1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
|
<title>Image Formats</title>
<para>The V4L2 API was primarily designed for devices exchanging
image data with applications. The
<structname>v4l2_pix_format</structname> and <structname>v4l2_pix_format_mplane
</structname> structures define the format and layout of an image in memory.
The former is used with the single-planar API, while the latter is used with the
multi-planar version (see <xref linkend="planar-apis"/>). Image formats are
negotiated with the &VIDIOC-S-FMT; ioctl. (The explanations here focus on video
capturing and output, for overlay frame buffer formats see also
&VIDIOC-G-FBUF;.)</para>
<section>
<title>Single-planar format structure</title>
<table pgwide="1" frame="none" id="v4l2-pix-format">
<title>struct <structname>v4l2_pix_format</structname></title>
<tgroup cols="3">
&cs-str;
<tbody valign="top">
<row>
<entry>__u32</entry>
<entry><structfield>width</structfield></entry>
<entry>Image width in pixels.</entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>height</structfield></entry>
<entry>Image height in pixels. If <structfield>field</structfield> is
one of <constant>V4L2_FIELD_TOP</constant>, <constant>V4L2_FIELD_BOTTOM</constant>
or <constant>V4L2_FIELD_ALTERNATE</constant> then height refers to the
number of lines in the field, otherwise it refers to the number of
lines in the frame (which is twice the field height for interlaced
formats).</entry>
</row>
<row>
<entry spanname="hspan">Applications set these fields to
request an image size, drivers return the closest possible values. In
case of planar formats the <structfield>width</structfield> and
<structfield>height</structfield> applies to the largest plane. To
avoid ambiguities drivers must return values rounded up to a multiple
of the scale factor of any smaller planes. For example when the image
format is YUV 4:2:0, <structfield>width</structfield> and
<structfield>height</structfield> must be multiples of two.</entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>pixelformat</structfield></entry>
<entry>The pixel format or type of compression, set by the
application. This is a little endian <link
linkend="v4l2-fourcc">four character code</link>. V4L2 defines
standard RGB formats in <xref linkend="rgb-formats" />, YUV formats in <xref
linkend="yuv-formats" />, and reserved codes in <xref
linkend="reserved-formats" /></entry>
</row>
<row>
<entry>&v4l2-field;</entry>
<entry><structfield>field</structfield></entry>
<entry>Video images are typically interlaced. Applications
can request to capture or output only the top or bottom field, or both
fields interlaced or sequentially stored in one buffer or alternating
in separate buffers. Drivers return the actual field order selected.
For more details on fields see <xref linkend="field-order" />.</entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>bytesperline</structfield></entry>
<entry>Distance in bytes between the leftmost pixels in two
adjacent lines.</entry>
</row>
<row>
<entry spanname="hspan"><para>Both applications and drivers
can set this field to request padding bytes at the end of each line.
Drivers however may ignore the value requested by the application,
returning <structfield>width</structfield> times bytes per pixel or a
larger value required by the hardware. That implies applications can
just set this field to zero to get a reasonable
default.</para><para>Video hardware may access padding bytes,
therefore they must reside in accessible memory. Consider cases where
padding bytes after the last line of an image cross a system page
boundary. Input devices may write padding bytes, the value is
undefined. Output devices ignore the contents of padding
bytes.</para><para>When the image format is planar the
<structfield>bytesperline</structfield> value applies to the largest
plane and is divided by the same factor as the
<structfield>width</structfield> field for any smaller planes. For
example the Cb and Cr planes of a YUV 4:2:0 image have half as many
padding bytes following each line as the Y plane. To avoid ambiguities
drivers must return a <structfield>bytesperline</structfield> value
rounded up to a multiple of the scale factor.</para>
<para>For compressed formats the <structfield>bytesperline</structfield>
value makes no sense. Applications and drivers must set this to 0 in
that case.</para></entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>sizeimage</structfield></entry>
<entry>Size in bytes of the buffer to hold a complete image,
set by the driver. Usually this is
<structfield>bytesperline</structfield> times
<structfield>height</structfield>. When the image consists of variable
length compressed data this is the maximum number of bytes required to
hold an image.</entry>
</row>
<row>
<entry>&v4l2-colorspace;</entry>
<entry><structfield>colorspace</structfield></entry>
<entry>This information supplements the
<structfield>pixelformat</structfield> and must be set by the driver for
capture streams and by the application for output streams,
see <xref linkend="colorspaces" />.</entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>priv</structfield></entry>
<entry><para>This field indicates whether the remaining fields of the
<structname>v4l2_pix_format</structname> structure, also called the extended
fields, are valid. When set to <constant>V4L2_PIX_FMT_PRIV_MAGIC</constant>, it
indicates that the extended fields have been correctly initialized. When set to
any other value it indicates that the extended fields contain undefined values.
</para>
<para>Applications that wish to use the pixel format extended fields must first
ensure that the feature is supported by querying the device for the
<link linkend="querycap"><constant>V4L2_CAP_EXT_PIX_FORMAT</constant></link>
capability. If the capability isn't set the pixel format extended fields are not
supported and using the extended fields will lead to undefined results.</para>
<para>To use the extended fields, applications must set the
<structfield>priv</structfield> field to
<constant>V4L2_PIX_FMT_PRIV_MAGIC</constant>, initialize all the extended fields
and zero the unused bytes of the <structname>v4l2_format</structname>
<structfield>raw_data</structfield> field.</para>
<para>When the <structfield>priv</structfield> field isn't set to
<constant>V4L2_PIX_FMT_PRIV_MAGIC</constant> drivers must act as if all the
extended fields were set to zero. On return drivers must set the
<structfield>priv</structfield> field to
<constant>V4L2_PIX_FMT_PRIV_MAGIC</constant> and all the extended fields to
applicable values.</para></entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>flags</structfield></entry>
<entry>Flags set by the application or driver, see <xref
linkend="format-flags" />.</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section>
<title>Multi-planar format structures</title>
<para>The <structname>v4l2_plane_pix_format</structname> structures define
size and layout for each of the planes in a multi-planar format.
The <structname>v4l2_pix_format_mplane</structname> structure contains
information common to all planes (such as image width and height) and
an array of <structname>v4l2_plane_pix_format</structname> structures,
describing all planes of that format.</para>
<table pgwide="1" frame="none" id="v4l2-plane-pix-format">
<title>struct <structname>v4l2_plane_pix_format</structname></title>
<tgroup cols="3">
&cs-str;
<tbody valign="top">
<row>
<entry>__u32</entry>
<entry><structfield>sizeimage</structfield></entry>
<entry>Maximum size in bytes required for image data in this plane.
</entry>
</row>
<row>
<entry>__u16</entry>
<entry><structfield>bytesperline</structfield></entry>
<entry>Distance in bytes between the leftmost pixels in two adjacent
lines. See &v4l2-pix-format;.</entry>
</row>
<row>
<entry>__u16</entry>
<entry><structfield>reserved[7]</structfield></entry>
<entry>Reserved for future extensions. Should be zeroed by the
application.</entry>
</row>
</tbody>
</tgroup>
</table>
<table pgwide="1" frame="none" id="v4l2-pix-format-mplane">
<title>struct <structname>v4l2_pix_format_mplane</structname></title>
<tgroup cols="3">
&cs-str;
<tbody valign="top">
<row>
<entry>__u32</entry>
<entry><structfield>width</structfield></entry>
<entry>Image width in pixels. See &v4l2-pix-format;.</entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>height</structfield></entry>
<entry>Image height in pixels. See &v4l2-pix-format;.</entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>pixelformat</structfield></entry>
<entry>The pixel format. Both single- and multi-planar four character
codes can be used.</entry>
</row>
<row>
<entry>&v4l2-field;</entry>
<entry><structfield>field</structfield></entry>
<entry>See &v4l2-pix-format;.</entry>
</row>
<row>
<entry>&v4l2-colorspace;</entry>
<entry><structfield>colorspace</structfield></entry>
<entry>See &v4l2-pix-format;.</entry>
</row>
<row>
<entry>&v4l2-plane-pix-format;</entry>
<entry><structfield>plane_fmt[VIDEO_MAX_PLANES]</structfield></entry>
<entry>An array of structures describing format of each plane this
pixel format consists of. The number of valid entries in this array
has to be put in the <structfield>num_planes</structfield>
field.</entry>
</row>
<row>
<entry>__u8</entry>
<entry><structfield>num_planes</structfield></entry>
<entry>Number of planes (i.e. separate memory buffers) for this format
and the number of valid entries in the
<structfield>plane_fmt</structfield> array.</entry>
</row>
<row>
<entry>__u8</entry>
<entry><structfield>flags</structfield></entry>
<entry>Flags set by the application or driver, see <xref
linkend="format-flags" />.</entry>
</row>
<row>
<entry>__u8</entry>
<entry><structfield>reserved[10]</structfield></entry>
<entry>Reserved for future extensions. Should be zeroed by the
application.</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section>
<title>Standard Image Formats</title>
<para>In order to exchange images between drivers and
applications, it is necessary to have standard image data formats
which both sides will interpret the same way. V4L2 includes several
such formats, and this section is intended to be an unambiguous
specification of the standard image data formats in V4L2.</para>
<para>V4L2 drivers are not limited to these formats, however.
Driver-specific formats are possible. In that case the application may
depend on a codec to convert images to one of the standard formats
when needed. But the data can still be stored and retrieved in the
proprietary format. For example, a device may support a proprietary
compressed format. Applications can still capture and save the data in
the compressed format, saving much disk space, and later use a codec
to convert the images to the X Windows screen format when the video is
to be displayed.</para>
<para>Even so, ultimately, some standard formats are needed, so
the V4L2 specification would not be complete without well-defined
standard formats.</para>
<para>The V4L2 standard formats are mainly uncompressed formats. The
pixels are always arranged in memory from left to right, and from top
to bottom. The first byte of data in the image buffer is always for
the leftmost pixel of the topmost row. Following that is the pixel
immediately to its right, and so on until the end of the top row of
pixels. Following the rightmost pixel of the row there may be zero or
more bytes of padding to guarantee that each row of pixel data has a
certain alignment. Following the pad bytes, if any, is data for the
leftmost pixel of the second row from the top, and so on. The last row
has just as many pad bytes after it as the other rows.</para>
<para>In V4L2 each format has an identifier which looks like
<constant>PIX_FMT_XXX</constant>, defined in the <link
linkend="videodev">videodev2.h</link> header file. These identifiers
represent <link linkend="v4l2-fourcc">four character (FourCC) codes</link>
which are also listed below, however they are not the same as those
used in the Windows world.</para>
<para>For some formats, data is stored in separate, discontiguous
memory buffers. Those formats are identified by a separate set of FourCC codes
and are referred to as "multi-planar formats". For example, a YUV422 frame is
normally stored in one memory buffer, but it can also be placed in two or three
separate buffers, with Y component in one buffer and CbCr components in another
in the 2-planar version or with each component in its own buffer in the
3-planar case. Those sub-buffers are referred to as "planes".</para>
</section>
<section id="colorspaces">
<title>Colorspaces</title>
<para>'Color' is a very complex concept and depends on physics, chemistry and
biology. Just because you have three numbers that describe the 'red', 'green'
and 'blue' components of the color of a pixel does not mean that you can accurately
display that color. A colorspace defines what it actually <emphasis>means</emphasis>
to have an RGB value of e.g. (255, 0, 0). That is, which color should be
reproduced on the screen in a perfectly calibrated environment.</para>
<para>In order to do that we first need to have a good definition of
color, i.e. some way to uniquely and unambiguously define a color so that someone
else can reproduce it. Human color vision is trichromatic since the human eye has
color receptors that are sensitive to three different wavelengths of light. Hence
the need to use three numbers to describe color. Be glad you are not a mantis shrimp
as those are sensitive to 12 different wavelengths, so instead of RGB we would be
using the ABCDEFGHIJKL colorspace...</para>
<para>Color exists only in the eye and brain and is the result of how strongly
color receptors are stimulated. This is based on the Spectral
Power Distribution (SPD) which is a graph showing the intensity (radiant power)
of the light at wavelengths covering the visible spectrum as it enters the eye.
The science of colorimetry is about the relationship between the SPD and color as
perceived by the human brain.</para>
<para>Since the human eye has only three color receptors it is perfectly
possible that different SPDs will result in the same stimulation of those receptors
and are perceived as the same color, even though the SPD of the light is
different.</para>
<para>In the 1920s experiments were devised to determine the relationship
between SPDs and the perceived color and that resulted in the CIE 1931 standard
that defines spectral weighting functions that model the perception of color.
Specifically that standard defines functions that can take an SPD and calculate
the stimulus for each color receptor. After some further mathematical transforms
these stimuli are known as the <emphasis>CIE XYZ tristimulus</emphasis> values
and these X, Y and Z values describe a color as perceived by a human unambiguously.
These X, Y and Z values are all in the range [0…1].</para>
<para>The Y value in the CIE XYZ colorspace corresponds to luminance. Often
the CIE XYZ colorspace is transformed to the normalized CIE xyY colorspace:</para>
<para>x = X / (X + Y + Z)</para>
<para>y = Y / (X + Y + Z)</para>
<para>The x and y values are the chromaticity coordinates and can be used to
define a color without the luminance component Y. It is very confusing to
have such similar names for these colorspaces. Just be aware that if colors
are specified with lower case 'x' and 'y', then the CIE xyY colorspace is
used. Upper case 'X' and 'Y' refer to the CIE XYZ colorspace. Also, y has nothing
to do with luminance. Together x and y specify a color, and Y the luminance.
That is really all you need to remember from a practical point of view. At
the end of this section you will find reading resources that go into much more
detail if you are interested.
</para>
<para>A monitor or TV will reproduce colors by emitting light at three
different wavelengths, the combination of which will stimulate the color receptors
in the eye and thus cause the perception of color. Historically these wavelengths
were defined by the red, green and blue phosphors used in the displays. These
<emphasis>color primaries</emphasis> are part of what defines a colorspace.</para>
<para>Different display devices will have different primaries and some
primaries are more suitable for some display technologies than others. This has
resulted in a variety of colorspaces that are used for different display
technologies or uses. To define a colorspace you need to define the three
color primaries (these are typically defined as x, y chromaticity coordinates
from the CIE xyY colorspace) but also the white reference: that is the color obtained
when all three primaries are at maximum power. This determines the relative power
or energy of the primaries. This is usually chosen to be close to daylight which has
been defined as the CIE D65 Illuminant.</para>
<para>To recapitulate: the CIE XYZ colorspace uniquely identifies colors.
Other colorspaces are defined by three chromaticity coordinates defined in the
CIE xyY colorspace. Based on those a 3x3 matrix can be constructed that
transforms CIE XYZ colors to colors in the new colorspace.
</para>
<para>Both the CIE XYZ and the RGB colorspace that are derived from the
specific chromaticity primaries are linear colorspaces. But neither the eye,
nor display technology is linear. Doubling the values of all components in
the linear colorspace will not be perceived as twice the intensity of the color.
So each colorspace also defines a transfer function that takes a linear color
component value and transforms it to the non-linear component value, which is a
closer match to the non-linear performance of both the eye and displays. Linear
component values are denoted RGB, non-linear are denoted as R'G'B'. In general
colors used in graphics are all R'G'B', except in openGL which uses linear RGB.
Special care should be taken when dealing with openGL to provide linear RGB colors
or to use the built-in openGL support to apply the inverse transfer function.</para>
<para>The final piece that defines a colorspace is a function that
transforms non-linear R'G'B' to non-linear Y'CbCr. This function is determined
by the so-called luma coefficients. There may be multiple possible Y'CbCr
encodings allowed for the same colorspace. Many encodings of color
prefer to use luma (Y') and chroma (CbCr) instead of R'G'B'. Since the human
eye is more sensitive to differences in luminance than in color this encoding
allows one to reduce the amount of color information compared to the luma
data. Note that the luma (Y') is unrelated to the Y in the CIE XYZ colorspace.
Also note that Y'CbCr is often called YCbCr or YUV even though these are
strictly speaking wrong.</para>
<para>Sometimes people confuse Y'CbCr as being a colorspace. This is not
correct, it is just an encoding of an R'G'B' color into luma and chroma
values. The underlying colorspace that is associated with the R'G'B' color
is also associated with the Y'CbCr color.</para>
<para>The final step is how the RGB, R'G'B' or Y'CbCr values are
quantized. The CIE XYZ colorspace where X, Y and Z are in the range
[0…1] describes all colors that humans can perceive, but the transform to
another colorspace will produce colors that are outside the [0…1] range.
Once clamped to the [0…1] range those colors can no longer be reproduced
in that colorspace. This clamping is what reduces the extent or gamut of the
colorspace. How the range of [0…1] is translated to integer values in the
range of [0…255] (or higher, depending on the color depth) is called the
quantization. This is <emphasis>not</emphasis> part of the colorspace
definition. In practice RGB or R'G'B' values are full range, i.e. they
use the full [0…255] range. Y'CbCr values on the other hand are limited
range with Y' using [16…235] and Cb and Cr using [16…240].</para>
<para>Unfortunately, in some cases limited range RGB is also used
where the components use the range [16…235]. And full range Y'CbCr also exists
using the [0…255] range.</para>
<para>In order to correctly interpret a color you need to know the
quantization range, whether it is R'G'B' or Y'CbCr, the used Y'CbCr encoding
and the colorspace.
From that information you can calculate the corresponding CIE XYZ color
and map that again to whatever colorspace your display device uses.</para>
<para>The colorspace definition itself consists of the three
chromaticity primaries, the white reference chromaticity, a transfer
function and the luma coefficients needed to transform R'G'B' to Y'CbCr. While
some colorspace standards correctly define all four, quite often the colorspace
standard only defines some, and you have to rely on other standards for
the missing pieces. The fact that colorspaces are often a mix of different
standards also led to very confusing naming conventions where the name of
a standard was used to name a colorspace when in fact that standard was
part of various other colorspaces as well.</para>
<para>If you want to read more about colors and colorspaces, then the
following resources are useful: <xref linkend="poynton" /> is a good practical
book for video engineers, <xref linkend="colimg" /> has a much broader scope and
describes many more aspects of color (physics, chemistry, biology, etc.).
The <ulink url="http://www.brucelindbloom.com">http://www.brucelindbloom.com</ulink>
website is an excellent resource, especially with respect to the mathematics behind
colorspace conversions. The wikipedia <ulink url="http://en.wikipedia.org/wiki/CIE_1931_color_space#CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space">CIE 1931 colorspace</ulink> article
is also very useful.</para>
</section>
<section>
<title>Defining Colorspaces in V4L2</title>
<para>In V4L2 colorspaces are defined by three values. The first is the colorspace
identifier (&v4l2-colorspace;) which defines the chromaticities, the transfer
function, the default Y'CbCr encoding and the default quantization method. The second
is the Y'CbCr encoding identifier (&v4l2-ycbcr-encoding;) to specify non-standard
Y'CbCr encodings and the third is the quantization identifier (&v4l2-quantization;)
to specify non-standard quantization methods. Most of the time only the colorspace
field of &v4l2-pix-format; or &v4l2-pix-format-mplane; needs to be filled in. Note
that the default R'G'B' quantization is always full range for all colorspaces,
so this won't be mentioned explicitly for each colorspace description.</para>
<table pgwide="1" frame="none" id="v4l2-colorspace">
<title>V4L2 Colorspaces</title>
<tgroup cols="2" align="left">
&cs-def;
<thead>
<row>
<entry>Identifier</entry>
<entry>Details</entry>
</row>
</thead>
<tbody valign="top">
<row>
<entry><constant>V4L2_COLORSPACE_SMPTE170M</constant></entry>
<entry>See <xref linkend="col-smpte-170m" />.</entry>
</row>
<row>
<entry><constant>V4L2_COLORSPACE_REC709</constant></entry>
<entry>See <xref linkend="col-rec709" />.</entry>
</row>
<row>
<entry><constant>V4L2_COLORSPACE_SRGB</constant></entry>
<entry>See <xref linkend="col-srgb" />.</entry>
</row>
<row>
<entry><constant>V4L2_COLORSPACE_ADOBERGB</constant></entry>
<entry>See <xref linkend="col-adobergb" />.</entry>
</row>
<row>
<entry><constant>V4L2_COLORSPACE_BT2020</constant></entry>
<entry>See <xref linkend="col-bt2020" />.</entry>
</row>
<row>
<entry><constant>V4L2_COLORSPACE_SMPTE240M</constant></entry>
<entry>See <xref linkend="col-smpte-240m" />.</entry>
</row>
<row>
<entry><constant>V4L2_COLORSPACE_470_SYSTEM_M</constant></entry>
<entry>See <xref linkend="col-sysm" />.</entry>
</row>
<row>
<entry><constant>V4L2_COLORSPACE_470_SYSTEM_BG</constant></entry>
<entry>See <xref linkend="col-sysbg" />.</entry>
</row>
<row>
<entry><constant>V4L2_COLORSPACE_JPEG</constant></entry>
<entry>See <xref linkend="col-jpeg" />.</entry>
</row>
</tbody>
</tgroup>
</table>
<table pgwide="1" frame="none" id="v4l2-ycbcr-encoding">
<title>V4L2 Y'CbCr Encodings</title>
<tgroup cols="2" align="left">
&cs-def;
<thead>
<row>
<entry>Identifier</entry>
<entry>Details</entry>
</row>
</thead>
<tbody valign="top">
<row>
<entry><constant>V4L2_YCBCR_ENC_DEFAULT</constant></entry>
<entry>Use the default Y'CbCr encoding as defined by the colorspace.</entry>
</row>
<row>
<entry><constant>V4L2_YCBCR_ENC_601</constant></entry>
<entry>Use the BT.601 Y'CbCr encoding.</entry>
</row>
<row>
<entry><constant>V4L2_YCBCR_ENC_709</constant></entry>
<entry>Use the Rec. 709 Y'CbCr encoding.</entry>
</row>
<row>
<entry><constant>V4L2_YCBCR_ENC_XV601</constant></entry>
<entry>Use the extended gamut xvYCC BT.601 encoding.</entry>
</row>
<row>
<entry><constant>V4L2_YCBCR_ENC_XV709</constant></entry>
<entry>Use the extended gamut xvYCC Rec. 709 encoding.</entry>
</row>
<row>
<entry><constant>V4L2_YCBCR_ENC_SYCC</constant></entry>
<entry>Use the extended gamut sYCC encoding.</entry>
</row>
<row>
<entry><constant>V4L2_YCBCR_ENC_BT2020</constant></entry>
<entry>Use the default non-constant luminance BT.2020 Y'CbCr encoding.</entry>
</row>
<row>
<entry><constant>V4L2_YCBCR_ENC_BT2020_CONST_LUM</constant></entry>
<entry>Use the constant luminance BT.2020 Yc'CbcCrc encoding.</entry>
</row>
</tbody>
</tgroup>
</table>
<table pgwide="1" frame="none" id="v4l2-quantization">
<title>V4L2 Quantization Methods</title>
<tgroup cols="2" align="left">
&cs-def;
<thead>
<row>
<entry>Identifier</entry>
<entry>Details</entry>
</row>
</thead>
<tbody valign="top">
<row>
<entry><constant>V4L2_QUANTIZATION_DEFAULT</constant></entry>
<entry>Use the default quantization encoding as defined by the colorspace.
This is always full range for R'G'B' and usually limited range for Y'CbCr.</entry>
</row>
<row>
<entry><constant>V4L2_QUANTIZATION_FULL_RANGE</constant></entry>
<entry>Use the full range quantization encoding. I.e. the range [0…1]
is mapped to [0…255] (with possible clipping to [1…254] to avoid the
0x00 and 0xff values). Cb and Cr are mapped from [-0.5…0.5] to [0…255]
(with possible clipping to [1…254] to avoid the 0x00 and 0xff values).</entry>
</row>
<row>
<entry><constant>V4L2_QUANTIZATION_LIM_RANGE</constant></entry>
<entry>Use the limited range quantization encoding. I.e. the range [0…1]
is mapped to [16…235]. Cb and Cr are mapped from [-0.5…0.5] to [16…240].
</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section>
<title>Detailed Colorspace Descriptions</title>
<section>
<title id="col-smpte-170m">Colorspace SMPTE 170M (<constant>V4L2_COLORSPACE_SMPTE170M</constant>)</title>
<para>The <xref linkend="smpte170m" /> standard defines the colorspace used by NTSC and PAL and by SDTV
in general. The default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_601</constant>.
The default Y'CbCr quantization is limited range. The chromaticities of the primary colors and
the white reference are:</para>
<table frame="none">
<title>SMPTE 170M Chromaticities</title>
<tgroup cols="3" align="left">
&cs-str;
<thead>
<row>
<entry>Color</entry>
<entry>x</entry>
<entry>y</entry>
</row>
</thead>
<tbody valign="top">
<row>
<entry>Red</entry>
<entry>0.630</entry>
<entry>0.340</entry>
</row>
<row>
<entry>Green</entry>
<entry>0.310</entry>
<entry>0.595</entry>
</row>
<row>
<entry>Blue</entry>
<entry>0.155</entry>
<entry>0.070</entry>
</row>
<row>
<entry>White Reference (D65)</entry>
<entry>0.3127</entry>
<entry>0.3290</entry>
</row>
</tbody>
</tgroup>
</table>
<para>The red, green and blue chromaticities are also often referred to
as the SMPTE C set, so this colorspace is sometimes called SMPTE C as well.</para>
<variablelist>
<varlistentry>
<term>The transfer function defined for SMPTE 170M is the same as the
one defined in Rec. 709. Normally L is in the range [0…1], but for the extended
gamut xvYCC encoding values outside that range are allowed.</term>
<listitem>
<para>L' = -1.099(-L)<superscript>0.45</superscript> + 0.099 for L ≤ -0.018</para>
<para>L' = 4.5L for -0.018 < L < 0.018</para>
<para>L' = 1.099L<superscript>0.45</superscript> - 0.099 for L ≥ 0.018</para>
</listitem>
</varlistentry>
</variablelist>
<variablelist>
<varlistentry>
<term>Inverse Transfer function:</term>
<listitem>
<para>L = -((L' - 0.099) / -1.099)<superscript>1/0.45</superscript> for L' ≤ -0.081</para>
<para>L = L' / 4.5 for -0.081 < L' < 0.081</para>
<para>L = ((L' + 0.099) / 1.099)<superscript>1/0.45</superscript> for L' ≥ 0.081</para>
</listitem>
</varlistentry>
</variablelist>
<variablelist>
<varlistentry>
<term>The luminance (Y') and color difference (Cb and Cr) are obtained with
the following <constant>V4L2_YCBCR_ENC_601</constant> encoding:</term>
<listitem>
<para>Y' = 0.299R' + 0.587G' + 0.114B'</para>
<para>Cb = -0.169R' - 0.331G' + 0.5B'</para>
<para>Cr = 0.5R' - 0.419G' - 0.081B'</para>
</listitem>
</varlistentry>
</variablelist>
<para>Y' is clamped to the range [0…1] and Cb and Cr are
clamped to the range [-0.5…0.5]. This conversion to Y'CbCr is identical to the one
defined in the <xref linkend="itu601" /> standard and this colorspace is sometimes called BT.601 as well, even
though BT.601 does not mention any color primaries.</para>
<para>The default quantization is limited range, but full range is possible although
rarely seen.</para>
<para>The <constant>V4L2_YCBCR_ENC_601</constant> encoding as described above is the
default for this colorspace, but it can be overridden with <constant>V4L2_YCBCR_ENC_709</constant>,
in which case the Rec. 709 Y'CbCr encoding is used.</para>
<variablelist>
<varlistentry>
<term>The xvYCC 601 encoding (<constant>V4L2_YCBCR_ENC_XV601</constant>, <xref linkend="xvycc" />) is similar
to the BT.601 encoding, but it allows for R', G' and B' values that are outside the range
[0…1]. The resulting Y', Cb and Cr values are scaled and offset:</term>
<listitem>
<para>Y' = (219 / 255) * (0.299R' + 0.587G' + 0.114B') + (16 / 255)</para>
<para>Cb = (224 / 255) * (-0.169R' - 0.331G' + 0.5B')</para>
<para>Cr = (224 / 255) * (0.5R' - 0.419G' - 0.081B')</para>
</listitem>
</varlistentry>
</variablelist>
<para>Y' is clamped to the range [0…1] and Cb and Cr are clamped
to the range [-0.5…0.5]. The non-standard xvYCC 709 encoding can also be used by selecting
<constant>V4L2_YCBCR_ENC_XV709</constant>. The xvYCC encodings always use full range
quantization.</para>
</section>
<section>
<title id="col-rec709">Colorspace Rec. 709 (<constant>V4L2_COLORSPACE_REC709</constant>)</title>
<para>The <xref linkend="itu709" /> standard defines the colorspace used by HDTV in general. The default
Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_709</constant>. The default Y'CbCr quantization is
limited range. The chromaticities of the primary colors and the white reference are:</para>
<table frame="none">
<title>Rec. 709 Chromaticities</title>
<tgroup cols="3" align="left">
&cs-str;
<thead>
<row>
<entry>Color</entry>
<entry>x</entry>
<entry>y</entry>
</row>
</thead>
<tbody valign="top">
<row>
<entry>Red</entry>
<entry>0.640</entry>
<entry>0.330</entry>
</row>
<row>
<entry>Green</entry>
<entry>0.300</entry>
<entry>0.600</entry>
</row>
<row>
<entry>Blue</entry>
<entry>0.150</entry>
<entry>0.060</entry>
</row>
<row>
<entry>White Reference (D65)</entry>
<entry>0.3127</entry>
<entry>0.3290</entry>
</row>
</tbody>
</tgroup>
</table>
<para>The full name of this standard is Rec. ITU-R BT.709-5.</para>
<variablelist>
<varlistentry>
<term>Transfer function. Normally L is in the range [0…1], but for the extended
gamut xvYCC encoding values outside that range are allowed.</term>
<listitem>
<para>L' = -1.099(-L)<superscript>0.45</superscript> + 0.099 for L ≤ -0.018</para>
<para>L' = 4.5L for -0.018 < L < 0.018</para>
<para>L' = 1.099L<superscript>0.45</superscript> - 0.099 for L ≥ 0.018</para>
</listitem>
</varlistentry>
</variablelist>
<variablelist>
<varlistentry>
<term>Inverse Transfer function:</term>
<listitem>
<para>L = -((L' - 0.099) / -1.099)<superscript>1/0.45</superscript> for L' ≤ -0.081</para>
<para>L = L' / 4.5 for -0.081 < L' < 0.081</para>
<para>L = ((L' + 0.099) / 1.099)<superscript>1/0.45</superscript> for L' ≥ 0.081</para>
</listitem>
</varlistentry>
</variablelist>
<variablelist>
<varlistentry>
<term>The luminance (Y') and color difference (Cb and Cr) are obtained with the following
<constant>V4L2_YCBCR_ENC_709</constant> encoding:</term>
<listitem>
<para>Y' = 0.2126R' + 0.7152G' + 0.0722B'</para>
<para>Cb = -0.1146R' - 0.3854G' + 0.5B'</para>
<para>Cr = 0.5R' - 0.4542G' - 0.0458B'</para>
</listitem>
</varlistentry>
</variablelist>
<para>Y' is clamped to the range [0…1] and Cb and Cr are
clamped to the range [-0.5…0.5].</para>
<para>The default quantization is limited range, but full range is possible although
rarely seen.</para>
<para>The <constant>V4L2_YCBCR_ENC_709</constant> encoding described above is the default
for this colorspace, but it can be overridden with <constant>V4L2_YCBCR_ENC_601</constant>, in which
case the BT.601 Y'CbCr encoding is used.</para>
<variablelist>
<varlistentry>
<term>The xvYCC 709 encoding (<constant>V4L2_YCBCR_ENC_XV709</constant>, <xref linkend="xvycc" />)
is similar to the Rec. 709 encoding, but it allows for R', G' and B' values that are outside the range
[0…1]. The resulting Y', Cb and Cr values are scaled and offset:</term>
<listitem>
<para>Y' = (219 / 255) * (0.2126R' + 0.7152G' + 0.0722B') + (16 / 255)</para>
<para>Cb = (224 / 255) * (-0.1146R' - 0.3854G' + 0.5B')</para>
<para>Cr = (224 / 255) * (0.5R' - 0.4542G' - 0.0458B')</para>
</listitem>
</varlistentry>
</variablelist>
<para>Y' is clamped to the range [0…1] and Cb and Cr are clamped
to the range [-0.5…0.5]. The non-standard xvYCC 601 encoding can also be used by
selecting <constant>V4L2_YCBCR_ENC_XV601</constant>. The xvYCC encodings always use full
range quantization.</para>
</section>
<section>
<title id="col-srgb">Colorspace sRGB (<constant>V4L2_COLORSPACE_SRGB</constant>)</title>
<para>The <xref linkend="srgb" /> standard defines the colorspace used by most webcams and computer graphics. The
default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_SYCC</constant>. The default Y'CbCr quantization
is full range. The chromaticities of the primary colors and the white reference are:</para>
<table frame="none">
<title>sRGB Chromaticities</title>
<tgroup cols="3" align="left">
&cs-str;
<thead>
<row>
<entry>Color</entry>
<entry>x</entry>
<entry>y</entry>
</row>
</thead>
<tbody valign="top">
<row>
<entry>Red</entry>
<entry>0.640</entry>
<entry>0.330</entry>
</row>
<row>
<entry>Green</entry>
<entry>0.300</entry>
<entry>0.600</entry>
</row>
<row>
<entry>Blue</entry>
<entry>0.150</entry>
<entry>0.060</entry>
</row>
<row>
<entry>White Reference (D65)</entry>
<entry>0.3127</entry>
<entry>0.3290</entry>
</row>
</tbody>
</tgroup>
</table>
<para>These chromaticities are identical to the Rec. 709 colorspace.</para>
<variablelist>
<varlistentry>
<term>Transfer function. Note that negative values for L are only used by the Y'CbCr conversion.</term>
<listitem>
<para>L' = -1.055(-L)<superscript>1/2.4</superscript> + 0.055 for L < -0.0031308</para>
<para>L' = 12.92L for -0.0031308 ≤ L ≤ 0.0031308</para>
<para>L' = 1.055L<superscript>1/2.4</superscript> - 0.055 for 0.0031308 < L ≤ 1</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Inverse Transfer function:</term>
<listitem>
<para>L = -((-L' + 0.055) / 1.055)<superscript>2.4</superscript> for L' < -0.04045</para>
<para>L = L' / 12.92 for -0.04045 ≤ L' ≤ 0.04045</para>
<para>L = ((L' + 0.055) / 1.055)<superscript>2.4</superscript> for L' > 0.04045</para>
</listitem>
</varlistentry>
</variablelist>
<variablelist>
<varlistentry>
<term>The luminance (Y') and color difference (Cb and Cr) are obtained with the following
<constant>V4L2_YCBCR_ENC_SYCC</constant> encoding as defined by <xref linkend="sycc" />:</term>
<listitem>
<para>Y' = 0.2990R' + 0.5870G' + 0.1140B'</para>
<para>Cb = -0.1687R' - 0.3313G' + 0.5B'</para>
<para>Cr = 0.5R' - 0.4187G' - 0.0813B'</para>
</listitem>
</varlistentry>
</variablelist>
<para>Y' is clamped to the range [0…1] and Cb and Cr are clamped
to the range [-0.5…0.5]. The <constant>V4L2_YCBCR_ENC_SYCC</constant> quantization is always
full range. Although this Y'CbCr encoding looks very similar to the <constant>V4L2_YCBCR_ENC_XV601</constant>
encoding, it is not. The <constant>V4L2_YCBCR_ENC_XV601</constant> scales and offsets the Y'CbCr
values before quantization, but this encoding does not do that.</para>
</section>
<section>
<title id="col-adobergb">Colorspace Adobe RGB (<constant>V4L2_COLORSPACE_ADOBERGB</constant>)</title>
<para>The <xref linkend="adobergb" /> standard defines the colorspace used by computer graphics
that use the AdobeRGB colorspace. This is also known as the <xref linkend="oprgb" /> standard.
The default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_601</constant>. The default Y'CbCr
quantization is limited range. The chromaticities of the primary colors and the white reference
are:</para>
<table frame="none">
<title>Adobe RGB Chromaticities</title>
<tgroup cols="3" align="left">
&cs-str;
<thead>
<row>
<entry>Color</entry>
<entry>x</entry>
<entry>y</entry>
</row>
</thead>
<tbody valign="top">
<row>
<entry>Red</entry>
<entry>0.6400</entry>
<entry>0.3300</entry>
</row>
<row>
<entry>Green</entry>
<entry>0.2100</entry>
<entry>0.7100</entry>
</row>
<row>
<entry>Blue</entry>
<entry>0.1500</entry>
<entry>0.0600</entry>
</row>
<row>
<entry>White Reference (D65)</entry>
<entry>0.3127</entry>
<entry>0.3290</entry>
</row>
</tbody>
</tgroup>
</table>
<variablelist>
<varlistentry>
<term>Transfer function:</term>
<listitem>
<para>L' = L<superscript>1/2.19921875</superscript></para>
</listitem>
</varlistentry>
<varlistentry>
<term>Inverse Transfer function:</term>
<listitem>
<para>L = L'<superscript>2.19921875</superscript></para>
</listitem>
</varlistentry>
</variablelist>
<variablelist>
<varlistentry>
<term>The luminance (Y') and color difference (Cb and Cr) are obtained with the
following <constant>V4L2_YCBCR_ENC_601</constant> encoding:</term>
<listitem>
<para>Y' = 0.299R' + 0.587G' + 0.114B'</para>
<para>Cb = -0.169R' - 0.331G' + 0.5B'</para>
<para>Cr = 0.5R' - 0.419G' - 0.081B'</para>
</listitem>
</varlistentry>
</variablelist>
<para>Y' is clamped to the range [0…1] and Cb and Cr are
clamped to the range [-0.5…0.5]. This transform is identical to one defined in
SMPTE 170M/BT.601. The Y'CbCr quantization is limited range.</para>
</section>
<section>
<title id="col-bt2020">Colorspace BT.2020 (<constant>V4L2_COLORSPACE_BT2020</constant>)</title>
<para>The <xref linkend="itu2020" /> standard defines the colorspace used by Ultra-high definition
television (UHDTV). The default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_BT2020</constant>.
The default Y'CbCr quantization is limited range. The chromaticities of the primary colors and
the white reference are:</para>
<table frame="none">
<title>BT.2020 Chromaticities</title>
<tgroup cols="3" align="left">
&cs-str;
<thead>
<row>
<entry>Color</entry>
<entry>x</entry>
<entry>y</entry>
</row>
</thead>
<tbody valign="top">
<row>
<entry>Red</entry>
<entry>0.708</entry>
<entry>0.292</entry>
</row>
<row>
<entry>Green</entry>
<entry>0.170</entry>
<entry>0.797</entry>
</row>
<row>
<entry>Blue</entry>
<entry>0.131</entry>
<entry>0.046</entry>
</row>
<row>
<entry>White Reference (D65)</entry>
<entry>0.3127</entry>
<entry>0.3290</entry>
</row>
</tbody>
</tgroup>
</table>
<variablelist>
<varlistentry>
<term>Transfer function (same as Rec. 709):</term>
<listitem>
<para>L' = 4.5L for 0 ≤ L < 0.018</para>
<para>L' = 1.099L<superscript>0.45</superscript> - 0.099 for 0.018 ≤ L ≤ 1</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Inverse Transfer function:</term>
<listitem>
<para>L = L' / 4.5 for L' < 0.081</para>
<para>L = ((L' + 0.099) / 1.099)<superscript>1/0.45</superscript> for L' ≥ 0.081</para>
</listitem>
</varlistentry>
</variablelist>
<variablelist>
<varlistentry>
<term>The luminance (Y') and color difference (Cb and Cr) are obtained with the
following <constant>V4L2_YCBCR_ENC_BT2020</constant> encoding:</term>
<listitem>
<para>Y' = 0.2627R' + 0.6789G' + 0.0593B'</para>
<para>Cb = -0.1396R' - 0.3604G' + 0.5B'</para>
<para>Cr = 0.5R' - 0.4598G' - 0.0402B'</para>
</listitem>
</varlistentry>
</variablelist>
<para>Y' is clamped to the range [0…1] and Cb and Cr are
clamped to the range [-0.5…0.5]. The Y'CbCr quantization is limited range.</para>
<para>There is also an alternate constant luminance R'G'B' to Yc'CbcCrc
(<constant>V4L2_YCBCR_ENC_BT2020_CONST_LUM</constant>) encoding:</para>
<variablelist>
<varlistentry>
<term>Luma:</term>
<listitem>
<para>Yc' = (0.2627R + 0.6789G + 0.0593B)'</para>
</listitem>
</varlistentry>
</variablelist>
<variablelist>
<varlistentry>
<term>B' - Yc' ≤ 0:</term>
<listitem>
<para>Cbc = (B' - Y') / 1.9404</para>
</listitem>
</varlistentry>
</variablelist>
<variablelist>
<varlistentry>
<term>B' - Yc' > 0:</term>
<listitem>
<para>Cbc = (B' - Y') / 1.5816</para>
</listitem>
</varlistentry>
</variablelist>
<variablelist>
<varlistentry>
<term>R' - Yc' ≤ 0:</term>
<listitem>
<para>Crc = (R' - Y') / 1.7184</para>
</listitem>
</varlistentry>
</variablelist>
<variablelist>
<varlistentry>
<term>R' - Yc' > 0:</term>
<listitem>
<para>Crc = (R' - Y') / 0.9936</para>
</listitem>
</varlistentry>
</variablelist>
<para>Yc' is clamped to the range [0…1] and Cbc and Crc are
clamped to the range [-0.5…0.5]. The Yc'CbcCrc quantization is limited range.</para>
</section>
<section>
<title id="col-smpte-240m">Colorspace SMPTE 240M (<constant>V4L2_COLORSPACE_SMPTE240M</constant>)</title>
<para>The <xref linkend="smpte240m" /> standard was an interim standard used during the early days of HDTV (1988-1998).
It has been superseded by Rec. 709. The default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_SMPTE240M</constant>.
The default Y'CbCr quantization is limited range. The chromaticities of the primary colors and the
white reference are:</para>
<table frame="none">
<title>SMPTE 240M Chromaticities</title>
<tgroup cols="3" align="left">
&cs-str;
<thead>
<row>
<entry>Color</entry>
<entry>x</entry>
<entry>y</entry>
</row>
</thead>
<tbody valign="top">
<row>
<entry>Red</entry>
<entry>0.630</entry>
<entry>0.340</entry>
</row>
<row>
<entry>Green</entry>
<entry>0.310</entry>
<entry>0.595</entry>
</row>
<row>
<entry>Blue</entry>
<entry>0.155</entry>
<entry>0.070</entry>
</row>
<row>
<entry>White Reference (D65)</entry>
<entry>0.3127</entry>
<entry>0.3290</entry>
</row>
</tbody>
</tgroup>
</table>
<para>These chromaticities are identical to the SMPTE 170M colorspace.</para>
<variablelist>
<varlistentry>
<term>Transfer function:</term>
<listitem>
<para>L' = 4L for 0 ≤ L < 0.0228</para>
<para>L' = 1.1115L<superscript>0.45</superscript> - 0.1115 for 0.0228 ≤ L ≤ 1</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Inverse Transfer function:</term>
<listitem>
<para>L = L' / 4 for 0 ≤ L' < 0.0913</para>
<para>L = ((L' + 0.1115) / 1.1115)<superscript>1/0.45</superscript> for L' ≥ 0.0913</para>
</listitem>
</varlistentry>
</variablelist>
<variablelist>
<varlistentry>
<term>The luminance (Y') and color difference (Cb and Cr) are obtained with the
following <constant>V4L2_YCBCR_ENC_SMPTE240M</constant> encoding:</term>
<listitem>
<para>Y' = 0.2122R' + 0.7013G' + 0.0865B'</para>
<para>Cb = -0.1161R' - 0.3839G' + 0.5B'</para>
<para>Cr = 0.5R' - 0.4451G' - 0.0549B'</para>
</listitem>
</varlistentry>
</variablelist>
<para>Yc' is clamped to the range [0…1] and Cbc and Crc are
clamped to the range [-0.5…0.5]. The Y'CbCr quantization is limited range.</para>
</section>
<section>
<title id="col-sysm">Colorspace NTSC 1953 (<constant>V4L2_COLORSPACE_470_SYSTEM_M</constant>)</title>
<para>This standard defines the colorspace used by NTSC in 1953. In practice this
colorspace is obsolete and SMPTE 170M should be used instead. The default Y'CbCr encoding
is <constant>V4L2_YCBCR_ENC_601</constant>. The default Y'CbCr quantization is limited range.
The chromaticities of the primary colors and the white reference are:</para>
<table frame="none">
<title>NTSC 1953 Chromaticities</title>
<tgroup cols="3" align="left">
&cs-str;
<thead>
<row>
<entry>Color</entry>
<entry>x</entry>
<entry>y</entry>
</row>
</thead>
<tbody valign="top">
<row>
<entry>Red</entry>
<entry>0.67</entry>
<entry>0.33</entry>
</row>
<row>
<entry>Green</entry>
<entry>0.21</entry>
<entry>0.71</entry>
</row>
<row>
<entry>Blue</entry>
<entry>0.14</entry>
<entry>0.08</entry>
</row>
<row>
<entry>White Reference (C)</entry>
<entry>0.310</entry>
<entry>0.316</entry>
</row>
</tbody>
</tgroup>
</table>
<para>Note that this colorspace uses Illuminant C instead of D65 as the
white reference. To correctly convert an image in this colorspace to another
that uses D65 you need to apply a chromatic adaptation algorithm such as the
Bradford method.</para>
<variablelist>
<varlistentry>
<term>The transfer function was never properly defined for NTSC 1953. The
Rec. 709 transfer function is recommended in the literature:</term>
<listitem>
<para>L' = 4.5L for 0 ≤ L < 0.018</para>
<para>L' = 1.099L<superscript>0.45</superscript> - 0.099 for 0.018 ≤ L ≤ 1</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Inverse Transfer function:</term>
<listitem>
<para>L = L' / 4.5 for L' < 0.081</para>
<para>L = ((L' + 0.099) / 1.099)<superscript>1/0.45</superscript> for L' ≥ 0.081</para>
</listitem>
</varlistentry>
</variablelist>
<variablelist>
<varlistentry>
<term>The luminance (Y') and color difference (Cb and Cr) are obtained with the
following <constant>V4L2_YCBCR_ENC_601</constant> encoding:</term>
<listitem>
<para>Y' = 0.299R' + 0.587G' + 0.114B'</para>
<para>Cb = -0.169R' - 0.331G' + 0.5B'</para>
<para>Cr = 0.5R' - 0.419G' - 0.081B'</para>
</listitem>
</varlistentry>
</variablelist>
<para>Y' is clamped to the range [0…1] and Cb and Cr are
clamped to the range [-0.5…0.5]. The Y'CbCr quantization is limited range.
This transform is identical to one defined in SMPTE 170M/BT.601.</para>
</section>
<section>
<title id="col-sysbg">Colorspace EBU Tech. 3213 (<constant>V4L2_COLORSPACE_470_SYSTEM_BG</constant>)</title>
<para>The <xref linkend="tech3213" /> standard defines the colorspace used by PAL/SECAM in 1975. In practice this
colorspace is obsolete and SMPTE 170M should be used instead. The default Y'CbCr encoding
is <constant>V4L2_YCBCR_ENC_601</constant>. The default Y'CbCr quantization is limited range.
The chromaticities of the primary colors and the white reference are:</para>
<table frame="none">
<title>EBU Tech. 3213 Chromaticities</title>
<tgroup cols="3" align="left">
&cs-str;
<thead>
<row>
<entry>Color</entry>
<entry>x</entry>
<entry>y</entry>
</row>
</thead>
<tbody valign="top">
<row>
<entry>Red</entry>
<entry>0.64</entry>
<entry>0.33</entry>
</row>
<row>
<entry>Green</entry>
<entry>0.29</entry>
<entry>0.60</entry>
</row>
<row>
<entry>Blue</entry>
<entry>0.15</entry>
<entry>0.06</entry>
</row>
<row>
<entry>White Reference (D65)</entry>
<entry>0.3127</entry>
<entry>0.3290</entry>
</row>
</tbody>
</tgroup>
</table>
<variablelist>
<varlistentry>
<term>The transfer function was never properly defined for this colorspace.
The Rec. 709 transfer function is recommended in the literature:</term>
<listitem>
<para>L' = 4.5L for 0 ≤ L < 0.018</para>
<para>L' = 1.099L<superscript>0.45</superscript> - 0.099 for 0.018 ≤ L ≤ 1</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Inverse Transfer function:</term>
<listitem>
<para>L = L' / 4.5 for L' < 0.081</para>
<para>L = ((L' + 0.099) / 1.099)<superscript>1/0.45</superscript> for L' ≥ 0.081</para>
</listitem>
</varlistentry>
</variablelist>
<variablelist>
<varlistentry>
<term>The luminance (Y') and color difference (Cb and Cr) are obtained with the
following <constant>V4L2_YCBCR_ENC_601</constant> encoding:</term>
<listitem>
<para>Y' = 0.299R' + 0.587G' + 0.114B'</para>
<para>Cb = -0.169R' - 0.331G' + 0.5B'</para>
<para>Cr = 0.5R' - 0.419G' - 0.081B'</para>
</listitem>
</varlistentry>
</variablelist>
<para>Y' is clamped to the range [0…1] and Cb and Cr are
clamped to the range [-0.5…0.5]. The Y'CbCr quantization is limited range.
This transform is identical to one defined in SMPTE 170M/BT.601.</para>
</section>
<section>
<title id="col-jpeg">Colorspace JPEG (<constant>V4L2_COLORSPACE_JPEG</constant>)</title>
<para>This colorspace defines the colorspace used by most (Motion-)JPEG formats. The chromaticities
of the primary colors and the white reference are identical to sRGB. The Y'CbCr encoding is
<constant>V4L2_YCBCR_ENC_601</constant> with full range quantization where
Y' is scaled to [0…255] and Cb/Cr are scaled to [-128…128] and
then clipped to [-128…127].</para>
<para>Note that the JPEG standard does not actually store colorspace information.
So if something other than sRGB is used, then the driver will have to set that information
explicitly. Effectively <constant>V4L2_COLORSPACE_JPEG</constant> can be considered to be
an abbreviation for <constant>V4L2_COLORSPACE_SRGB</constant>, <constant>V4L2_YCBCR_ENC_601</constant>
and <constant>V4L2_QUANTIZATION_FULL_RANGE</constant>.</para>
</section>
</section>
<section id="pixfmt-indexed">
<title>Indexed Format</title>
<para>In this format each pixel is represented by an 8 bit index
into a 256 entry ARGB palette. It is intended for <link
linkend="osd">Video Output Overlays</link> only. There are no ioctls to
access the palette, this must be done with ioctls of the Linux framebuffer API.</para>
<table pgwide="0" frame="none">
<title>Indexed Image Format</title>
<tgroup cols="37" align="center">
<colspec colname="id" align="left" />
<colspec colname="fourcc" />
<colspec colname="bit" />
<colspec colnum="4" colname="b07" align="center" />
<colspec colnum="5" colname="b06" align="center" />
<colspec colnum="6" colname="b05" align="center" />
<colspec colnum="7" colname="b04" align="center" />
<colspec colnum="8" colname="b03" align="center" />
<colspec colnum="9" colname="b02" align="center" />
<colspec colnum="10" colname="b01" align="center" />
<colspec colnum="11" colname="b00" align="center" />
<spanspec namest="b07" nameend="b00" spanname="b0" />
<spanspec namest="b17" nameend="b10" spanname="b1" />
<spanspec namest="b27" nameend="b20" spanname="b2" />
<spanspec namest="b37" nameend="b30" spanname="b3" />
<thead>
<row>
<entry>Identifier</entry>
<entry>Code</entry>
<entry> </entry>
<entry spanname="b0">Byte 0</entry>
</row>
<row>
<entry> </entry>
<entry> </entry>
<entry>Bit</entry>
<entry>7</entry>
<entry>6</entry>
<entry>5</entry>
<entry>4</entry>
<entry>3</entry>
<entry>2</entry>
<entry>1</entry>
<entry>0</entry>
</row>
</thead>
<tbody valign="top">
<row id="V4L2-PIX-FMT-PAL8">
<entry><constant>V4L2_PIX_FMT_PAL8</constant></entry>
<entry>'PAL8'</entry>
<entry></entry>
<entry>i<subscript>7</subscript></entry>
<entry>i<subscript>6</subscript></entry>
<entry>i<subscript>5</subscript></entry>
<entry>i<subscript>4</subscript></entry>
<entry>i<subscript>3</subscript></entry>
<entry>i<subscript>2</subscript></entry>
<entry>i<subscript>1</subscript></entry>
<entry>i<subscript>0</subscript></entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section id="pixfmt-rgb">
<title>RGB Formats</title>
&sub-packed-rgb;
&sub-sbggr8;
&sub-sgbrg8;
&sub-sgrbg8;
&sub-srggb8;
&sub-sbggr16;
&sub-srggb10;
&sub-srggb10alaw8;
&sub-srggb10dpcm8;
&sub-srggb12;
</section>
<section id="yuv-formats">
<title>YUV Formats</title>
<para>YUV is the format native to TV broadcast and composite video
signals. It separates the brightness information (Y) from the color
information (U and V or Cb and Cr). The color information consists of
red and blue <emphasis>color difference</emphasis> signals, this way
the green component can be reconstructed by subtracting from the
brightness component. See <xref linkend="colorspaces" /> for conversion
examples. YUV was chosen because early television would only transmit
brightness information. To add color in a way compatible with existing
receivers a new signal carrier was added to transmit the color
difference signals. Secondary in the YUV format the U and V components
usually have lower resolution than the Y component. This is an analog
video compression technique taking advantage of a property of the
human visual system, being more sensitive to brightness
information.</para>
&sub-packed-yuv;
&sub-grey;
&sub-y10;
&sub-y12;
&sub-y10b;
&sub-y16;
&sub-uv8;
&sub-yuyv;
&sub-uyvy;
&sub-yvyu;
&sub-vyuy;
&sub-y41p;
&sub-yuv420;
&sub-yuv420m;
&sub-yvu420m;
&sub-yuv410;
&sub-yuv422p;
&sub-yuv411p;
&sub-nv12;
&sub-nv12m;
&sub-nv12mt;
&sub-nv16;
&sub-nv16m;
&sub-nv24;
&sub-m420;
</section>
<section>
<title>Compressed Formats</title>
<table pgwide="1" frame="none" id="compressed-formats">
<title>Compressed Image Formats</title>
<tgroup cols="3" align="left">
&cs-def;
<thead>
<row>
<entry>Identifier</entry>
<entry>Code</entry>
<entry>Details</entry>
</row>
</thead>
<tbody valign="top">
<row id="V4L2-PIX-FMT-JPEG">
<entry><constant>V4L2_PIX_FMT_JPEG</constant></entry>
<entry>'JPEG'</entry>
<entry>TBD. See also &VIDIOC-G-JPEGCOMP;,
&VIDIOC-S-JPEGCOMP;.</entry>
</row>
<row id="V4L2-PIX-FMT-MPEG">
<entry><constant>V4L2_PIX_FMT_MPEG</constant></entry>
<entry>'MPEG'</entry>
<entry>MPEG multiplexed stream. The actual format is determined by
extended control <constant>V4L2_CID_MPEG_STREAM_TYPE</constant>, see
<xref linkend="mpeg-control-id" />.</entry>
</row>
<row id="V4L2-PIX-FMT-H264">
<entry><constant>V4L2_PIX_FMT_H264</constant></entry>
<entry>'H264'</entry>
<entry>H264 video elementary stream with start codes.</entry>
</row>
<row id="V4L2-PIX-FMT-H264-NO-SC">
<entry><constant>V4L2_PIX_FMT_H264_NO_SC</constant></entry>
<entry>'AVC1'</entry>
<entry>H264 video elementary stream without start codes.</entry>
</row>
<row id="V4L2-PIX-FMT-H264-MVC">
<entry><constant>V4L2_PIX_FMT_H264_MVC</constant></entry>
<entry>'M264'</entry>
<entry>H264 MVC video elementary stream.</entry>
</row>
<row id="V4L2-PIX-FMT-H263">
<entry><constant>V4L2_PIX_FMT_H263</constant></entry>
<entry>'H263'</entry>
<entry>H263 video elementary stream.</entry>
</row>
<row id="V4L2-PIX-FMT-MPEG1">
<entry><constant>V4L2_PIX_FMT_MPEG1</constant></entry>
<entry>'MPG1'</entry>
<entry>MPEG1 video elementary stream.</entry>
</row>
<row id="V4L2-PIX-FMT-MPEG2">
<entry><constant>V4L2_PIX_FMT_MPEG2</constant></entry>
<entry>'MPG2'</entry>
<entry>MPEG2 video elementary stream.</entry>
</row>
<row id="V4L2-PIX-FMT-MPEG4">
<entry><constant>V4L2_PIX_FMT_MPEG4</constant></entry>
<entry>'MPG4'</entry>
<entry>MPEG4 video elementary stream.</entry>
</row>
<row id="V4L2-PIX-FMT-XVID">
<entry><constant>V4L2_PIX_FMT_XVID</constant></entry>
<entry>'XVID'</entry>
<entry>Xvid video elementary stream.</entry>
</row>
<row id="V4L2-PIX-FMT-VC1-ANNEX-G">
<entry><constant>V4L2_PIX_FMT_VC1_ANNEX_G</constant></entry>
<entry>'VC1G'</entry>
<entry>VC1, SMPTE 421M Annex G compliant stream.</entry>
</row>
<row id="V4L2-PIX-FMT-VC1-ANNEX-L">
<entry><constant>V4L2_PIX_FMT_VC1_ANNEX_L</constant></entry>
<entry>'VC1L'</entry>
<entry>VC1, SMPTE 421M Annex L compliant stream.</entry>
</row>
<row id="V4L2-PIX-FMT-VP8">
<entry><constant>V4L2_PIX_FMT_VP8</constant></entry>
<entry>'VP80'</entry>
<entry>VP8 video elementary stream.</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section id="sdr-formats">
<title>SDR Formats</title>
<para>These formats are used for <link linkend="sdr">SDR Capture</link>
interface only.</para>
&sub-sdr-cu08;
&sub-sdr-cu16le;
&sub-sdr-cs08;
&sub-sdr-cs14le;
&sub-sdr-ru12le;
</section>
<section id="pixfmt-reserved">
<title>Reserved Format Identifiers</title>
<para>These formats are not defined by this specification, they
are just listed for reference and to avoid naming conflicts. If you
want to register your own format, send an e-mail to the linux-media mailing
list &v4l-ml; for inclusion in the <filename>videodev2.h</filename>
file. If you want to share your format with other developers add a
link to your documentation and send a copy to the linux-media mailing list
for inclusion in this section. If you think your format should be listed
in a standard format section please make a proposal on the linux-media mailing
list.</para>
<table pgwide="1" frame="none" id="reserved-formats">
<title>Reserved Image Formats</title>
<tgroup cols="3" align="left">
&cs-def;
<thead>
<row>
<entry>Identifier</entry>
<entry>Code</entry>
<entry>Details</entry>
</row>
</thead>
<tbody valign="top">
<row id="V4L2-PIX-FMT-DV">
<entry><constant>V4L2_PIX_FMT_DV</constant></entry>
<entry>'dvsd'</entry>
<entry>unknown</entry>
</row>
<row id="V4L2-PIX-FMT-ET61X251">
<entry><constant>V4L2_PIX_FMT_ET61X251</constant></entry>
<entry>'E625'</entry>
<entry>Compressed format of the ET61X251 driver.</entry>
</row>
<row id="V4L2-PIX-FMT-HI240">
<entry><constant>V4L2_PIX_FMT_HI240</constant></entry>
<entry>'HI24'</entry>
<entry><para>8 bit RGB format used by the BTTV driver.</para></entry>
</row>
<row id="V4L2-PIX-FMT-HM12">
<entry><constant>V4L2_PIX_FMT_HM12</constant></entry>
<entry>'HM12'</entry>
<entry><para>YUV 4:2:0 format used by the
IVTV driver, <ulink url="http://www.ivtvdriver.org/">
http://www.ivtvdriver.org/</ulink></para><para>The format is documented in the
kernel sources in the file <filename>Documentation/video4linux/cx2341x/README.hm12</filename>
</para></entry>
</row>
<row id="V4L2-PIX-FMT-CPIA1">
<entry><constant>V4L2_PIX_FMT_CPIA1</constant></entry>
<entry>'CPIA'</entry>
<entry>YUV format used by the gspca cpia1 driver.</entry>
</row>
<row id="V4L2-PIX-FMT-JPGL">
<entry><constant>V4L2_PIX_FMT_JPGL</constant></entry>
<entry>'JPGL'</entry>
<entry>JPEG-Light format (Pegasus Lossless JPEG)
used in Divio webcams NW 80x.</entry>
</row>
<row id="V4L2-PIX-FMT-SPCA501">
<entry><constant>V4L2_PIX_FMT_SPCA501</constant></entry>
<entry>'S501'</entry>
<entry>YUYV per line used by the gspca driver.</entry>
</row>
<row id="V4L2-PIX-FMT-SPCA505">
<entry><constant>V4L2_PIX_FMT_SPCA505</constant></entry>
<entry>'S505'</entry>
<entry>YYUV per line used by the gspca driver.</entry>
</row>
<row id="V4L2-PIX-FMT-SPCA508">
<entry><constant>V4L2_PIX_FMT_SPCA508</constant></entry>
<entry>'S508'</entry>
<entry>YUVY per line used by the gspca driver.</entry>
</row>
<row id="V4L2-PIX-FMT-SPCA561">
<entry><constant>V4L2_PIX_FMT_SPCA561</constant></entry>
<entry>'S561'</entry>
<entry>Compressed GBRG Bayer format used by the gspca driver.</entry>
</row>
<row id="V4L2-PIX-FMT-PAC207">
<entry><constant>V4L2_PIX_FMT_PAC207</constant></entry>
<entry>'P207'</entry>
<entry>Compressed BGGR Bayer format used by the gspca driver.</entry>
</row>
<row id="V4L2-PIX-FMT-MR97310A">
<entry><constant>V4L2_PIX_FMT_MR97310A</constant></entry>
<entry>'M310'</entry>
<entry>Compressed BGGR Bayer format used by the gspca driver.</entry>
</row>
<row id="V4L2-PIX-FMT-JL2005BCD">
<entry><constant>V4L2_PIX_FMT_JL2005BCD</constant></entry>
<entry>'JL20'</entry>
<entry>JPEG compressed RGGB Bayer format used by the gspca driver.</entry>
</row>
<row id="V4L2-PIX-FMT-OV511">
<entry><constant>V4L2_PIX_FMT_OV511</constant></entry>
<entry>'O511'</entry>
<entry>OV511 JPEG format used by the gspca driver.</entry>
</row>
<row id="V4L2-PIX-FMT-OV518">
<entry><constant>V4L2_PIX_FMT_OV518</constant></entry>
<entry>'O518'</entry>
<entry>OV518 JPEG format used by the gspca driver.</entry>
</row>
<row id="V4L2-PIX-FMT-PJPG">
<entry><constant>V4L2_PIX_FMT_PJPG</constant></entry>
<entry>'PJPG'</entry>
<entry>Pixart 73xx JPEG format used by the gspca driver.</entry>
</row>
<row id="V4L2-PIX-FMT-SE401">
<entry><constant>V4L2_PIX_FMT_SE401</constant></entry>
<entry>'S401'</entry>
<entry>Compressed RGB format used by the gspca se401 driver</entry>
</row>
<row id="V4L2-PIX-FMT-SQ905C">
<entry><constant>V4L2_PIX_FMT_SQ905C</constant></entry>
<entry>'905C'</entry>
<entry>Compressed RGGB bayer format used by the gspca driver.</entry>
</row>
<row id="V4L2-PIX-FMT-MJPEG">
<entry><constant>V4L2_PIX_FMT_MJPEG</constant></entry>
<entry>'MJPG'</entry>
<entry>Compressed format used by the Zoran driver</entry>
</row>
<row id="V4L2-PIX-FMT-PWC1">
<entry><constant>V4L2_PIX_FMT_PWC1</constant></entry>
<entry>'PWC1'</entry>
<entry>Compressed format of the PWC driver.</entry>
</row>
<row id="V4L2-PIX-FMT-PWC2">
<entry><constant>V4L2_PIX_FMT_PWC2</constant></entry>
<entry>'PWC2'</entry>
<entry>Compressed format of the PWC driver.</entry>
</row>
<row id="V4L2-PIX-FMT-SN9C10X">
<entry><constant>V4L2_PIX_FMT_SN9C10X</constant></entry>
<entry>'S910'</entry>
<entry>Compressed format of the SN9C102 driver.</entry>
</row>
<row id="V4L2-PIX-FMT-SN9C20X-I420">
<entry><constant>V4L2_PIX_FMT_SN9C20X_I420</constant></entry>
<entry>'S920'</entry>
<entry>YUV 4:2:0 format of the gspca sn9c20x driver.</entry>
</row>
<row id="V4L2-PIX-FMT-SN9C2028">
<entry><constant>V4L2_PIX_FMT_SN9C2028</constant></entry>
<entry>'SONX'</entry>
<entry>Compressed GBRG bayer format of the gspca sn9c2028 driver.</entry>
</row>
<row id="V4L2-PIX-FMT-STV0680">
<entry><constant>V4L2_PIX_FMT_STV0680</constant></entry>
<entry>'S680'</entry>
<entry>Bayer format of the gspca stv0680 driver.</entry>
</row>
<row id="V4L2-PIX-FMT-WNVA">
<entry><constant>V4L2_PIX_FMT_WNVA</constant></entry>
<entry>'WNVA'</entry>
<entry><para>Used by the Winnov Videum driver, <ulink
url="http://www.thedirks.org/winnov/">
http://www.thedirks.org/winnov/</ulink></para></entry>
</row>
<row id="V4L2-PIX-FMT-TM6000">
<entry><constant>V4L2_PIX_FMT_TM6000</constant></entry>
<entry>'TM60'</entry>
<entry><para>Used by Trident tm6000</para></entry>
</row>
<row id="V4L2-PIX-FMT-CIT-YYVYUY">
<entry><constant>V4L2_PIX_FMT_CIT_YYVYUY</constant></entry>
<entry>'CITV'</entry>
<entry><para>Used by xirlink CIT, found at IBM webcams.</para>
<para>Uses one line of Y then 1 line of VYUY</para>
</entry>
</row>
<row id="V4L2-PIX-FMT-KONICA420">
<entry><constant>V4L2_PIX_FMT_KONICA420</constant></entry>
<entry>'KONI'</entry>
<entry><para>Used by Konica webcams.</para>
<para>YUV420 planar in blocks of 256 pixels.</para>
</entry>
</row>
<row id="V4L2-PIX-FMT-YYUV">
<entry><constant>V4L2_PIX_FMT_YYUV</constant></entry>
<entry>'YYUV'</entry>
<entry>unknown</entry>
</row>
<row id="V4L2-PIX-FMT-Y4">
<entry><constant>V4L2_PIX_FMT_Y4</constant></entry>
<entry>'Y04 '</entry>
<entry>Old 4-bit greyscale format. Only the most significant 4 bits of each byte are used,
the other bits are set to 0.</entry>
</row>
<row id="V4L2-PIX-FMT-Y6">
<entry><constant>V4L2_PIX_FMT_Y6</constant></entry>
<entry>'Y06 '</entry>
<entry>Old 6-bit greyscale format. Only the most significant 6 bits of each byte are used,
the other bits are set to 0.</entry>
</row>
<row id="V4L2-PIX-FMT-S5C-UYVY-JPG">
<entry><constant>V4L2_PIX_FMT_S5C_UYVY_JPG</constant></entry>
<entry>'S5CI'</entry>
<entry>Two-planar format used by Samsung S5C73MX cameras. The
first plane contains interleaved JPEG and UYVY image data, followed by meta data
in form of an array of offsets to the UYVY data blocks. The actual pointer array
follows immediately the interleaved JPEG/UYVY data, the number of entries in
this array equals the height of the UYVY image. Each entry is a 4-byte unsigned
integer in big endian order and it's an offset to a single pixel line of the
UYVY image. The first plane can start either with JPEG or UYVY data chunk. The
size of a single UYVY block equals the UYVY image's width multiplied by 2. The
size of a JPEG chunk depends on the image and can vary with each line.
<para>The second plane, at an offset of 4084 bytes, contains a 4-byte offset to
the pointer array in the first plane. This offset is followed by a 4-byte value
indicating size of the pointer array. All numbers in the second plane are also
in big endian order. Remaining data in the second plane is undefined. The
information in the second plane allows to easily find location of the pointer
array, which can be different for each frame. The size of the pointer array is
constant for given UYVY image height.</para>
<para>In order to extract UYVY and JPEG frames an application can initially set
a data pointer to the start of first plane and then add an offset from the first
entry of the pointers table. Such a pointer indicates start of an UYVY image
pixel line. Whole UYVY line can be copied to a separate buffer. These steps
should be repeated for each line, i.e. the number of entries in the pointer
array. Anything what's in between the UYVY lines is JPEG data and should be
concatenated to form the JPEG stream. </para>
</entry>
</row>
</tbody>
</tgroup>
</table>
<table frame="none" pgwide="1" id="format-flags">
<title>Format Flags</title>
<tgroup cols="3">
&cs-def;
<tbody valign="top">
<row>
<entry><constant>V4L2_PIX_FMT_FLAG_PREMUL_ALPHA</constant></entry>
<entry>0x00000001</entry>
<entry>The color values are premultiplied by the alpha channel
value. For example, if a light blue pixel with 50% transparency was described by
RGBA values (128, 192, 255, 128), the same pixel described with premultiplied
colors would be described by RGBA values (64, 96, 128, 128) </entry>
</row>
</tbody>
</tgroup>
</table>
</section>
|