1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Based on drivers/clk/tegra/clk-emc.c
* Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
*
* Author: Dmitry Osipenko <digetx@gmail.com>
* Copyright (C) 2019 GRATE-DRIVER project
*/
#define pr_fmt(fmt) "tegra-emc-clk: " fmt
#include <linux/bits.h>
#include <linux/clk-provider.h>
#include <linux/clk/tegra.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include "clk.h"
#define CLK_SOURCE_EMC_2X_CLK_DIVISOR_MASK GENMASK(7, 0)
#define CLK_SOURCE_EMC_2X_CLK_SRC_MASK GENMASK(31, 30)
#define CLK_SOURCE_EMC_2X_CLK_SRC_SHIFT 30
#define MC_EMC_SAME_FREQ BIT(16)
#define USE_PLLM_UD BIT(29)
#define EMC_SRC_PLL_M 0
#define EMC_SRC_PLL_C 1
#define EMC_SRC_PLL_P 2
#define EMC_SRC_CLK_M 3
static const char * const emc_parent_clk_names[] = {
"pll_m", "pll_c", "pll_p", "clk_m",
};
struct tegra_clk_emc {
struct clk_hw hw;
void __iomem *reg;
bool mc_same_freq;
bool want_low_jitter;
tegra20_clk_emc_round_cb *round_cb;
void *cb_arg;
};
static inline struct tegra_clk_emc *to_tegra_clk_emc(struct clk_hw *hw)
{
return container_of(hw, struct tegra_clk_emc, hw);
}
static unsigned long emc_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct tegra_clk_emc *emc = to_tegra_clk_emc(hw);
u32 val, div;
val = readl_relaxed(emc->reg);
div = val & CLK_SOURCE_EMC_2X_CLK_DIVISOR_MASK;
return DIV_ROUND_UP(parent_rate * 2, div + 2);
}
static u8 emc_get_parent(struct clk_hw *hw)
{
struct tegra_clk_emc *emc = to_tegra_clk_emc(hw);
return readl_relaxed(emc->reg) >> CLK_SOURCE_EMC_2X_CLK_SRC_SHIFT;
}
static int emc_set_parent(struct clk_hw *hw, u8 index)
{
struct tegra_clk_emc *emc = to_tegra_clk_emc(hw);
u32 val, div;
val = readl_relaxed(emc->reg);
val &= ~CLK_SOURCE_EMC_2X_CLK_SRC_MASK;
val |= index << CLK_SOURCE_EMC_2X_CLK_SRC_SHIFT;
div = val & CLK_SOURCE_EMC_2X_CLK_DIVISOR_MASK;
if (index == EMC_SRC_PLL_M && div == 0 && emc->want_low_jitter)
val |= USE_PLLM_UD;
else
val &= ~USE_PLLM_UD;
if (emc->mc_same_freq)
val |= MC_EMC_SAME_FREQ;
else
val &= ~MC_EMC_SAME_FREQ;
writel_relaxed(val, emc->reg);
fence_udelay(1, emc->reg);
return 0;
}
static int emc_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct tegra_clk_emc *emc = to_tegra_clk_emc(hw);
unsigned int index;
u32 val, div;
div = div_frac_get(rate, parent_rate, 8, 1, 0);
val = readl_relaxed(emc->reg);
val &= ~CLK_SOURCE_EMC_2X_CLK_DIVISOR_MASK;
val |= div;
index = val >> CLK_SOURCE_EMC_2X_CLK_SRC_SHIFT;
if (index == EMC_SRC_PLL_M && div == 0 && emc->want_low_jitter)
val |= USE_PLLM_UD;
else
val &= ~USE_PLLM_UD;
if (emc->mc_same_freq)
val |= MC_EMC_SAME_FREQ;
else
val &= ~MC_EMC_SAME_FREQ;
writel_relaxed(val, emc->reg);
fence_udelay(1, emc->reg);
return 0;
}
static int emc_set_rate_and_parent(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate,
u8 index)
{
struct tegra_clk_emc *emc = to_tegra_clk_emc(hw);
u32 val, div;
div = div_frac_get(rate, parent_rate, 8, 1, 0);
val = readl_relaxed(emc->reg);
val &= ~CLK_SOURCE_EMC_2X_CLK_SRC_MASK;
val |= index << CLK_SOURCE_EMC_2X_CLK_SRC_SHIFT;
val &= ~CLK_SOURCE_EMC_2X_CLK_DIVISOR_MASK;
val |= div;
if (index == EMC_SRC_PLL_M && div == 0 && emc->want_low_jitter)
val |= USE_PLLM_UD;
else
val &= ~USE_PLLM_UD;
if (emc->mc_same_freq)
val |= MC_EMC_SAME_FREQ;
else
val &= ~MC_EMC_SAME_FREQ;
writel_relaxed(val, emc->reg);
fence_udelay(1, emc->reg);
return 0;
}
static int emc_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
{
struct tegra_clk_emc *emc = to_tegra_clk_emc(hw);
struct clk_hw *parent_hw;
unsigned long divided_rate;
unsigned long parent_rate;
unsigned int i;
long emc_rate;
int div;
emc_rate = emc->round_cb(req->rate, req->min_rate, req->max_rate,
emc->cb_arg);
if (emc_rate < 0)
return emc_rate;
for (i = 0; i < ARRAY_SIZE(emc_parent_clk_names); i++) {
parent_hw = clk_hw_get_parent_by_index(hw, i);
if (req->best_parent_hw == parent_hw)
parent_rate = req->best_parent_rate;
else
parent_rate = clk_hw_get_rate(parent_hw);
if (emc_rate > parent_rate)
continue;
div = div_frac_get(emc_rate, parent_rate, 8, 1, 0);
divided_rate = DIV_ROUND_UP(parent_rate * 2, div + 2);
if (divided_rate != emc_rate)
continue;
req->best_parent_rate = parent_rate;
req->best_parent_hw = parent_hw;
req->rate = emc_rate;
break;
}
if (i == ARRAY_SIZE(emc_parent_clk_names)) {
pr_err_once("can't find parent for rate %lu emc_rate %lu\n",
req->rate, emc_rate);
return -EINVAL;
}
return 0;
}
static const struct clk_ops tegra_clk_emc_ops = {
.recalc_rate = emc_recalc_rate,
.get_parent = emc_get_parent,
.set_parent = emc_set_parent,
.set_rate = emc_set_rate,
.set_rate_and_parent = emc_set_rate_and_parent,
.determine_rate = emc_determine_rate,
};
void tegra20_clk_set_emc_round_callback(tegra20_clk_emc_round_cb *round_cb,
void *cb_arg)
{
struct clk *clk = __clk_lookup("emc");
struct tegra_clk_emc *emc;
struct clk_hw *hw;
if (clk) {
hw = __clk_get_hw(clk);
emc = to_tegra_clk_emc(hw);
emc->round_cb = round_cb;
emc->cb_arg = cb_arg;
}
}
EXPORT_SYMBOL_GPL(tegra20_clk_set_emc_round_callback);
bool tegra20_clk_emc_driver_available(struct clk_hw *emc_hw)
{
return to_tegra_clk_emc(emc_hw)->round_cb != NULL;
}
struct clk *tegra20_clk_register_emc(void __iomem *ioaddr, bool low_jitter)
{
struct tegra_clk_emc *emc;
struct clk_init_data init;
struct clk *clk;
emc = kzalloc(sizeof(*emc), GFP_KERNEL);
if (!emc)
return NULL;
/*
* EMC stands for External Memory Controller.
*
* We don't want EMC clock to be disabled ever by gating its
* parent and whatnot because system is busted immediately in that
* case, hence the clock is marked as critical.
*/
init.name = "emc";
init.ops = &tegra_clk_emc_ops;
init.flags = CLK_IS_CRITICAL;
init.parent_names = emc_parent_clk_names;
init.num_parents = ARRAY_SIZE(emc_parent_clk_names);
emc->reg = ioaddr;
emc->hw.init = &init;
emc->want_low_jitter = low_jitter;
clk = clk_register(NULL, &emc->hw);
if (IS_ERR(clk)) {
kfree(emc);
return NULL;
}
return clk;
}
int tegra20_clk_prepare_emc_mc_same_freq(struct clk *emc_clk, bool same)
{
struct tegra_clk_emc *emc;
struct clk_hw *hw;
if (!emc_clk)
return -EINVAL;
hw = __clk_get_hw(emc_clk);
emc = to_tegra_clk_emc(hw);
emc->mc_same_freq = same;
return 0;
}
EXPORT_SYMBOL_GPL(tegra20_clk_prepare_emc_mc_same_freq);
|