1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* linux/arch/unicore32/include/asm/cacheflush.h
*
* Code specific to PKUnity SoC and UniCore ISA
*
* Copyright (C) 2001-2010 GUAN Xue-tao
*/
#ifndef __UNICORE_CACHEFLUSH_H__
#define __UNICORE_CACHEFLUSH_H__
#include <linux/mm.h>
#include <asm/shmparam.h>
#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
/*
* This flag is used to indicate that the page pointed to by a pte is clean
* and does not require cleaning before returning it to the user.
*/
#define PG_dcache_clean PG_arch_1
/*
* MM Cache Management
* ===================
*
* The arch/unicore32/mm/cache.S files implement these methods.
*
* Start addresses are inclusive and end addresses are exclusive;
* start addresses should be rounded down, end addresses up.
*
* See Documentation/core-api/cachetlb.rst for more information.
* Please note that the implementation of these, and the required
* effects are cache-type (VIVT/VIPT/PIPT) specific.
*
* flush_icache_all()
*
* Unconditionally clean and invalidate the entire icache.
* Currently only needed for cache-v6.S and cache-v7.S, see
* __flush_icache_all for the generic implementation.
*
* flush_kern_all()
*
* Unconditionally clean and invalidate the entire cache.
*
* flush_user_all()
*
* Clean and invalidate all user space cache entries
* before a change of page tables.
*
* flush_user_range(start, end, flags)
*
* Clean and invalidate a range of cache entries in the
* specified address space before a change of page tables.
* - start - user start address (inclusive, page aligned)
* - end - user end address (exclusive, page aligned)
* - flags - vma->vm_flags field
*
* coherent_kern_range(start, end)
*
* Ensure coherency between the Icache and the Dcache in the
* region described by start, end. If you have non-snooping
* Harvard caches, you need to implement this function.
* - start - virtual start address
* - end - virtual end address
*
* coherent_user_range(start, end)
*
* Ensure coherency between the Icache and the Dcache in the
* region described by start, end. If you have non-snooping
* Harvard caches, you need to implement this function.
* - start - virtual start address
* - end - virtual end address
*
* flush_kern_dcache_area(kaddr, size)
*
* Ensure that the data held in page is written back.
* - kaddr - page address
* - size - region size
*
* DMA Cache Coherency
* ===================
*
* dma_flush_range(start, end)
*
* Clean and invalidate the specified virtual address range.
* - start - virtual start address
* - end - virtual end address
*/
extern void __cpuc_flush_icache_all(void);
extern void __cpuc_flush_kern_all(void);
extern void __cpuc_flush_user_all(void);
extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
extern void __cpuc_flush_dcache_area(void *, size_t);
extern void __cpuc_flush_kern_dcache_area(void *addr, size_t size);
/*
* Copy user data from/to a page which is mapped into a different
* processes address space. Really, we want to allow our "user
* space" model to handle this.
*/
extern void copy_to_user_page(struct vm_area_struct *, struct page *,
unsigned long, void *, const void *, unsigned long);
#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
do { \
memcpy(dst, src, len); \
} while (0)
/*
* Convert calls to our calling convention.
*/
/* Invalidate I-cache */
static inline void __flush_icache_all(void)
{
asm("movc p0.c5, %0, #20;\n"
"nop; nop; nop; nop; nop; nop; nop; nop\n"
:
: "r" (0));
}
#define flush_cache_all() __cpuc_flush_kern_all()
extern void flush_cache_mm(struct mm_struct *mm);
extern void flush_cache_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end);
extern void flush_cache_page(struct vm_area_struct *vma,
unsigned long user_addr, unsigned long pfn);
#define flush_cache_dup_mm(mm) flush_cache_mm(mm)
/*
* flush_cache_user_range is used when we want to ensure that the
* Harvard caches are synchronised for the user space address range.
* This is used for the UniCore private sys_cacheflush system call.
*/
#define flush_cache_user_range(vma, start, end) \
__cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
/*
* Perform necessary cache operations to ensure that data previously
* stored within this range of addresses can be executed by the CPU.
*/
#define flush_icache_range(s, e) __cpuc_coherent_kern_range(s, e)
/*
* Perform necessary cache operations to ensure that the TLB will
* see data written in the specified area.
*/
#define clean_dcache_area(start, size) cpu_dcache_clean_area(start, size)
/*
* flush_dcache_page is used when the kernel has written to the page
* cache page at virtual address page->virtual.
*
* If this page isn't mapped (ie, page_mapping == NULL), or it might
* have userspace mappings, then we _must_ always clean + invalidate
* the dcache entries associated with the kernel mapping.
*
* Otherwise we can defer the operation, and clean the cache when we are
* about to change to user space. This is the same method as used on SPARC64.
* See update_mmu_cache for the user space part.
*/
#define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
extern void flush_dcache_page(struct page *);
#define flush_dcache_mmap_lock(mapping) do { } while (0)
#define flush_dcache_mmap_unlock(mapping) do { } while (0)
#define flush_icache_user_range(vma, page, addr, len) \
flush_dcache_page(page)
/*
* We don't appear to need to do anything here. In fact, if we did, we'd
* duplicate cache flushing elsewhere performed by flush_dcache_page().
*/
#define flush_icache_page(vma, page) do { } while (0)
/*
* flush_cache_vmap() is used when creating mappings (eg, via vmap,
* vmalloc, ioremap etc) in kernel space for pages. On non-VIPT
* caches, since the direct-mappings of these pages may contain cached
* data, we need to do a full cache flush to ensure that writebacks
* don't corrupt data placed into these pages via the new mappings.
*/
static inline void flush_cache_vmap(unsigned long start, unsigned long end)
{
}
static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
{
}
#endif
|