summaryrefslogtreecommitdiff
path: root/arch/arm64/kvm/hypercalls.c
blob: ee6573befb8134eb6528d3eba4180b193c1c155f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2019 Arm Ltd.

#include <linux/arm-smccc.h>
#include <linux/kvm_host.h>

#include <asm/kvm_emulate.h>

#include <kvm/arm_hypercalls.h>
#include <kvm/arm_psci.h>

#define KVM_ARM_SMCCC_STD_FEATURES				\
	GENMASK(KVM_REG_ARM_STD_BMAP_BIT_COUNT - 1, 0)
#define KVM_ARM_SMCCC_STD_HYP_FEATURES				\
	GENMASK(KVM_REG_ARM_STD_HYP_BMAP_BIT_COUNT - 1, 0)
#define KVM_ARM_SMCCC_VENDOR_HYP_FEATURES			\
	GENMASK(KVM_REG_ARM_VENDOR_HYP_BMAP_BIT_COUNT - 1, 0)

static void kvm_ptp_get_time(struct kvm_vcpu *vcpu, u64 *val)
{
	struct system_time_snapshot systime_snapshot;
	u64 cycles = ~0UL;
	u32 feature;

	/*
	 * system time and counter value must captured at the same
	 * time to keep consistency and precision.
	 */
	ktime_get_snapshot(&systime_snapshot);

	/*
	 * This is only valid if the current clocksource is the
	 * architected counter, as this is the only one the guest
	 * can see.
	 */
	if (systime_snapshot.cs_id != CSID_ARM_ARCH_COUNTER)
		return;

	/*
	 * The guest selects one of the two reference counters
	 * (virtual or physical) with the first argument of the SMCCC
	 * call. In case the identifier is not supported, error out.
	 */
	feature = smccc_get_arg1(vcpu);
	switch (feature) {
	case KVM_PTP_VIRT_COUNTER:
		cycles = systime_snapshot.cycles - vcpu->kvm->arch.timer_data.voffset;
		break;
	case KVM_PTP_PHYS_COUNTER:
		cycles = systime_snapshot.cycles - vcpu->kvm->arch.timer_data.poffset;
		break;
	default:
		return;
	}

	/*
	 * This relies on the top bit of val[0] never being set for
	 * valid values of system time, because that is *really* far
	 * in the future (about 292 years from 1970, and at that stage
	 * nobody will give a damn about it).
	 */
	val[0] = upper_32_bits(systime_snapshot.real);
	val[1] = lower_32_bits(systime_snapshot.real);
	val[2] = upper_32_bits(cycles);
	val[3] = lower_32_bits(cycles);
}

static bool kvm_smccc_default_allowed(u32 func_id)
{
	switch (func_id) {
	/*
	 * List of function-ids that are not gated with the bitmapped
	 * feature firmware registers, and are to be allowed for
	 * servicing the call by default.
	 */
	case ARM_SMCCC_VERSION_FUNC_ID:
	case ARM_SMCCC_ARCH_FEATURES_FUNC_ID:
		return true;
	default:
		/* PSCI 0.2 and up is in the 0:0x1f range */
		if (ARM_SMCCC_OWNER_NUM(func_id) == ARM_SMCCC_OWNER_STANDARD &&
		    ARM_SMCCC_FUNC_NUM(func_id) <= 0x1f)
			return true;

		/*
		 * KVM's PSCI 0.1 doesn't comply with SMCCC, and has
		 * its own function-id base and range
		 */
		if (func_id >= KVM_PSCI_FN(0) && func_id <= KVM_PSCI_FN(3))
			return true;

		return false;
	}
}

static bool kvm_smccc_test_fw_bmap(struct kvm_vcpu *vcpu, u32 func_id)
{
	struct kvm_smccc_features *smccc_feat = &vcpu->kvm->arch.smccc_feat;

	switch (func_id) {
	case ARM_SMCCC_TRNG_VERSION:
	case ARM_SMCCC_TRNG_FEATURES:
	case ARM_SMCCC_TRNG_GET_UUID:
	case ARM_SMCCC_TRNG_RND32:
	case ARM_SMCCC_TRNG_RND64:
		return test_bit(KVM_REG_ARM_STD_BIT_TRNG_V1_0,
				&smccc_feat->std_bmap);
	case ARM_SMCCC_HV_PV_TIME_FEATURES:
	case ARM_SMCCC_HV_PV_TIME_ST:
		return test_bit(KVM_REG_ARM_STD_HYP_BIT_PV_TIME,
				&smccc_feat->std_hyp_bmap);
	case ARM_SMCCC_VENDOR_HYP_KVM_FEATURES_FUNC_ID:
	case ARM_SMCCC_VENDOR_HYP_CALL_UID_FUNC_ID:
		return test_bit(KVM_REG_ARM_VENDOR_HYP_BIT_FUNC_FEAT,
				&smccc_feat->vendor_hyp_bmap);
	case ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID:
		return test_bit(KVM_REG_ARM_VENDOR_HYP_BIT_PTP,
				&smccc_feat->vendor_hyp_bmap);
	default:
		return false;
	}
}

#define SMC32_ARCH_RANGE_BEGIN	ARM_SMCCC_VERSION_FUNC_ID
#define SMC32_ARCH_RANGE_END	ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL,		\
						   ARM_SMCCC_SMC_32,		\
						   0, ARM_SMCCC_FUNC_MASK)

#define SMC64_ARCH_RANGE_BEGIN	ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL,		\
						   ARM_SMCCC_SMC_64,		\
						   0, 0)
#define SMC64_ARCH_RANGE_END	ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL,		\
						   ARM_SMCCC_SMC_64,		\
						   0, ARM_SMCCC_FUNC_MASK)

static int kvm_smccc_filter_insert_reserved(struct kvm *kvm)
{
	int r;

	/*
	 * Prevent userspace from handling any SMCCC calls in the architecture
	 * range, avoiding the risk of misrepresenting Spectre mitigation status
	 * to the guest.
	 */
	r = mtree_insert_range(&kvm->arch.smccc_filter,
			       SMC32_ARCH_RANGE_BEGIN, SMC32_ARCH_RANGE_END,
			       xa_mk_value(KVM_SMCCC_FILTER_HANDLE),
			       GFP_KERNEL_ACCOUNT);
	if (r)
		goto out_destroy;

	r = mtree_insert_range(&kvm->arch.smccc_filter,
			       SMC64_ARCH_RANGE_BEGIN, SMC64_ARCH_RANGE_END,
			       xa_mk_value(KVM_SMCCC_FILTER_HANDLE),
			       GFP_KERNEL_ACCOUNT);
	if (r)
		goto out_destroy;

	return 0;
out_destroy:
	mtree_destroy(&kvm->arch.smccc_filter);
	return r;
}

static bool kvm_smccc_filter_configured(struct kvm *kvm)
{
	return !mtree_empty(&kvm->arch.smccc_filter);
}

static int kvm_smccc_set_filter(struct kvm *kvm, struct kvm_smccc_filter __user *uaddr)
{
	const void *zero_page = page_to_virt(ZERO_PAGE(0));
	struct kvm_smccc_filter filter;
	u32 start, end;
	int r;

	if (copy_from_user(&filter, uaddr, sizeof(filter)))
		return -EFAULT;

	if (memcmp(filter.pad, zero_page, sizeof(filter.pad)))
		return -EINVAL;

	start = filter.base;
	end = start + filter.nr_functions - 1;

	if (end < start || filter.action >= NR_SMCCC_FILTER_ACTIONS)
		return -EINVAL;

	mutex_lock(&kvm->arch.config_lock);

	if (kvm_vm_has_ran_once(kvm)) {
		r = -EBUSY;
		goto out_unlock;
	}

	if (!kvm_smccc_filter_configured(kvm)) {
		r = kvm_smccc_filter_insert_reserved(kvm);
		if (WARN_ON_ONCE(r))
			goto out_unlock;
	}

	r = mtree_insert_range(&kvm->arch.smccc_filter, start, end,
			       xa_mk_value(filter.action), GFP_KERNEL_ACCOUNT);
out_unlock:
	mutex_unlock(&kvm->arch.config_lock);
	return r;
}

static u8 kvm_smccc_filter_get_action(struct kvm *kvm, u32 func_id)
{
	unsigned long idx = func_id;
	void *val;

	if (!kvm_smccc_filter_configured(kvm))
		return KVM_SMCCC_FILTER_HANDLE;

	/*
	 * But where's the error handling, you say?
	 *
	 * mt_find() returns NULL if no entry was found, which just so happens
	 * to match KVM_SMCCC_FILTER_HANDLE.
	 */
	val = mt_find(&kvm->arch.smccc_filter, &idx, idx);
	return xa_to_value(val);
}

static u8 kvm_smccc_get_action(struct kvm_vcpu *vcpu, u32 func_id)
{
	/*
	 * Intervening actions in the SMCCC filter take precedence over the
	 * pseudo-firmware register bitmaps.
	 */
	u8 action = kvm_smccc_filter_get_action(vcpu->kvm, func_id);
	if (action != KVM_SMCCC_FILTER_HANDLE)
		return action;

	if (kvm_smccc_test_fw_bmap(vcpu, func_id) ||
	    kvm_smccc_default_allowed(func_id))
		return KVM_SMCCC_FILTER_HANDLE;

	return KVM_SMCCC_FILTER_DENY;
}

static void kvm_prepare_hypercall_exit(struct kvm_vcpu *vcpu, u32 func_id)
{
	u8 ec = ESR_ELx_EC(kvm_vcpu_get_esr(vcpu));
	struct kvm_run *run = vcpu->run;
	u64 flags = 0;

	if (ec == ESR_ELx_EC_SMC32 || ec == ESR_ELx_EC_SMC64)
		flags |= KVM_HYPERCALL_EXIT_SMC;

	if (!kvm_vcpu_trap_il_is32bit(vcpu))
		flags |= KVM_HYPERCALL_EXIT_16BIT;

	run->exit_reason = KVM_EXIT_HYPERCALL;
	run->hypercall = (typeof(run->hypercall)) {
		.nr	= func_id,
		.flags	= flags,
	};
}

int kvm_smccc_call_handler(struct kvm_vcpu *vcpu)
{
	struct kvm_smccc_features *smccc_feat = &vcpu->kvm->arch.smccc_feat;
	u32 func_id = smccc_get_function(vcpu);
	u64 val[4] = {SMCCC_RET_NOT_SUPPORTED};
	u32 feature;
	u8 action;
	gpa_t gpa;

	action = kvm_smccc_get_action(vcpu, func_id);
	switch (action) {
	case KVM_SMCCC_FILTER_HANDLE:
		break;
	case KVM_SMCCC_FILTER_DENY:
		goto out;
	case KVM_SMCCC_FILTER_FWD_TO_USER:
		kvm_prepare_hypercall_exit(vcpu, func_id);
		return 0;
	default:
		WARN_RATELIMIT(1, "Unhandled SMCCC filter action: %d\n", action);
		goto out;
	}

	switch (func_id) {
	case ARM_SMCCC_VERSION_FUNC_ID:
		val[0] = ARM_SMCCC_VERSION_1_1;
		break;
	case ARM_SMCCC_ARCH_FEATURES_FUNC_ID:
		feature = smccc_get_arg1(vcpu);
		switch (feature) {
		case ARM_SMCCC_ARCH_WORKAROUND_1:
			switch (arm64_get_spectre_v2_state()) {
			case SPECTRE_VULNERABLE:
				break;
			case SPECTRE_MITIGATED:
				val[0] = SMCCC_RET_SUCCESS;
				break;
			case SPECTRE_UNAFFECTED:
				val[0] = SMCCC_ARCH_WORKAROUND_RET_UNAFFECTED;
				break;
			}
			break;
		case ARM_SMCCC_ARCH_WORKAROUND_2:
			switch (arm64_get_spectre_v4_state()) {
			case SPECTRE_VULNERABLE:
				break;
			case SPECTRE_MITIGATED:
				/*
				 * SSBS everywhere: Indicate no firmware
				 * support, as the SSBS support will be
				 * indicated to the guest and the default is
				 * safe.
				 *
				 * Otherwise, expose a permanent mitigation
				 * to the guest, and hide SSBS so that the
				 * guest stays protected.
				 */
				if (kvm_has_feat(vcpu->kvm, ID_AA64PFR1_EL1, SSBS, IMP))
					break;
				fallthrough;
			case SPECTRE_UNAFFECTED:
				val[0] = SMCCC_RET_NOT_REQUIRED;
				break;
			}
			break;
		case ARM_SMCCC_ARCH_WORKAROUND_3:
			switch (arm64_get_spectre_bhb_state()) {
			case SPECTRE_VULNERABLE:
				break;
			case SPECTRE_MITIGATED:
				val[0] = SMCCC_RET_SUCCESS;
				break;
			case SPECTRE_UNAFFECTED:
				val[0] = SMCCC_ARCH_WORKAROUND_RET_UNAFFECTED;
				break;
			}
			break;
		case ARM_SMCCC_HV_PV_TIME_FEATURES:
			if (test_bit(KVM_REG_ARM_STD_HYP_BIT_PV_TIME,
				     &smccc_feat->std_hyp_bmap))
				val[0] = SMCCC_RET_SUCCESS;
			break;
		}
		break;
	case ARM_SMCCC_HV_PV_TIME_FEATURES:
		val[0] = kvm_hypercall_pv_features(vcpu);
		break;
	case ARM_SMCCC_HV_PV_TIME_ST:
		gpa = kvm_init_stolen_time(vcpu);
		if (gpa != INVALID_GPA)
			val[0] = gpa;
		break;
	case ARM_SMCCC_VENDOR_HYP_CALL_UID_FUNC_ID:
		val[0] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_0;
		val[1] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_1;
		val[2] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_2;
		val[3] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_3;
		break;
	case ARM_SMCCC_VENDOR_HYP_KVM_FEATURES_FUNC_ID:
		val[0] = smccc_feat->vendor_hyp_bmap;
		break;
	case ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID:
		kvm_ptp_get_time(vcpu, val);
		break;
	case ARM_SMCCC_TRNG_VERSION:
	case ARM_SMCCC_TRNG_FEATURES:
	case ARM_SMCCC_TRNG_GET_UUID:
	case ARM_SMCCC_TRNG_RND32:
	case ARM_SMCCC_TRNG_RND64:
		return kvm_trng_call(vcpu);
	default:
		return kvm_psci_call(vcpu);
	}

out:
	smccc_set_retval(vcpu, val[0], val[1], val[2], val[3]);
	return 1;
}

static const u64 kvm_arm_fw_reg_ids[] = {
	KVM_REG_ARM_PSCI_VERSION,
	KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1,
	KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2,
	KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3,
	KVM_REG_ARM_STD_BMAP,
	KVM_REG_ARM_STD_HYP_BMAP,
	KVM_REG_ARM_VENDOR_HYP_BMAP,
};

void kvm_arm_init_hypercalls(struct kvm *kvm)
{
	struct kvm_smccc_features *smccc_feat = &kvm->arch.smccc_feat;

	smccc_feat->std_bmap = KVM_ARM_SMCCC_STD_FEATURES;
	smccc_feat->std_hyp_bmap = KVM_ARM_SMCCC_STD_HYP_FEATURES;
	smccc_feat->vendor_hyp_bmap = KVM_ARM_SMCCC_VENDOR_HYP_FEATURES;

	mt_init(&kvm->arch.smccc_filter);
}

void kvm_arm_teardown_hypercalls(struct kvm *kvm)
{
	mtree_destroy(&kvm->arch.smccc_filter);
}

int kvm_arm_get_fw_num_regs(struct kvm_vcpu *vcpu)
{
	return ARRAY_SIZE(kvm_arm_fw_reg_ids);
}

int kvm_arm_copy_fw_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(kvm_arm_fw_reg_ids); i++) {
		if (put_user(kvm_arm_fw_reg_ids[i], uindices++))
			return -EFAULT;
	}

	return 0;
}

#define KVM_REG_FEATURE_LEVEL_MASK	GENMASK(3, 0)

/*
 * Convert the workaround level into an easy-to-compare number, where higher
 * values mean better protection.
 */
static int get_kernel_wa_level(struct kvm_vcpu *vcpu, u64 regid)
{
	switch (regid) {
	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
		switch (arm64_get_spectre_v2_state()) {
		case SPECTRE_VULNERABLE:
			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL;
		case SPECTRE_MITIGATED:
			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_AVAIL;
		case SPECTRE_UNAFFECTED:
			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_REQUIRED;
		}
		return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL;
	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
		switch (arm64_get_spectre_v4_state()) {
		case SPECTRE_MITIGATED:
			/*
			 * As for the hypercall discovery, we pretend we
			 * don't have any FW mitigation if SSBS is there at
			 * all times.
			 */
			if (kvm_has_feat(vcpu->kvm, ID_AA64PFR1_EL1, SSBS, IMP))
				return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
			fallthrough;
		case SPECTRE_UNAFFECTED:
			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED;
		case SPECTRE_VULNERABLE:
			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
		}
		break;
	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3:
		switch (arm64_get_spectre_bhb_state()) {
		case SPECTRE_VULNERABLE:
			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_AVAIL;
		case SPECTRE_MITIGATED:
			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_AVAIL;
		case SPECTRE_UNAFFECTED:
			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_REQUIRED;
		}
		return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_AVAIL;
	}

	return -EINVAL;
}

int kvm_arm_get_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	struct kvm_smccc_features *smccc_feat = &vcpu->kvm->arch.smccc_feat;
	void __user *uaddr = (void __user *)(long)reg->addr;
	u64 val;

	switch (reg->id) {
	case KVM_REG_ARM_PSCI_VERSION:
		val = kvm_psci_version(vcpu);
		break;
	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3:
		val = get_kernel_wa_level(vcpu, reg->id) & KVM_REG_FEATURE_LEVEL_MASK;
		break;
	case KVM_REG_ARM_STD_BMAP:
		val = READ_ONCE(smccc_feat->std_bmap);
		break;
	case KVM_REG_ARM_STD_HYP_BMAP:
		val = READ_ONCE(smccc_feat->std_hyp_bmap);
		break;
	case KVM_REG_ARM_VENDOR_HYP_BMAP:
		val = READ_ONCE(smccc_feat->vendor_hyp_bmap);
		break;
	default:
		return -ENOENT;
	}

	if (copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)))
		return -EFAULT;

	return 0;
}

static int kvm_arm_set_fw_reg_bmap(struct kvm_vcpu *vcpu, u64 reg_id, u64 val)
{
	int ret = 0;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_smccc_features *smccc_feat = &kvm->arch.smccc_feat;
	unsigned long *fw_reg_bmap, fw_reg_features;

	switch (reg_id) {
	case KVM_REG_ARM_STD_BMAP:
		fw_reg_bmap = &smccc_feat->std_bmap;
		fw_reg_features = KVM_ARM_SMCCC_STD_FEATURES;
		break;
	case KVM_REG_ARM_STD_HYP_BMAP:
		fw_reg_bmap = &smccc_feat->std_hyp_bmap;
		fw_reg_features = KVM_ARM_SMCCC_STD_HYP_FEATURES;
		break;
	case KVM_REG_ARM_VENDOR_HYP_BMAP:
		fw_reg_bmap = &smccc_feat->vendor_hyp_bmap;
		fw_reg_features = KVM_ARM_SMCCC_VENDOR_HYP_FEATURES;
		break;
	default:
		return -ENOENT;
	}

	/* Check for unsupported bit */
	if (val & ~fw_reg_features)
		return -EINVAL;

	mutex_lock(&kvm->arch.config_lock);

	if (kvm_vm_has_ran_once(kvm) && val != *fw_reg_bmap) {
		ret = -EBUSY;
		goto out;
	}

	WRITE_ONCE(*fw_reg_bmap, val);
out:
	mutex_unlock(&kvm->arch.config_lock);
	return ret;
}

int kvm_arm_set_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	void __user *uaddr = (void __user *)(long)reg->addr;
	u64 val;
	int wa_level;

	if (KVM_REG_SIZE(reg->id) != sizeof(val))
		return -ENOENT;
	if (copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id)))
		return -EFAULT;

	switch (reg->id) {
	case KVM_REG_ARM_PSCI_VERSION:
	{
		bool wants_02;

		wants_02 = vcpu_has_feature(vcpu, KVM_ARM_VCPU_PSCI_0_2);

		switch (val) {
		case KVM_ARM_PSCI_0_1:
			if (wants_02)
				return -EINVAL;
			vcpu->kvm->arch.psci_version = val;
			return 0;
		case KVM_ARM_PSCI_0_2:
		case KVM_ARM_PSCI_1_0:
		case KVM_ARM_PSCI_1_1:
			if (!wants_02)
				return -EINVAL;
			vcpu->kvm->arch.psci_version = val;
			return 0;
		}
		break;
	}

	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3:
		if (val & ~KVM_REG_FEATURE_LEVEL_MASK)
			return -EINVAL;

		if (get_kernel_wa_level(vcpu, reg->id) < val)
			return -EINVAL;

		return 0;

	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
		if (val & ~(KVM_REG_FEATURE_LEVEL_MASK |
			    KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED))
			return -EINVAL;

		/* The enabled bit must not be set unless the level is AVAIL. */
		if ((val & KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED) &&
		    (val & KVM_REG_FEATURE_LEVEL_MASK) != KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL)
			return -EINVAL;

		/*
		 * Map all the possible incoming states to the only two we
		 * really want to deal with.
		 */
		switch (val & KVM_REG_FEATURE_LEVEL_MASK) {
		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL:
		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_UNKNOWN:
			wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
			break;
		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL:
		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED:
			wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED;
			break;
		default:
			return -EINVAL;
		}

		/*
		 * We can deal with NOT_AVAIL on NOT_REQUIRED, but not the
		 * other way around.
		 */
		if (get_kernel_wa_level(vcpu, reg->id) < wa_level)
			return -EINVAL;

		return 0;
	case KVM_REG_ARM_STD_BMAP:
	case KVM_REG_ARM_STD_HYP_BMAP:
	case KVM_REG_ARM_VENDOR_HYP_BMAP:
		return kvm_arm_set_fw_reg_bmap(vcpu, reg->id, val);
	default:
		return -ENOENT;
	}

	return -EINVAL;
}

int kvm_vm_smccc_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	switch (attr->attr) {
	case KVM_ARM_VM_SMCCC_FILTER:
		return 0;
	default:
		return -ENXIO;
	}
}

int kvm_vm_smccc_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	void __user *uaddr = (void __user *)attr->addr;

	switch (attr->attr) {
	case KVM_ARM_VM_SMCCC_FILTER:
		return kvm_smccc_set_filter(kvm, uaddr);
	default:
		return -ENXIO;
	}
}