*
* FIXME what is the logic behind the
* assumed burst length?
*/
ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
(clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
bw = icl_calc_bw(sp->dclk, clpchgroup * 32 * num_channels, ct);
bi->deratedbw[j] = min(maxdebw,
bw * 9 / 10); /* 90% */
DRM_DEBUG_KMS("BW%d / QGV %d: num_planes=%d deratedbw=%d\n",
i, j, bi->num_planes, bi->deratedbw[j]);
}
if (bi->num_planes == 1)
break;
}
return 0;
}
static unsigned int icl_max_bw(struct drm_i915_private *dev_priv,
int num_planes, int qgv_point)
{
int i;
/* Did we initialize the bw limits successfully? */
if (dev_priv->max_bw[0].num_planes == 0)
return UINT_MAX;
for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) {
const struct intel_bw_info *bi =
&dev_priv->max_bw[i];
if (num_planes >= bi->num_planes)
return bi->deratedbw[qgv_point];
}
return 0;
}
void intel_bw_init_hw(struct drm_i915_private *dev_priv)
{
if (IS_GEN(dev_priv, 11))
icl_get_bw_info(dev_priv);
}
static unsigned int intel_max_data_rate(struct drm_i915_private *dev_priv,
int num_planes)
{
if (IS_GEN(dev_priv, 11))
/*
* FIXME with SAGV disabled maybe we can assume
* point 1 will always be used? Seems to match
* the behaviour observed in the wild.
*/
return min3(icl_max_bw(dev_priv, num_planes, 0),
icl_max_bw(dev_priv, num_planes, 1),
icl_max_bw(dev_priv, num_planes, 2));
else
return UINT_MAX;
}
static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state)
{
/*
* We assume cursors are small enough
* to not not cause bandwidth problems.
*/
return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR));
}
static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
unsigned int data_rate = 0;
enum plane_id plane_id;
for_each_plane_id_on_crtc(crtc, plane_id) {
/*
* We assume cursors are small enough
* to not not cause bandwidth problems.
*/
if (plane_id == PLANE_CURSOR)
continue;
data_rate += crtc_state->data_rate[plane_id];
}
return data_rate;
}
void intel_bw_crtc_update(struct intel_bw_state *bw_state,
const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
bw_state->data_rate[crtc->pipe] =
intel_bw_crtc_data_rate(crtc_state);
bw_state->num_active_planes[crtc->pipe] =
intel_bw_crtc_num_active_planes(crtc_state);
DRM_DEBUG_KMS("pipe %c data rate %u num active planes %u\n",
pipe_name(crtc->pipe),
bw_state->data_rate[crtc->pipe],
bw_state->num_active_planes[crtc->pipe]);
}
static unsigned int intel_bw_num_active_planes(struct drm_i915_private *dev_priv,
const struct intel_bw_state *bw_state)
{
unsigned int num_active_planes = 0;
enum pipe pipe;
for_each_pipe(dev_priv, pipe)
num_active_planes += bw_state->num_active_planes[pipe];
return num_active_planes;
}
static unsigned int intel_bw_data_rate(struct drm_i915_private *dev_priv,
const struct intel_bw_state *bw_state)
{
unsigned int data_rate = 0;
enum pipe pipe;
for_each_pipe(dev_priv, pipe)
data_rate += bw_state->data_rate[pipe];
return data_rate;
}
int intel_bw_atomic_check(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc_state *new_crtc_state, *old_crtc_state;
struct intel_bw_state *bw_state = NULL;
unsigned int data_rate, max_data_rate;
unsigned int num_active_planes;
struct intel_crtc *crtc;
int i;
/* FIXME earlier gens need some checks too */
if (INTEL_GEN(dev_priv) < 11)
return 0;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
unsigned int old_data_rate =
intel_bw_crtc_data_rate(old_crtc_state);
unsigned int new_data_rate =
intel_bw_crtc_data_rate(new_crtc_state);
unsigned int old_active_planes =
intel_bw_crtc_num_active_planes(old_crtc_state);
unsigned int new_active_planes =
intel_bw_crtc_num_active_planes(new_crtc_state);
/*
* Avoid locking the bw state when
* nothing significant has changed.
*/
if (old_data_rate == new_data_rate &&
old_active_planes == new_active_planes)
continue;
bw_state = intel_atomic_get_bw_state(state);
if (IS_ERR(bw_state))
return PTR_ERR(bw_state);
bw_state->data_rate[crtc->pipe] = new_data_rate;
bw_state->num_active_planes[crtc->pipe] = new_active_planes;
DRM_DEBUG_KMS("pipe %c data rate %u num active planes %u\n",
pipe_name(crtc->pipe),
bw_state->data_rate[crtc->pipe],
bw_state->num_active_planes[crtc->pipe]);
}
if (!bw_state)
return 0;
data_rate = intel_bw_data_rate(dev_priv, bw_state);
num_active_planes = intel_bw_num_active_planes(dev_priv, bw_state);
max_data_rate = intel_max_data_rate(dev_priv, num_active_planes);
data_rate = DIV_ROUND_UP(data_rate, 1000);
if (data_rate > max_data_rate) {
DRM_DEBUG_KMS("Bandwidth %u MB/s exceeds max available %d MB/s (%d active planes)\n",
data_rate, max_data_rate, num_active_planes);
return -EINVAL;
}
return 0;
}
static struct drm_private_state *intel_bw_duplicate_state(struct drm_private_obj *obj)
{
struct intel_bw_state *state;
state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
if (!state)
return NULL;
__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
return &state->base;
}
static void intel_bw_destroy_state(struct drm_private_obj *obj,
struct drm_private_state *state)
{
kfree(state);
}
static const struct drm_private_state_funcs intel_bw_funcs = {
.atomic_duplicate_state = intel_bw_duplicate_state,
.atomic_destroy_state = intel_bw_destroy_state,
};
int intel_bw_init(struct drm_i915_private *dev_priv)
{
struct intel_bw_state *state;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return -ENOMEM;
drm_atomic_private_obj_init(&dev_priv->drm, &dev_priv->bw_obj,
&state->base, &intel_bw_funcs);
return 0;
}
|