1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
|
// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <drm/drm_drv.h>
#include "amdgpu.h"
#include "amdgpu_trace.h"
#include "amdgpu_vm.h"
/*
* amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
*/
struct amdgpu_vm_pt_cursor {
uint64_t pfn;
struct amdgpu_vm_bo_base *parent;
struct amdgpu_vm_bo_base *entry;
unsigned int level;
};
/**
* amdgpu_vm_pt_level_shift - return the addr shift for each level
*
* @adev: amdgpu_device pointer
* @level: VMPT level
*
* Returns:
* The number of bits the pfn needs to be right shifted for a level.
*/
static unsigned int amdgpu_vm_pt_level_shift(struct amdgpu_device *adev,
unsigned int level)
{
switch (level) {
case AMDGPU_VM_PDB2:
case AMDGPU_VM_PDB1:
case AMDGPU_VM_PDB0:
return 9 * (AMDGPU_VM_PDB0 - level) +
adev->vm_manager.block_size;
case AMDGPU_VM_PTB:
return 0;
default:
return ~0;
}
}
/**
* amdgpu_vm_pt_num_entries - return the number of entries in a PD/PT
*
* @adev: amdgpu_device pointer
* @level: VMPT level
*
* Returns:
* The number of entries in a page directory or page table.
*/
static unsigned int amdgpu_vm_pt_num_entries(struct amdgpu_device *adev,
unsigned int level)
{
unsigned int shift;
shift = amdgpu_vm_pt_level_shift(adev, adev->vm_manager.root_level);
if (level == adev->vm_manager.root_level)
/* For the root directory */
return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
>> shift;
else if (level != AMDGPU_VM_PTB)
/* Everything in between */
return 512;
/* For the page tables on the leaves */
return AMDGPU_VM_PTE_COUNT(adev);
}
/**
* amdgpu_vm_pt_num_ats_entries - return the number of ATS entries in the root PD
*
* @adev: amdgpu_device pointer
*
* Returns:
* The number of entries in the root page directory which needs the ATS setting.
*/
static unsigned int amdgpu_vm_pt_num_ats_entries(struct amdgpu_device *adev)
{
unsigned int shift;
shift = amdgpu_vm_pt_level_shift(adev, adev->vm_manager.root_level);
return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
}
/**
* amdgpu_vm_pt_entries_mask - the mask to get the entry number of a PD/PT
*
* @adev: amdgpu_device pointer
* @level: VMPT level
*
* Returns:
* The mask to extract the entry number of a PD/PT from an address.
*/
static uint32_t amdgpu_vm_pt_entries_mask(struct amdgpu_device *adev,
unsigned int level)
{
if (level <= adev->vm_manager.root_level)
return 0xffffffff;
else if (level != AMDGPU_VM_PTB)
return 0x1ff;
else
return AMDGPU_VM_PTE_COUNT(adev) - 1;
}
/**
* amdgpu_vm_pt_size - returns the size of the page table in bytes
*
* @adev: amdgpu_device pointer
* @level: VMPT level
*
* Returns:
* The size of the BO for a page directory or page table in bytes.
*/
static unsigned int amdgpu_vm_pt_size(struct amdgpu_device *adev,
unsigned int level)
{
return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_pt_num_entries(adev, level) * 8);
}
/**
* amdgpu_vm_pt_parent - get the parent page directory
*
* @pt: child page table
*
* Helper to get the parent entry for the child page table. NULL if we are at
* the root page directory.
*/
static struct amdgpu_vm_bo_base *
amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt)
{
struct amdgpu_bo *parent = pt->bo->parent;
if (!parent)
return NULL;
return parent->vm_bo;
}
/**
* amdgpu_vm_pt_start - start PD/PT walk
*
* @adev: amdgpu_device pointer
* @vm: amdgpu_vm structure
* @start: start address of the walk
* @cursor: state to initialize
*
* Initialize a amdgpu_vm_pt_cursor to start a walk.
*/
static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
struct amdgpu_vm *vm, uint64_t start,
struct amdgpu_vm_pt_cursor *cursor)
{
cursor->pfn = start;
cursor->parent = NULL;
cursor->entry = &vm->root;
cursor->level = adev->vm_manager.root_level;
}
/**
* amdgpu_vm_pt_descendant - go to child node
*
* @adev: amdgpu_device pointer
* @cursor: current state
*
* Walk to the child node of the current node.
* Returns:
* True if the walk was possible, false otherwise.
*/
static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
struct amdgpu_vm_pt_cursor *cursor)
{
unsigned int mask, shift, idx;
if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry ||
!cursor->entry->bo)
return false;
mask = amdgpu_vm_pt_entries_mask(adev, cursor->level);
shift = amdgpu_vm_pt_level_shift(adev, cursor->level);
++cursor->level;
idx = (cursor->pfn >> shift) & mask;
cursor->parent = cursor->entry;
cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx];
return true;
}
/**
* amdgpu_vm_pt_sibling - go to sibling node
*
* @adev: amdgpu_device pointer
* @cursor: current state
*
* Walk to the sibling node of the current node.
* Returns:
* True if the walk was possible, false otherwise.
*/
static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
struct amdgpu_vm_pt_cursor *cursor)
{
unsigned int shift, num_entries;
struct amdgpu_bo_vm *parent;
/* Root doesn't have a sibling */
if (!cursor->parent)
return false;
/* Go to our parents and see if we got a sibling */
shift = amdgpu_vm_pt_level_shift(adev, cursor->level - 1);
num_entries = amdgpu_vm_pt_num_entries(adev, cursor->level - 1);
parent = to_amdgpu_bo_vm(cursor->parent->bo);
if (cursor->entry == &parent->entries[num_entries - 1])
return false;
cursor->pfn += 1ULL << shift;
cursor->pfn &= ~((1ULL << shift) - 1);
++cursor->entry;
return true;
}
/**
* amdgpu_vm_pt_ancestor - go to parent node
*
* @cursor: current state
*
* Walk to the parent node of the current node.
* Returns:
* True if the walk was possible, false otherwise.
*/
static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
{
if (!cursor->parent)
return false;
--cursor->level;
cursor->entry = cursor->parent;
cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
return true;
}
/**
* amdgpu_vm_pt_next - get next PD/PT in hieratchy
*
* @adev: amdgpu_device pointer
* @cursor: current state
*
* Walk the PD/PT tree to the next node.
*/
static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
struct amdgpu_vm_pt_cursor *cursor)
{
/* First try a newborn child */
if (amdgpu_vm_pt_descendant(adev, cursor))
return;
/* If that didn't worked try to find a sibling */
while (!amdgpu_vm_pt_sibling(adev, cursor)) {
/* No sibling, go to our parents and grandparents */
if (!amdgpu_vm_pt_ancestor(cursor)) {
cursor->pfn = ~0ll;
return;
}
}
}
/**
* amdgpu_vm_pt_first_dfs - start a deep first search
*
* @adev: amdgpu_device structure
* @vm: amdgpu_vm structure
* @start: optional cursor to start with
* @cursor: state to initialize
*
* Starts a deep first traversal of the PD/PT tree.
*/
static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct amdgpu_vm_pt_cursor *start,
struct amdgpu_vm_pt_cursor *cursor)
{
if (start)
*cursor = *start;
else
amdgpu_vm_pt_start(adev, vm, 0, cursor);
while (amdgpu_vm_pt_descendant(adev, cursor))
;
}
/**
* amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
*
* @start: starting point for the search
* @entry: current entry
*
* Returns:
* True when the search should continue, false otherwise.
*/
static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
struct amdgpu_vm_bo_base *entry)
{
return entry && (!start || entry != start->entry);
}
/**
* amdgpu_vm_pt_next_dfs - get the next node for a deep first search
*
* @adev: amdgpu_device structure
* @cursor: current state
*
* Move the cursor to the next node in a deep first search.
*/
static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
struct amdgpu_vm_pt_cursor *cursor)
{
if (!cursor->entry)
return;
if (!cursor->parent)
cursor->entry = NULL;
else if (amdgpu_vm_pt_sibling(adev, cursor))
while (amdgpu_vm_pt_descendant(adev, cursor))
;
else
amdgpu_vm_pt_ancestor(cursor);
}
/*
* for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
*/
#define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \
for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \
(entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
amdgpu_vm_pt_continue_dfs((start), (entry)); \
(entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
/**
* amdgpu_vm_pt_clear - initially clear the PDs/PTs
*
* @adev: amdgpu_device pointer
* @vm: VM to clear BO from
* @vmbo: BO to clear
* @immediate: use an immediate update
*
* Root PD needs to be reserved when calling this.
*
* Returns:
* 0 on success, errno otherwise.
*/
int amdgpu_vm_pt_clear(struct amdgpu_device *adev, struct amdgpu_vm *vm,
struct amdgpu_bo_vm *vmbo, bool immediate)
{
unsigned int level = adev->vm_manager.root_level;
struct ttm_operation_ctx ctx = { true, false };
struct amdgpu_vm_update_params params;
struct amdgpu_bo *ancestor = &vmbo->bo;
unsigned int entries, ats_entries;
struct amdgpu_bo *bo = &vmbo->bo;
uint64_t addr;
int r, idx;
/* Figure out our place in the hierarchy */
if (ancestor->parent) {
++level;
while (ancestor->parent->parent) {
++level;
ancestor = ancestor->parent;
}
}
entries = amdgpu_bo_size(bo) / 8;
if (!vm->pte_support_ats) {
ats_entries = 0;
} else if (!bo->parent) {
ats_entries = amdgpu_vm_pt_num_ats_entries(adev);
ats_entries = min(ats_entries, entries);
entries -= ats_entries;
} else {
struct amdgpu_vm_bo_base *pt;
pt = ancestor->vm_bo;
ats_entries = amdgpu_vm_pt_num_ats_entries(adev);
if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >=
ats_entries) {
ats_entries = 0;
} else {
ats_entries = entries;
entries = 0;
}
}
r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
if (r)
return r;
if (vmbo->shadow) {
struct amdgpu_bo *shadow = vmbo->shadow;
r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx);
if (r)
return r;
}
if (!drm_dev_enter(adev_to_drm(adev), &idx))
return -ENODEV;
r = vm->update_funcs->map_table(vmbo);
if (r)
goto exit;
memset(¶ms, 0, sizeof(params));
params.adev = adev;
params.vm = vm;
params.immediate = immediate;
r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT);
if (r)
goto exit;
addr = 0;
if (ats_entries) {
uint64_t value = 0, flags;
flags = AMDGPU_PTE_DEFAULT_ATC;
if (level != AMDGPU_VM_PTB) {
/* Handle leaf PDEs as PTEs */
flags |= AMDGPU_PDE_PTE;
amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
}
r = vm->update_funcs->update(¶ms, vmbo, addr, 0,
ats_entries, value, flags);
if (r)
goto exit;
addr += ats_entries * 8;
}
if (entries) {
uint64_t value = 0, flags = 0;
if (adev->asic_type >= CHIP_VEGA10) {
if (level != AMDGPU_VM_PTB) {
/* Handle leaf PDEs as PTEs */
flags |= AMDGPU_PDE_PTE;
amdgpu_gmc_get_vm_pde(adev, level,
&value, &flags);
} else {
/* Workaround for fault priority problem on GMC9 */
flags = AMDGPU_PTE_EXECUTABLE;
}
}
r = vm->update_funcs->update(¶ms, vmbo, addr, 0, entries,
value, flags);
if (r)
goto exit;
}
r = vm->update_funcs->commit(¶ms, NULL);
exit:
drm_dev_exit(idx);
return r;
}
/**
* amdgpu_vm_pt_create - create bo for PD/PT
*
* @adev: amdgpu_device pointer
* @vm: requesting vm
* @level: the page table level
* @immediate: use a immediate update
* @vmbo: pointer to the buffer object pointer
*/
int amdgpu_vm_pt_create(struct amdgpu_device *adev, struct amdgpu_vm *vm,
int level, bool immediate, struct amdgpu_bo_vm **vmbo)
{
struct amdgpu_bo_param bp;
struct amdgpu_bo *bo;
struct dma_resv *resv;
unsigned int num_entries;
int r;
memset(&bp, 0, sizeof(bp));
bp.size = amdgpu_vm_pt_size(adev, level);
bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain);
bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
AMDGPU_GEM_CREATE_CPU_GTT_USWC;
if (level < AMDGPU_VM_PTB)
num_entries = amdgpu_vm_pt_num_entries(adev, level);
else
num_entries = 0;
bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries);
if (vm->use_cpu_for_update)
bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
bp.type = ttm_bo_type_kernel;
bp.no_wait_gpu = immediate;
if (vm->root.bo)
bp.resv = vm->root.bo->tbo.base.resv;
r = amdgpu_bo_create_vm(adev, &bp, vmbo);
if (r)
return r;
bo = &(*vmbo)->bo;
if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) {
(*vmbo)->shadow = NULL;
return 0;
}
if (!bp.resv)
WARN_ON(dma_resv_lock(bo->tbo.base.resv,
NULL));
resv = bp.resv;
memset(&bp, 0, sizeof(bp));
bp.size = amdgpu_vm_pt_size(adev, level);
bp.domain = AMDGPU_GEM_DOMAIN_GTT;
bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
bp.type = ttm_bo_type_kernel;
bp.resv = bo->tbo.base.resv;
bp.bo_ptr_size = sizeof(struct amdgpu_bo);
r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow);
if (!resv)
dma_resv_unlock(bo->tbo.base.resv);
if (r) {
amdgpu_bo_unref(&bo);
return r;
}
(*vmbo)->shadow->parent = amdgpu_bo_ref(bo);
amdgpu_bo_add_to_shadow_list(*vmbo);
return 0;
}
/**
* amdgpu_vm_pt_alloc - Allocate a specific page table
*
* @adev: amdgpu_device pointer
* @vm: VM to allocate page tables for
* @cursor: Which page table to allocate
* @immediate: use an immediate update
*
* Make sure a specific page table or directory is allocated.
*
* Returns:
* 1 if page table needed to be allocated, 0 if page table was already
* allocated, negative errno if an error occurred.
*/
static int amdgpu_vm_pt_alloc(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct amdgpu_vm_pt_cursor *cursor,
bool immediate)
{
struct amdgpu_vm_bo_base *entry = cursor->entry;
struct amdgpu_bo *pt_bo;
struct amdgpu_bo_vm *pt;
int r;
if (entry->bo)
return 0;
amdgpu_vm_eviction_unlock(vm);
r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt);
amdgpu_vm_eviction_lock(vm);
if (r)
return r;
/* Keep a reference to the root directory to avoid
* freeing them up in the wrong order.
*/
pt_bo = &pt->bo;
pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo);
amdgpu_vm_bo_base_init(entry, vm, pt_bo);
r = amdgpu_vm_pt_clear(adev, vm, pt, immediate);
if (r)
goto error_free_pt;
return 0;
error_free_pt:
amdgpu_bo_unref(&pt->shadow);
amdgpu_bo_unref(&pt_bo);
return r;
}
/**
* amdgpu_vm_pt_free - free one PD/PT
*
* @entry: PDE to free
*/
static void amdgpu_vm_pt_free(struct amdgpu_vm_bo_base *entry)
{
struct amdgpu_bo *shadow;
if (!entry->bo)
return;
shadow = amdgpu_bo_shadowed(entry->bo);
if (shadow) {
ttm_bo_set_bulk_move(&shadow->tbo, NULL);
amdgpu_bo_unref(&shadow);
}
ttm_bo_set_bulk_move(&entry->bo->tbo, NULL);
entry->bo->vm_bo = NULL;
spin_lock(&entry->vm->status_lock);
list_del(&entry->vm_status);
spin_unlock(&entry->vm->status_lock);
amdgpu_bo_unref(&entry->bo);
}
void amdgpu_vm_pt_free_work(struct work_struct *work)
{
struct amdgpu_vm_bo_base *entry, *next;
struct amdgpu_vm *vm;
LIST_HEAD(pt_freed);
vm = container_of(work, struct amdgpu_vm, pt_free_work);
spin_lock(&vm->status_lock);
list_splice_init(&vm->pt_freed, &pt_freed);
spin_unlock(&vm->status_lock);
/* flush_work in amdgpu_vm_fini ensure vm->root.bo is valid. */
amdgpu_bo_reserve(vm->root.bo, true);
list_for_each_entry_safe(entry, next, &pt_freed, vm_status)
amdgpu_vm_pt_free(entry);
amdgpu_bo_unreserve(vm->root.bo);
}
/**
* amdgpu_vm_pt_free_dfs - free PD/PT levels
*
* @adev: amdgpu device structure
* @vm: amdgpu vm structure
* @start: optional cursor where to start freeing PDs/PTs
*
* Free the page directory or page table level and all sub levels.
*/
static void amdgpu_vm_pt_free_dfs(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct amdgpu_vm_pt_cursor *start,
bool unlocked)
{
struct amdgpu_vm_pt_cursor cursor;
struct amdgpu_vm_bo_base *entry;
if (unlocked) {
spin_lock(&vm->status_lock);
for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
list_move(&entry->vm_status, &vm->pt_freed);
if (start)
list_move(&start->entry->vm_status, &vm->pt_freed);
spin_unlock(&vm->status_lock);
schedule_work(&vm->pt_free_work);
return;
}
for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
amdgpu_vm_pt_free(entry);
if (start)
amdgpu_vm_pt_free(start->entry);
}
/**
* amdgpu_vm_pt_free_root - free root PD
* @adev: amdgpu device structure
* @vm: amdgpu vm structure
*
* Free the root page directory and everything below it.
*/
void amdgpu_vm_pt_free_root(struct amdgpu_device *adev, struct amdgpu_vm *vm)
{
amdgpu_vm_pt_free_dfs(adev, vm, NULL, false);
}
/**
* amdgpu_vm_pt_is_root_clean - check if a root PD is clean
*
* @adev: amdgpu_device pointer
* @vm: the VM to check
*
* Check all entries of the root PD, if any subsequent PDs are allocated,
* it means there are page table creating and filling, and is no a clean
* VM
*
* Returns:
* 0 if this VM is clean
*/
bool amdgpu_vm_pt_is_root_clean(struct amdgpu_device *adev,
struct amdgpu_vm *vm)
{
enum amdgpu_vm_level root = adev->vm_manager.root_level;
unsigned int entries = amdgpu_vm_pt_num_entries(adev, root);
unsigned int i = 0;
for (i = 0; i < entries; i++) {
if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo)
return false;
}
return true;
}
/**
* amdgpu_vm_pde_update - update a single level in the hierarchy
*
* @params: parameters for the update
* @entry: entry to update
*
* Makes sure the requested entry in parent is up to date.
*/
int amdgpu_vm_pde_update(struct amdgpu_vm_update_params *params,
struct amdgpu_vm_bo_base *entry)
{
struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry);
struct amdgpu_bo *bo = parent->bo, *pbo;
struct amdgpu_vm *vm = params->vm;
uint64_t pde, pt, flags;
unsigned int level;
for (level = 0, pbo = bo->parent; pbo; ++level)
pbo = pbo->parent;
level += params->adev->vm_manager.root_level;
amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags);
pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8;
return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt,
1, 0, flags);
}
/*
* amdgpu_vm_pte_update_flags - figure out flags for PTE updates
*
* Make sure to set the right flags for the PTEs at the desired level.
*/
static void amdgpu_vm_pte_update_flags(struct amdgpu_vm_update_params *params,
struct amdgpu_bo_vm *pt,
unsigned int level,
uint64_t pe, uint64_t addr,
unsigned int count, uint32_t incr,
uint64_t flags)
{
if (level != AMDGPU_VM_PTB) {
flags |= AMDGPU_PDE_PTE;
amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
} else if (params->adev->asic_type >= CHIP_VEGA10 &&
!(flags & AMDGPU_PTE_VALID) &&
!(flags & AMDGPU_PTE_PRT)) {
/* Workaround for fault priority problem on GMC9 */
flags |= AMDGPU_PTE_EXECUTABLE;
}
params->vm->update_funcs->update(params, pt, pe, addr, count, incr,
flags);
}
/**
* amdgpu_vm_pte_fragment - get fragment for PTEs
*
* @params: see amdgpu_vm_update_params definition
* @start: first PTE to handle
* @end: last PTE to handle
* @flags: hw mapping flags
* @frag: resulting fragment size
* @frag_end: end of this fragment
*
* Returns the first possible fragment for the start and end address.
*/
static void amdgpu_vm_pte_fragment(struct amdgpu_vm_update_params *params,
uint64_t start, uint64_t end, uint64_t flags,
unsigned int *frag, uint64_t *frag_end)
{
/**
* The MC L1 TLB supports variable sized pages, based on a fragment
* field in the PTE. When this field is set to a non-zero value, page
* granularity is increased from 4KB to (1 << (12 + frag)). The PTE
* flags are considered valid for all PTEs within the fragment range
* and corresponding mappings are assumed to be physically contiguous.
*
* The L1 TLB can store a single PTE for the whole fragment,
* significantly increasing the space available for translation
* caching. This leads to large improvements in throughput when the
* TLB is under pressure.
*
* The L2 TLB distributes small and large fragments into two
* asymmetric partitions. The large fragment cache is significantly
* larger. Thus, we try to use large fragments wherever possible.
* Userspace can support this by aligning virtual base address and
* allocation size to the fragment size.
*
* Starting with Vega10 the fragment size only controls the L1. The L2
* is now directly feed with small/huge/giant pages from the walker.
*/
unsigned int max_frag;
if (params->adev->asic_type < CHIP_VEGA10)
max_frag = params->adev->vm_manager.fragment_size;
else
max_frag = 31;
/* system pages are non continuously */
if (params->pages_addr) {
*frag = 0;
*frag_end = end;
return;
}
/* This intentionally wraps around if no bit is set */
*frag = min_t(unsigned int, ffs(start) - 1, fls64(end - start) - 1);
if (*frag >= max_frag) {
*frag = max_frag;
*frag_end = end & ~((1ULL << max_frag) - 1);
} else {
*frag_end = start + (1 << *frag);
}
}
/**
* amdgpu_vm_ptes_update - make sure that page tables are valid
*
* @params: see amdgpu_vm_update_params definition
* @start: start of GPU address range
* @end: end of GPU address range
* @dst: destination address to map to, the next dst inside the function
* @flags: mapping flags
*
* Update the page tables in the range @start - @end.
*
* Returns:
* 0 for success, -EINVAL for failure.
*/
int amdgpu_vm_ptes_update(struct amdgpu_vm_update_params *params,
uint64_t start, uint64_t end,
uint64_t dst, uint64_t flags)
{
struct amdgpu_device *adev = params->adev;
struct amdgpu_vm_pt_cursor cursor;
uint64_t frag_start = start, frag_end;
unsigned int frag;
int r;
/* figure out the initial fragment */
amdgpu_vm_pte_fragment(params, frag_start, end, flags, &frag,
&frag_end);
/* walk over the address space and update the PTs */
amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
while (cursor.pfn < end) {
unsigned int shift, parent_shift, mask;
uint64_t incr, entry_end, pe_start;
struct amdgpu_bo *pt;
if (!params->unlocked) {
/* make sure that the page tables covering the
* address range are actually allocated
*/
r = amdgpu_vm_pt_alloc(params->adev, params->vm,
&cursor, params->immediate);
if (r)
return r;
}
shift = amdgpu_vm_pt_level_shift(adev, cursor.level);
parent_shift = amdgpu_vm_pt_level_shift(adev, cursor.level - 1);
if (params->unlocked) {
/* Unlocked updates are only allowed on the leaves */
if (amdgpu_vm_pt_descendant(adev, &cursor))
continue;
} else if (adev->asic_type < CHIP_VEGA10 &&
(flags & AMDGPU_PTE_VALID)) {
/* No huge page support before GMC v9 */
if (cursor.level != AMDGPU_VM_PTB) {
if (!amdgpu_vm_pt_descendant(adev, &cursor))
return -ENOENT;
continue;
}
} else if (frag < shift) {
/* We can't use this level when the fragment size is
* smaller than the address shift. Go to the next
* child entry and try again.
*/
if (amdgpu_vm_pt_descendant(adev, &cursor))
continue;
} else if (frag >= parent_shift) {
/* If the fragment size is even larger than the parent
* shift we should go up one level and check it again.
*/
if (!amdgpu_vm_pt_ancestor(&cursor))
return -EINVAL;
continue;
}
pt = cursor.entry->bo;
if (!pt) {
/* We need all PDs and PTs for mapping something, */
if (flags & AMDGPU_PTE_VALID)
return -ENOENT;
/* but unmapping something can happen at a higher
* level.
*/
if (!amdgpu_vm_pt_ancestor(&cursor))
return -EINVAL;
pt = cursor.entry->bo;
shift = parent_shift;
frag_end = max(frag_end, ALIGN(frag_start + 1,
1ULL << shift));
}
/* Looks good so far, calculate parameters for the update */
incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
mask = amdgpu_vm_pt_entries_mask(adev, cursor.level);
pe_start = ((cursor.pfn >> shift) & mask) * 8;
entry_end = ((uint64_t)mask + 1) << shift;
entry_end += cursor.pfn & ~(entry_end - 1);
entry_end = min(entry_end, end);
do {
struct amdgpu_vm *vm = params->vm;
uint64_t upd_end = min(entry_end, frag_end);
unsigned int nptes = (upd_end - frag_start) >> shift;
uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
/* This can happen when we set higher level PDs to
* silent to stop fault floods.
*/
nptes = max(nptes, 1u);
trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
min(nptes, 32u), dst, incr,
upd_flags,
vm->task_info.pid,
vm->immediate.fence_context);
amdgpu_vm_pte_update_flags(params, to_amdgpu_bo_vm(pt),
cursor.level, pe_start, dst,
nptes, incr, upd_flags);
pe_start += nptes * 8;
dst += nptes * incr;
frag_start = upd_end;
if (frag_start >= frag_end) {
/* figure out the next fragment */
amdgpu_vm_pte_fragment(params, frag_start, end,
flags, &frag, &frag_end);
if (frag < shift)
break;
}
} while (frag_start < entry_end);
if (amdgpu_vm_pt_descendant(adev, &cursor)) {
/* Free all child entries.
* Update the tables with the flags and addresses and free up subsequent
* tables in the case of huge pages or freed up areas.
* This is the maximum you can free, because all other page tables are not
* completely covered by the range and so potentially still in use.
*/
while (cursor.pfn < frag_start) {
/* Make sure previous mapping is freed */
if (cursor.entry->bo) {
params->table_freed = true;
amdgpu_vm_pt_free_dfs(adev, params->vm,
&cursor,
params->unlocked);
}
amdgpu_vm_pt_next(adev, &cursor);
}
} else if (frag >= shift) {
/* or just move on to the next on the same level. */
amdgpu_vm_pt_next(adev, &cursor);
}
}
return 0;
}
|