Age | Commit message (Collapse) | Author | Files | Lines |
|
XEN_PFN_PHYS is only used in one place in swiotlb-xen making things more
complex than need to be.
Remove the definition of XEN_PFN_PHYS and open code the cast in the one
place where it is needed.
Signed-off-by: Stefano Stabellini <stefano.stabellini@xilinx.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20200710223427.6897-8-sstabellini@kernel.org
Signed-off-by: Juergen Gross <jgross@suse.com>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
We've got a number of defines related to the E820 table and its size:
E820MAP
E820NR
E820_X_MAX
E820MAX
The first two denote byte offsets into the zeropage (struct boot_params),
and can are not used in the kernel and can be removed.
The E820_*_MAX values have an inconsistent structure and it's unclear in any
case what they mean. 'X' presuably goes for extended - but it's not very
expressive altogether.
Change these over to:
E820_MAX_ENTRIES_ZEROPAGE
E820_MAX_ENTRIES
... which are self-explanatory names.
No change in functionality.
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Jackson <pj@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Commit 1084b1988d22dc165c9dbbc2b0e057f9248ac4db (xen: Add Xen specific
page definition) caused a regression in 4.4.
The xen functions to convert between pages and pfns fail due to an
overflow on systems where a physical address may not fit in an
unsigned long (e.g. x86 32 bit PAE systems). Rework the conversion to
avoid overflow. This should also result in simpler object code.
This bug manifested itself as disk corruption with Linux 4.4 when
using blkfront in a Xen HVM x86 32 bit guest with more than 4 GiB of
memory.
Signed-off-by: Ross Lagerwall <ross.lagerwall@citrix.com>
Cc: <stable@vger.kernel.org> # 4.4+
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
|
|
The Xen hypercall interface is always using 4K page granularity on ARM
and x86 architecture.
With the incoming support of 64K page granularity for ARM64 guest, it
won't be possible to re-use the Linux page definition in Xen drivers.
Introduce Xen page definition helpers based on the Linux page
definition. They have exactly the same name but prefixed with
XEN_/xen_ prefix.
Also modify xen_page_to_gfn to use new Xen page definition.
Signed-off-by: Julien Grall <julien.grall@citrix.com>
Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
|
|
Based on include/xen/mm.h [1], Linux is mistakenly using MFN when GFN
is meant, I suspect this is because the first support for Xen was for
PV. This resulted in some misimplementation of helpers on ARM and
confused developers about the expected behavior.
For instance, with pfn_to_mfn, we expect to get an MFN based on the name.
Although, if we look at the implementation on x86, it's returning a GFN.
For clarity and avoid new confusion, replace any reference to mfn with
gfn in any helpers used by PV drivers. The x86 code will still keep some
reference of pfn_to_mfn which may be used by all kind of guests
No changes as been made in the hypercall field, even
though they may be invalid, in order to keep the same as the defintion
in xen repo.
Note that page_to_mfn has been renamed to xen_page_to_gfn to avoid a
name to close to the KVM function gfn_to_page.
Take also the opportunity to simplify simple construction such
as pfn_to_mfn(page_to_pfn(page)) into xen_page_to_gfn. More complex clean up
will come in follow-up patches.
[1] http://xenbits.xen.org/gitweb/?p=xen.git;a=commitdiff;h=e758ed14f390342513405dd766e874934573e6cb
Signed-off-by: Julien Grall <julien.grall@citrix.com>
Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Acked-by: Wei Liu <wei.liu2@citrix.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
|
|
Instead of using physical addresses for accounting of extra memory
areas available for ballooning switch to pfns as this is much less
error prone regarding partial pages.
Reported-by: Roger Pau Monné <roger.pau@citrix.com>
Tested-by: Roger Pau Monné <roger.pau@citrix.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
|
|
pfn_to_mfn(page_to_pfn(p)) is a common use case so add a generic
helper for it.
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Allow the xen balloon driver to populate its list of extra pages from
more than one region of memory. This will allow platforms to provide
(for example) a region of low memory and a region of high memory.
The maximum possible number of extra regions is 128 (== E820MAX) which
is quite large so xen_extra_mem is placed in __initdata. This is safe
as both xen_memory_setup() and balloon_init() are in __init.
The balloon regions themselves are not altered (i.e., there is still
only the one region).
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
|
|
In xen_memory_setup() pages that occur in gaps in the memory map are
released back to Xen. This reduces the domain's current page count in
the hypervisor. The Xen balloon driver does not correctly decrease
its initial current_pages count to reflect this. If 'delta' pages are
released and the target is adjusted the resulting reservation is
always 'delta' less than the requested target.
This affects dom0 if the initial allocation of pages overlaps the PCI
memory region but won't affect most domU guests that have been setup
with pseudo-physical memory maps that don't have gaps.
Fix this by accouting for the released pages when starting the balloon
driver.
If the domain's targets are managed by xapi, the domain may eventually
run out of memory and die because xapi currently gets its target
calculations wrong and whenever it is restarted it always reduces the
target by 'delta'.
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
|
|
Add extra pages in the pseudo-physical address space to the balloon
so we can extend into them later.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
|
|
The definitions in include/asm/xen/page.h are arch specific.
ia64/xen wants to define its own version. So move them to arch specific
directory and keep include/xen/page.h in order not to break compilation.
Signed-off-by: Isaku Yamahata <yamahata@valinux.co.jp>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Xen's pte operations on mfns can be unified like the kernel's pfn operations.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Make sure pte_t, whatever its definition, has a pte element with type
pteval_t. This allows common code to access it without needing to be
specifically parameterised on what pagetable mode we're compiling for.
For 32-bit, this means that pte_t becomes a union with "pte" and "{
pte_low, pte_high }" (PAE) or just "pte_low" (non-PAE).
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Fix:
linux/include/xen/page.h: In function mfn_pte:
linux/include/xen/page.h:149: error: __supported_pte_mask undeclared (first use in this function)
linux/include/xen/page.h:149: error: (Each undeclared identifier is reported only once
linux/include/xen/page.h:149: error: for each function it appears in.)
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch is a rollup of all the core pieces of the Xen
implementation, including:
- booting and setup
- pagetable setup
- privileged instructions
- segmentation
- interrupt flags
- upcalls
- multicall batching
BOOTING AND SETUP
The vmlinux image is decorated with ELF notes which tell the Xen
domain builder what the kernel's requirements are; the domain builder
then constructs the address space accordingly and starts the kernel.
Xen has its own entrypoint for the kernel (contained in an ELF note).
The ELF notes are set up by xen-head.S, which is included into head.S.
In principle it could be linked separately, but it seems to provoke
lots of binutils bugs.
Because the domain builder starts the kernel in a fairly sane state
(32-bit protected mode, paging enabled, flat segments set up), there's
not a lot of setup needed before starting the kernel proper. The main
steps are:
1. Install the Xen paravirt_ops, which is simply a matter of a
structure assignment.
2. Set init_mm to use the Xen-supplied pagetables (analogous to the
head.S generated pagetables in a native boot).
3. Reserve address space for Xen, since it takes a chunk at the top
of the address space for its own use.
4. Call start_kernel()
PAGETABLE SETUP
Once we hit the main kernel boot sequence, it will end up calling back
via paravirt_ops to set up various pieces of Xen specific state. One
of the critical things which requires a bit of extra care is the
construction of the initial init_mm pagetable. Because Xen places
tight constraints on pagetables (an active pagetable must always be
valid, and must always be mapped read-only to the guest domain), we
need to be careful when constructing the new pagetable to keep these
constraints in mind. It turns out that the easiest way to do this is
use the initial Xen-provided pagetable as a template, and then just
insert new mappings for memory where a mapping doesn't already exist.
This means that during pagetable setup, it uses a special version of
xen_set_pte which ignores any attempt to remap a read-only page as
read-write (since Xen will map its own initial pagetable as RO), but
lets other changes to the ptes happen, so that things like NX are set
properly.
PRIVILEGED INSTRUCTIONS AND SEGMENTATION
When the kernel runs under Xen, it runs in ring 1 rather than ring 0.
This means that it is more privileged than user-mode in ring 3, but it
still can't run privileged instructions directly. Non-performance
critical instructions are dealt with by taking a privilege exception
and trapping into the hypervisor and emulating the instruction, but
more performance-critical instructions have their own specific
paravirt_ops. In many cases we can avoid having to do any hypercalls
for these instructions, or the Xen implementation is quite different
from the normal native version.
The privileged instructions fall into the broad classes of:
Segmentation: setting up the GDT and the GDT entries, LDT,
TLS and so on. Xen doesn't allow the GDT to be directly
modified; all GDT updates are done via hypercalls where the new
entries can be validated. This is important because Xen uses
segment limits to prevent the guest kernel from damaging the
hypervisor itself.
Traps and exceptions: Xen uses a special format for trap entrypoints,
so when the kernel wants to set an IDT entry, it needs to be
converted to the form Xen expects. Xen sets int 0x80 up specially
so that the trap goes straight from userspace into the guest kernel
without going via the hypervisor. sysenter isn't supported.
Kernel stack: The esp0 entry is extracted from the tss and provided to
Xen.
TLB operations: the various TLB calls are mapped into corresponding
Xen hypercalls.
Control registers: all the control registers are privileged. The most
important is cr3, which points to the base of the current pagetable,
and we handle it specially.
Another instruction we treat specially is CPUID, even though its not
privileged. We want to control what CPU features are visible to the
rest of the kernel, and so CPUID ends up going into a paravirt_op.
Xen implements this mainly to disable the ACPI and APIC subsystems.
INTERRUPT FLAGS
Xen maintains its own separate flag for masking events, which is
contained within the per-cpu vcpu_info structure. Because the guest
kernel runs in ring 1 and not 0, the IF flag in EFLAGS is completely
ignored (and must be, because even if a guest domain disables
interrupts for itself, it can't disable them overall).
(A note on terminology: "events" and interrupts are effectively
synonymous. However, rather than using an "enable flag", Xen uses a
"mask flag", which blocks event delivery when it is non-zero.)
There are paravirt_ops for each of cli/sti/save_fl/restore_fl, which
are implemented to manage the Xen event mask state. The only thing
worth noting is that when events are unmasked, we need to explicitly
see if there's a pending event and call into the hypervisor to make
sure it gets delivered.
UPCALLS
Xen needs a couple of upcall (or callback) functions to be implemented
by each guest. One is the event upcalls, which is how events
(interrupts, effectively) are delivered to the guests. The other is
the failsafe callback, which is used to report errors in either
reloading a segment register, or caused by iret. These are
implemented in i386/kernel/entry.S so they can jump into the normal
iret_exc path when necessary.
MULTICALL BATCHING
Xen provides a multicall mechanism, which allows multiple hypercalls
to be issued at once in order to mitigate the cost of trapping into
the hypervisor. This is particularly useful for context switches,
since the 4-5 hypercalls they would normally need (reload cr3, update
TLS, maybe update LDT) can be reduced to one. This patch implements a
generic batching mechanism for hypercalls, which gets used in many
places in the Xen code.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Cc: Ian Pratt <ian.pratt@xensource.com>
Cc: Christian Limpach <Christian.Limpach@cl.cam.ac.uk>
Cc: Adrian Bunk <bunk@stusta.de>
|