1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
|
/*
* Copyright 2014 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* Authors: Christian König <christian.koenig@amd.com>
*/
#include <linux/firmware.h>
#include <drm/drmP.h>
#include "amdgpu.h"
#include "amdgpu_vce.h"
#include "vid.h"
#include "vce/vce_3_0_d.h"
#include "vce/vce_3_0_sh_mask.h"
#include "oss/oss_3_0_d.h"
#include "oss/oss_3_0_sh_mask.h"
#include "gca/gfx_8_0_d.h"
#include "smu/smu_7_1_2_d.h"
#include "smu/smu_7_1_2_sh_mask.h"
#include "gca/gfx_8_0_d.h"
#include "gca/gfx_8_0_sh_mask.h"
#define GRBM_GFX_INDEX__VCE_INSTANCE__SHIFT 0x04
#define GRBM_GFX_INDEX__VCE_INSTANCE_MASK 0x10
#define GRBM_GFX_INDEX__VCE_ALL_PIPE 0x07
#define mmVCE_LMI_VCPU_CACHE_40BIT_BAR0 0x8616
#define mmVCE_LMI_VCPU_CACHE_40BIT_BAR1 0x8617
#define mmVCE_LMI_VCPU_CACHE_40BIT_BAR2 0x8618
#define mmGRBM_GFX_INDEX_DEFAULT 0xE0000000
#define VCE_STATUS_VCPU_REPORT_FW_LOADED_MASK 0x02
#define VCE_V3_0_FW_SIZE (384 * 1024)
#define VCE_V3_0_STACK_SIZE (64 * 1024)
#define VCE_V3_0_DATA_SIZE ((16 * 1024 * AMDGPU_MAX_VCE_HANDLES) + (52 * 1024))
#define FW_52_8_3 ((52 << 24) | (8 << 16) | (3 << 8))
#define GET_VCE_INSTANCE(i) ((i) << GRBM_GFX_INDEX__VCE_INSTANCE__SHIFT \
| GRBM_GFX_INDEX__VCE_ALL_PIPE)
static void vce_v3_0_mc_resume(struct amdgpu_device *adev, int idx);
static void vce_v3_0_set_ring_funcs(struct amdgpu_device *adev);
static void vce_v3_0_set_irq_funcs(struct amdgpu_device *adev);
static int vce_v3_0_wait_for_idle(void *handle);
static int vce_v3_0_set_clockgating_state(void *handle,
enum amd_clockgating_state state);
/**
* vce_v3_0_ring_get_rptr - get read pointer
*
* @ring: amdgpu_ring pointer
*
* Returns the current hardware read pointer
*/
static uint64_t vce_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
if (ring == &adev->vce.ring[0])
return RREG32(mmVCE_RB_RPTR);
else if (ring == &adev->vce.ring[1])
return RREG32(mmVCE_RB_RPTR2);
else
return RREG32(mmVCE_RB_RPTR3);
}
/**
* vce_v3_0_ring_get_wptr - get write pointer
*
* @ring: amdgpu_ring pointer
*
* Returns the current hardware write pointer
*/
static uint64_t vce_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
if (ring == &adev->vce.ring[0])
return RREG32(mmVCE_RB_WPTR);
else if (ring == &adev->vce.ring[1])
return RREG32(mmVCE_RB_WPTR2);
else
return RREG32(mmVCE_RB_WPTR3);
}
/**
* vce_v3_0_ring_set_wptr - set write pointer
*
* @ring: amdgpu_ring pointer
*
* Commits the write pointer to the hardware
*/
static void vce_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
if (ring == &adev->vce.ring[0])
WREG32(mmVCE_RB_WPTR, lower_32_bits(ring->wptr));
else if (ring == &adev->vce.ring[1])
WREG32(mmVCE_RB_WPTR2, lower_32_bits(ring->wptr));
else
WREG32(mmVCE_RB_WPTR3, lower_32_bits(ring->wptr));
}
static void vce_v3_0_override_vce_clock_gating(struct amdgpu_device *adev, bool override)
{
WREG32_FIELD(VCE_RB_ARB_CTRL, VCE_CGTT_OVERRIDE, override ? 1 : 0);
}
static void vce_v3_0_set_vce_sw_clock_gating(struct amdgpu_device *adev,
bool gated)
{
u32 data;
/* Set Override to disable Clock Gating */
vce_v3_0_override_vce_clock_gating(adev, true);
/* This function enables MGCG which is controlled by firmware.
With the clocks in the gated state the core is still
accessible but the firmware will throttle the clocks on the
fly as necessary.
*/
if (!gated) {
data = RREG32(mmVCE_CLOCK_GATING_B);
data |= 0x1ff;
data &= ~0xef0000;
WREG32(mmVCE_CLOCK_GATING_B, data);
data = RREG32(mmVCE_UENC_CLOCK_GATING);
data |= 0x3ff000;
data &= ~0xffc00000;
WREG32(mmVCE_UENC_CLOCK_GATING, data);
data = RREG32(mmVCE_UENC_CLOCK_GATING_2);
data |= 0x2;
data &= ~0x00010000;
WREG32(mmVCE_UENC_CLOCK_GATING_2, data);
data = RREG32(mmVCE_UENC_REG_CLOCK_GATING);
data |= 0x37f;
WREG32(mmVCE_UENC_REG_CLOCK_GATING, data);
data = RREG32(mmVCE_UENC_DMA_DCLK_CTRL);
data |= VCE_UENC_DMA_DCLK_CTRL__WRDMCLK_FORCEON_MASK |
VCE_UENC_DMA_DCLK_CTRL__RDDMCLK_FORCEON_MASK |
VCE_UENC_DMA_DCLK_CTRL__REGCLK_FORCEON_MASK |
0x8;
WREG32(mmVCE_UENC_DMA_DCLK_CTRL, data);
} else {
data = RREG32(mmVCE_CLOCK_GATING_B);
data &= ~0x80010;
data |= 0xe70008;
WREG32(mmVCE_CLOCK_GATING_B, data);
data = RREG32(mmVCE_UENC_CLOCK_GATING);
data |= 0xffc00000;
WREG32(mmVCE_UENC_CLOCK_GATING, data);
data = RREG32(mmVCE_UENC_CLOCK_GATING_2);
data |= 0x10000;
WREG32(mmVCE_UENC_CLOCK_GATING_2, data);
data = RREG32(mmVCE_UENC_REG_CLOCK_GATING);
data &= ~0x3ff;
WREG32(mmVCE_UENC_REG_CLOCK_GATING, data);
data = RREG32(mmVCE_UENC_DMA_DCLK_CTRL);
data &= ~(VCE_UENC_DMA_DCLK_CTRL__WRDMCLK_FORCEON_MASK |
VCE_UENC_DMA_DCLK_CTRL__RDDMCLK_FORCEON_MASK |
VCE_UENC_DMA_DCLK_CTRL__REGCLK_FORCEON_MASK |
0x8);
WREG32(mmVCE_UENC_DMA_DCLK_CTRL, data);
}
vce_v3_0_override_vce_clock_gating(adev, false);
}
static int vce_v3_0_firmware_loaded(struct amdgpu_device *adev)
{
int i, j;
for (i = 0; i < 10; ++i) {
for (j = 0; j < 100; ++j) {
uint32_t status = RREG32(mmVCE_STATUS);
if (status & VCE_STATUS_VCPU_REPORT_FW_LOADED_MASK)
return 0;
mdelay(10);
}
DRM_ERROR("VCE not responding, trying to reset the ECPU!!!\n");
WREG32_FIELD(VCE_SOFT_RESET, ECPU_SOFT_RESET, 1);
mdelay(10);
WREG32_FIELD(VCE_SOFT_RESET, ECPU_SOFT_RESET, 0);
mdelay(10);
}
return -ETIMEDOUT;
}
/**
* vce_v3_0_start - start VCE block
*
* @adev: amdgpu_device pointer
*
* Setup and start the VCE block
*/
static int vce_v3_0_start(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring;
int idx, r;
ring = &adev->vce.ring[0];
WREG32(mmVCE_RB_RPTR, lower_32_bits(ring->wptr));
WREG32(mmVCE_RB_WPTR, lower_32_bits(ring->wptr));
WREG32(mmVCE_RB_BASE_LO, ring->gpu_addr);
WREG32(mmVCE_RB_BASE_HI, upper_32_bits(ring->gpu_addr));
WREG32(mmVCE_RB_SIZE, ring->ring_size / 4);
ring = &adev->vce.ring[1];
WREG32(mmVCE_RB_RPTR2, lower_32_bits(ring->wptr));
WREG32(mmVCE_RB_WPTR2, lower_32_bits(ring->wptr));
WREG32(mmVCE_RB_BASE_LO2, ring->gpu_addr);
WREG32(mmVCE_RB_BASE_HI2, upper_32_bits(ring->gpu_addr));
WREG32(mmVCE_RB_SIZE2, ring->ring_size / 4);
ring = &adev->vce.ring[2];
WREG32(mmVCE_RB_RPTR3, lower_32_bits(ring->wptr));
WREG32(mmVCE_RB_WPTR3, lower_32_bits(ring->wptr));
WREG32(mmVCE_RB_BASE_LO3, ring->gpu_addr);
WREG32(mmVCE_RB_BASE_HI3, upper_32_bits(ring->gpu_addr));
WREG32(mmVCE_RB_SIZE3, ring->ring_size / 4);
mutex_lock(&adev->grbm_idx_mutex);
for (idx = 0; idx < 2; ++idx) {
if (adev->vce.harvest_config & (1 << idx))
continue;
WREG32(mmGRBM_GFX_INDEX, GET_VCE_INSTANCE(idx));
vce_v3_0_mc_resume(adev, idx);
WREG32_FIELD(VCE_STATUS, JOB_BUSY, 1);
if (adev->asic_type >= CHIP_STONEY)
WREG32_P(mmVCE_VCPU_CNTL, 1, ~0x200001);
else
WREG32_FIELD(VCE_VCPU_CNTL, CLK_EN, 1);
WREG32_FIELD(VCE_SOFT_RESET, ECPU_SOFT_RESET, 0);
mdelay(100);
r = vce_v3_0_firmware_loaded(adev);
/* clear BUSY flag */
WREG32_FIELD(VCE_STATUS, JOB_BUSY, 0);
if (r) {
DRM_ERROR("VCE not responding, giving up!!!\n");
mutex_unlock(&adev->grbm_idx_mutex);
return r;
}
}
WREG32(mmGRBM_GFX_INDEX, mmGRBM_GFX_INDEX_DEFAULT);
mutex_unlock(&adev->grbm_idx_mutex);
return 0;
}
static int vce_v3_0_stop(struct amdgpu_device *adev)
{
int idx;
mutex_lock(&adev->grbm_idx_mutex);
for (idx = 0; idx < 2; ++idx) {
if (adev->vce.harvest_config & (1 << idx))
continue;
WREG32(mmGRBM_GFX_INDEX, GET_VCE_INSTANCE(idx));
if (adev->asic_type >= CHIP_STONEY)
WREG32_P(mmVCE_VCPU_CNTL, 0, ~0x200001);
else
WREG32_FIELD(VCE_VCPU_CNTL, CLK_EN, 0);
/* hold on ECPU */
WREG32_FIELD(VCE_SOFT_RESET, ECPU_SOFT_RESET, 1);
/* clear VCE STATUS */
WREG32(mmVCE_STATUS, 0);
}
WREG32(mmGRBM_GFX_INDEX, mmGRBM_GFX_INDEX_DEFAULT);
mutex_unlock(&adev->grbm_idx_mutex);
return 0;
}
#define ixVCE_HARVEST_FUSE_MACRO__ADDRESS 0xC0014074
#define VCE_HARVEST_FUSE_MACRO__SHIFT 27
#define VCE_HARVEST_FUSE_MACRO__MASK 0x18000000
static unsigned vce_v3_0_get_harvest_config(struct amdgpu_device *adev)
{
u32 tmp;
/* Fiji, Stoney, Polaris10, Polaris11, Polaris12 are single pipe */
if ((adev->asic_type == CHIP_FIJI) ||
(adev->asic_type == CHIP_STONEY) ||
(adev->asic_type == CHIP_POLARIS10) ||
(adev->asic_type == CHIP_POLARIS11) ||
(adev->asic_type == CHIP_POLARIS12))
return AMDGPU_VCE_HARVEST_VCE1;
/* Tonga and CZ are dual or single pipe */
if (adev->flags & AMD_IS_APU)
tmp = (RREG32_SMC(ixVCE_HARVEST_FUSE_MACRO__ADDRESS) &
VCE_HARVEST_FUSE_MACRO__MASK) >>
VCE_HARVEST_FUSE_MACRO__SHIFT;
else
tmp = (RREG32_SMC(ixCC_HARVEST_FUSES) &
CC_HARVEST_FUSES__VCE_DISABLE_MASK) >>
CC_HARVEST_FUSES__VCE_DISABLE__SHIFT;
switch (tmp) {
case 1:
return AMDGPU_VCE_HARVEST_VCE0;
case 2:
return AMDGPU_VCE_HARVEST_VCE1;
case 3:
return AMDGPU_VCE_HARVEST_VCE0 | AMDGPU_VCE_HARVEST_VCE1;
default:
return 0;
}
}
static int vce_v3_0_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
adev->vce.harvest_config = vce_v3_0_get_harvest_config(adev);
if ((adev->vce.harvest_config &
(AMDGPU_VCE_HARVEST_VCE0 | AMDGPU_VCE_HARVEST_VCE1)) ==
(AMDGPU_VCE_HARVEST_VCE0 | AMDGPU_VCE_HARVEST_VCE1))
return -ENOENT;
adev->vce.num_rings = 3;
vce_v3_0_set_ring_funcs(adev);
vce_v3_0_set_irq_funcs(adev);
return 0;
}
static int vce_v3_0_sw_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct amdgpu_ring *ring;
int r, i;
/* VCE */
r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 167, &adev->vce.irq);
if (r)
return r;
r = amdgpu_vce_sw_init(adev, VCE_V3_0_FW_SIZE +
(VCE_V3_0_STACK_SIZE + VCE_V3_0_DATA_SIZE) * 2);
if (r)
return r;
/* 52.8.3 required for 3 ring support */
if (adev->vce.fw_version < FW_52_8_3)
adev->vce.num_rings = 2;
r = amdgpu_vce_resume(adev);
if (r)
return r;
for (i = 0; i < adev->vce.num_rings; i++) {
ring = &adev->vce.ring[i];
sprintf(ring->name, "vce%d", i);
r = amdgpu_ring_init(adev, ring, 512, &adev->vce.irq, 0);
if (r)
return r;
}
return r;
}
static int vce_v3_0_sw_fini(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
r = amdgpu_vce_suspend(adev);
if (r)
return r;
return amdgpu_vce_sw_fini(adev);
}
static int vce_v3_0_hw_init(void *handle)
{
int r, i;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
vce_v3_0_override_vce_clock_gating(adev, true);
if (!(adev->flags & AMD_IS_APU))
amdgpu_asic_set_vce_clocks(adev, 10000, 10000);
for (i = 0; i < adev->vce.num_rings; i++)
adev->vce.ring[i].ready = false;
for (i = 0; i < adev->vce.num_rings; i++) {
r = amdgpu_ring_test_ring(&adev->vce.ring[i]);
if (r)
return r;
else
adev->vce.ring[i].ready = true;
}
DRM_INFO("VCE initialized successfully.\n");
return 0;
}
static int vce_v3_0_hw_fini(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
r = vce_v3_0_wait_for_idle(handle);
if (r)
return r;
vce_v3_0_stop(adev);
return vce_v3_0_set_clockgating_state(adev, AMD_CG_STATE_GATE);
}
static int vce_v3_0_suspend(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
r = vce_v3_0_hw_fini(adev);
if (r)
return r;
return amdgpu_vce_suspend(adev);
}
static int vce_v3_0_resume(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
r = amdgpu_vce_resume(adev);
if (r)
return r;
return vce_v3_0_hw_init(adev);
}
static void vce_v3_0_mc_resume(struct amdgpu_device *adev, int idx)
{
uint32_t offset, size;
WREG32_P(mmVCE_CLOCK_GATING_A, 0, ~(1 << 16));
WREG32_P(mmVCE_UENC_CLOCK_GATING, 0x1FF000, ~0xFF9FF000);
WREG32_P(mmVCE_UENC_REG_CLOCK_GATING, 0x3F, ~0x3F);
WREG32(mmVCE_CLOCK_GATING_B, 0x1FF);
WREG32(mmVCE_LMI_CTRL, 0x00398000);
WREG32_P(mmVCE_LMI_CACHE_CTRL, 0x0, ~0x1);
WREG32(mmVCE_LMI_SWAP_CNTL, 0);
WREG32(mmVCE_LMI_SWAP_CNTL1, 0);
WREG32(mmVCE_LMI_VM_CTRL, 0);
WREG32_OR(mmVCE_VCPU_CNTL, 0x00100000);
if (adev->asic_type >= CHIP_STONEY) {
WREG32(mmVCE_LMI_VCPU_CACHE_40BIT_BAR0, (adev->vce.gpu_addr >> 8));
WREG32(mmVCE_LMI_VCPU_CACHE_40BIT_BAR1, (adev->vce.gpu_addr >> 8));
WREG32(mmVCE_LMI_VCPU_CACHE_40BIT_BAR2, (adev->vce.gpu_addr >> 8));
} else
WREG32(mmVCE_LMI_VCPU_CACHE_40BIT_BAR, (adev->vce.gpu_addr >> 8));
offset = AMDGPU_VCE_FIRMWARE_OFFSET;
size = VCE_V3_0_FW_SIZE;
WREG32(mmVCE_VCPU_CACHE_OFFSET0, offset & 0x7fffffff);
WREG32(mmVCE_VCPU_CACHE_SIZE0, size);
if (idx == 0) {
offset += size;
size = VCE_V3_0_STACK_SIZE;
WREG32(mmVCE_VCPU_CACHE_OFFSET1, offset & 0x7fffffff);
WREG32(mmVCE_VCPU_CACHE_SIZE1, size);
offset += size;
size = VCE_V3_0_DATA_SIZE;
WREG32(mmVCE_VCPU_CACHE_OFFSET2, offset & 0x7fffffff);
WREG32(mmVCE_VCPU_CACHE_SIZE2, size);
} else {
offset += size + VCE_V3_0_STACK_SIZE + VCE_V3_0_DATA_SIZE;
size = VCE_V3_0_STACK_SIZE;
WREG32(mmVCE_VCPU_CACHE_OFFSET1, offset & 0xfffffff);
WREG32(mmVCE_VCPU_CACHE_SIZE1, size);
offset += size;
size = VCE_V3_0_DATA_SIZE;
WREG32(mmVCE_VCPU_CACHE_OFFSET2, offset & 0xfffffff);
WREG32(mmVCE_VCPU_CACHE_SIZE2, size);
}
WREG32_P(mmVCE_LMI_CTRL2, 0x0, ~0x100);
WREG32_FIELD(VCE_SYS_INT_EN, VCE_SYS_INT_TRAP_INTERRUPT_EN, 1);
}
static bool vce_v3_0_is_idle(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 mask = 0;
mask |= (adev->vce.harvest_config & AMDGPU_VCE_HARVEST_VCE0) ? 0 : SRBM_STATUS2__VCE0_BUSY_MASK;
mask |= (adev->vce.harvest_config & AMDGPU_VCE_HARVEST_VCE1) ? 0 : SRBM_STATUS2__VCE1_BUSY_MASK;
return !(RREG32(mmSRBM_STATUS2) & mask);
}
static int vce_v3_0_wait_for_idle(void *handle)
{
unsigned i;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
for (i = 0; i < adev->usec_timeout; i++)
if (vce_v3_0_is_idle(handle))
return 0;
return -ETIMEDOUT;
}
#define VCE_STATUS_VCPU_REPORT_AUTO_BUSY_MASK 0x00000008L /* AUTO_BUSY */
#define VCE_STATUS_VCPU_REPORT_RB0_BUSY_MASK 0x00000010L /* RB0_BUSY */
#define VCE_STATUS_VCPU_REPORT_RB1_BUSY_MASK 0x00000020L /* RB1_BUSY */
#define AMDGPU_VCE_STATUS_BUSY_MASK (VCE_STATUS_VCPU_REPORT_AUTO_BUSY_MASK | \
VCE_STATUS_VCPU_REPORT_RB0_BUSY_MASK)
static bool vce_v3_0_check_soft_reset(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 srbm_soft_reset = 0;
/* According to VCE team , we should use VCE_STATUS instead
* SRBM_STATUS.VCE_BUSY bit for busy status checking.
* GRBM_GFX_INDEX.INSTANCE_INDEX is used to specify which VCE
* instance's registers are accessed
* (0 for 1st instance, 10 for 2nd instance).
*
*VCE_STATUS
*|UENC|ACPI|AUTO ACTIVE|RB1 |RB0 |RB2 | |FW_LOADED|JOB |
*|----+----+-----------+----+----+----+----------+---------+----|
*|bit8|bit7| bit6 |bit5|bit4|bit3| bit2 | bit1 |bit0|
*
* VCE team suggest use bit 3--bit 6 for busy status check
*/
mutex_lock(&adev->grbm_idx_mutex);
WREG32(mmGRBM_GFX_INDEX, GET_VCE_INSTANCE(0));
if (RREG32(mmVCE_STATUS) & AMDGPU_VCE_STATUS_BUSY_MASK) {
srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_VCE0, 1);
srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_VCE1, 1);
}
WREG32(mmGRBM_GFX_INDEX, GET_VCE_INSTANCE(1));
if (RREG32(mmVCE_STATUS) & AMDGPU_VCE_STATUS_BUSY_MASK) {
srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_VCE0, 1);
srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_VCE1, 1);
}
WREG32(mmGRBM_GFX_INDEX, GET_VCE_INSTANCE(0));
mutex_unlock(&adev->grbm_idx_mutex);
if (srbm_soft_reset) {
adev->vce.srbm_soft_reset = srbm_soft_reset;
return true;
} else {
adev->vce.srbm_soft_reset = 0;
return false;
}
}
static int vce_v3_0_soft_reset(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 srbm_soft_reset;
if (!adev->vce.srbm_soft_reset)
return 0;
srbm_soft_reset = adev->vce.srbm_soft_reset;
if (srbm_soft_reset) {
u32 tmp;
tmp = RREG32(mmSRBM_SOFT_RESET);
tmp |= srbm_soft_reset;
dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
WREG32(mmSRBM_SOFT_RESET, tmp);
tmp = RREG32(mmSRBM_SOFT_RESET);
udelay(50);
tmp &= ~srbm_soft_reset;
WREG32(mmSRBM_SOFT_RESET, tmp);
tmp = RREG32(mmSRBM_SOFT_RESET);
/* Wait a little for things to settle down */
udelay(50);
}
return 0;
}
static int vce_v3_0_pre_soft_reset(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (!adev->vce.srbm_soft_reset)
return 0;
mdelay(5);
return vce_v3_0_suspend(adev);
}
static int vce_v3_0_post_soft_reset(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (!adev->vce.srbm_soft_reset)
return 0;
mdelay(5);
return vce_v3_0_resume(adev);
}
static int vce_v3_0_set_interrupt_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
unsigned type,
enum amdgpu_interrupt_state state)
{
uint32_t val = 0;
if (state == AMDGPU_IRQ_STATE_ENABLE)
val |= VCE_SYS_INT_EN__VCE_SYS_INT_TRAP_INTERRUPT_EN_MASK;
WREG32_P(mmVCE_SYS_INT_EN, val, ~VCE_SYS_INT_EN__VCE_SYS_INT_TRAP_INTERRUPT_EN_MASK);
return 0;
}
static int vce_v3_0_process_interrupt(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
DRM_DEBUG("IH: VCE\n");
WREG32_FIELD(VCE_SYS_INT_STATUS, VCE_SYS_INT_TRAP_INTERRUPT_INT, 1);
switch (entry->src_data[0]) {
case 0:
case 1:
case 2:
amdgpu_fence_process(&adev->vce.ring[entry->src_data[0]]);
break;
default:
DRM_ERROR("Unhandled interrupt: %d %d\n",
entry->src_id, entry->src_data[0]);
break;
}
return 0;
}
static int vce_v3_0_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
bool enable = (state == AMD_CG_STATE_GATE) ? true : false;
int i;
if (!(adev->cg_flags & AMD_CG_SUPPORT_VCE_MGCG))
return 0;
mutex_lock(&adev->grbm_idx_mutex);
for (i = 0; i < 2; i++) {
/* Program VCE Instance 0 or 1 if not harvested */
if (adev->vce.harvest_config & (1 << i))
continue;
WREG32(mmGRBM_GFX_INDEX, GET_VCE_INSTANCE(i));
if (!enable) {
/* initialize VCE_CLOCK_GATING_A: Clock ON/OFF delay */
uint32_t data = RREG32(mmVCE_CLOCK_GATING_A);
data &= ~(0xf | 0xff0);
data |= ((0x0 << 0) | (0x04 << 4));
WREG32(mmVCE_CLOCK_GATING_A, data);
/* initialize VCE_UENC_CLOCK_GATING: Clock ON/OFF delay */
data = RREG32(mmVCE_UENC_CLOCK_GATING);
data &= ~(0xf | 0xff0);
data |= ((0x0 << 0) | (0x04 << 4));
WREG32(mmVCE_UENC_CLOCK_GATING, data);
}
vce_v3_0_set_vce_sw_clock_gating(adev, enable);
}
WREG32(mmGRBM_GFX_INDEX, mmGRBM_GFX_INDEX_DEFAULT);
mutex_unlock(&adev->grbm_idx_mutex);
return 0;
}
static int vce_v3_0_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
/* This doesn't actually powergate the VCE block.
* That's done in the dpm code via the SMC. This
* just re-inits the block as necessary. The actual
* gating still happens in the dpm code. We should
* revisit this when there is a cleaner line between
* the smc and the hw blocks
*/
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int ret = 0;
if (state == AMD_PG_STATE_GATE) {
ret = vce_v3_0_stop(adev);
if (ret)
goto out;
} else {
ret = vce_v3_0_start(adev);
if (ret)
goto out;
}
out:
return ret;
}
static void vce_v3_0_get_clockgating_state(void *handle, u32 *flags)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int data;
mutex_lock(&adev->pm.mutex);
if (adev->flags & AMD_IS_APU)
data = RREG32_SMC(ixCURRENT_PG_STATUS_APU);
else
data = RREG32_SMC(ixCURRENT_PG_STATUS);
if (data & CURRENT_PG_STATUS__VCE_PG_STATUS_MASK) {
DRM_INFO("Cannot get clockgating state when VCE is powergated.\n");
goto out;
}
WREG32_FIELD(GRBM_GFX_INDEX, VCE_INSTANCE, 0);
/* AMD_CG_SUPPORT_VCE_MGCG */
data = RREG32(mmVCE_CLOCK_GATING_A);
if (data & (0x04 << 4))
*flags |= AMD_CG_SUPPORT_VCE_MGCG;
out:
mutex_unlock(&adev->pm.mutex);
}
static void vce_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
struct amdgpu_ib *ib, unsigned int vm_id, bool ctx_switch)
{
amdgpu_ring_write(ring, VCE_CMD_IB_VM);
amdgpu_ring_write(ring, vm_id);
amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr));
amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
amdgpu_ring_write(ring, ib->length_dw);
}
static void vce_v3_0_emit_vm_flush(struct amdgpu_ring *ring,
unsigned int vm_id, uint64_t pd_addr)
{
amdgpu_ring_write(ring, VCE_CMD_UPDATE_PTB);
amdgpu_ring_write(ring, vm_id);
amdgpu_ring_write(ring, pd_addr >> 12);
amdgpu_ring_write(ring, VCE_CMD_FLUSH_TLB);
amdgpu_ring_write(ring, vm_id);
amdgpu_ring_write(ring, VCE_CMD_END);
}
static void vce_v3_0_emit_pipeline_sync(struct amdgpu_ring *ring)
{
uint32_t seq = ring->fence_drv.sync_seq;
uint64_t addr = ring->fence_drv.gpu_addr;
amdgpu_ring_write(ring, VCE_CMD_WAIT_GE);
amdgpu_ring_write(ring, lower_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, seq);
}
static const struct amd_ip_funcs vce_v3_0_ip_funcs = {
.name = "vce_v3_0",
.early_init = vce_v3_0_early_init,
.late_init = NULL,
.sw_init = vce_v3_0_sw_init,
.sw_fini = vce_v3_0_sw_fini,
.hw_init = vce_v3_0_hw_init,
.hw_fini = vce_v3_0_hw_fini,
.suspend = vce_v3_0_suspend,
.resume = vce_v3_0_resume,
.is_idle = vce_v3_0_is_idle,
.wait_for_idle = vce_v3_0_wait_for_idle,
.check_soft_reset = vce_v3_0_check_soft_reset,
.pre_soft_reset = vce_v3_0_pre_soft_reset,
.soft_reset = vce_v3_0_soft_reset,
.post_soft_reset = vce_v3_0_post_soft_reset,
.set_clockgating_state = vce_v3_0_set_clockgating_state,
.set_powergating_state = vce_v3_0_set_powergating_state,
.get_clockgating_state = vce_v3_0_get_clockgating_state,
};
static const struct amdgpu_ring_funcs vce_v3_0_ring_phys_funcs = {
.type = AMDGPU_RING_TYPE_VCE,
.align_mask = 0xf,
.nop = VCE_CMD_NO_OP,
.support_64bit_ptrs = false,
.get_rptr = vce_v3_0_ring_get_rptr,
.get_wptr = vce_v3_0_ring_get_wptr,
.set_wptr = vce_v3_0_ring_set_wptr,
.parse_cs = amdgpu_vce_ring_parse_cs,
.emit_frame_size =
4 + /* vce_v3_0_emit_pipeline_sync */
6, /* amdgpu_vce_ring_emit_fence x1 no user fence */
.emit_ib_size = 5, /* vce_v3_0_ring_emit_ib */
.emit_ib = amdgpu_vce_ring_emit_ib,
.emit_fence = amdgpu_vce_ring_emit_fence,
.test_ring = amdgpu_vce_ring_test_ring,
.test_ib = amdgpu_vce_ring_test_ib,
.insert_nop = amdgpu_ring_insert_nop,
.pad_ib = amdgpu_ring_generic_pad_ib,
.begin_use = amdgpu_vce_ring_begin_use,
.end_use = amdgpu_vce_ring_end_use,
};
static const struct amdgpu_ring_funcs vce_v3_0_ring_vm_funcs = {
.type = AMDGPU_RING_TYPE_VCE,
.align_mask = 0xf,
.nop = VCE_CMD_NO_OP,
.support_64bit_ptrs = false,
.get_rptr = vce_v3_0_ring_get_rptr,
.get_wptr = vce_v3_0_ring_get_wptr,
.set_wptr = vce_v3_0_ring_set_wptr,
.parse_cs = amdgpu_vce_ring_parse_cs_vm,
.emit_frame_size =
6 + /* vce_v3_0_emit_vm_flush */
4 + /* vce_v3_0_emit_pipeline_sync */
6 + 6, /* amdgpu_vce_ring_emit_fence x2 vm fence */
.emit_ib_size = 4, /* amdgpu_vce_ring_emit_ib */
.emit_ib = vce_v3_0_ring_emit_ib,
.emit_vm_flush = vce_v3_0_emit_vm_flush,
.emit_pipeline_sync = vce_v3_0_emit_pipeline_sync,
.emit_fence = amdgpu_vce_ring_emit_fence,
.test_ring = amdgpu_vce_ring_test_ring,
.test_ib = amdgpu_vce_ring_test_ib,
.insert_nop = amdgpu_ring_insert_nop,
.pad_ib = amdgpu_ring_generic_pad_ib,
.begin_use = amdgpu_vce_ring_begin_use,
.end_use = amdgpu_vce_ring_end_use,
};
static void vce_v3_0_set_ring_funcs(struct amdgpu_device *adev)
{
int i;
if (adev->asic_type >= CHIP_STONEY) {
for (i = 0; i < adev->vce.num_rings; i++)
adev->vce.ring[i].funcs = &vce_v3_0_ring_vm_funcs;
DRM_INFO("VCE enabled in VM mode\n");
} else {
for (i = 0; i < adev->vce.num_rings; i++)
adev->vce.ring[i].funcs = &vce_v3_0_ring_phys_funcs;
DRM_INFO("VCE enabled in physical mode\n");
}
}
static const struct amdgpu_irq_src_funcs vce_v3_0_irq_funcs = {
.set = vce_v3_0_set_interrupt_state,
.process = vce_v3_0_process_interrupt,
};
static void vce_v3_0_set_irq_funcs(struct amdgpu_device *adev)
{
adev->vce.irq.num_types = 1;
adev->vce.irq.funcs = &vce_v3_0_irq_funcs;
};
const struct amdgpu_ip_block_version vce_v3_0_ip_block =
{
.type = AMD_IP_BLOCK_TYPE_VCE,
.major = 3,
.minor = 0,
.rev = 0,
.funcs = &vce_v3_0_ip_funcs,
};
const struct amdgpu_ip_block_version vce_v3_1_ip_block =
{
.type = AMD_IP_BLOCK_TYPE_VCE,
.major = 3,
.minor = 1,
.rev = 0,
.funcs = &vce_v3_0_ip_funcs,
};
const struct amdgpu_ip_block_version vce_v3_4_ip_block =
{
.type = AMD_IP_BLOCK_TYPE_VCE,
.major = 3,
.minor = 4,
.rev = 0,
.funcs = &vce_v3_0_ip_funcs,
};
|