summaryrefslogtreecommitdiff
path: root/crypto/ecdsa-p1363.c
AgeCommit message (Collapse)AuthorFilesLines
2025-04-16crypto: ecdsa - Fix NIST P521 key size reported by KEYCTL_PKEY_QUERYLukas Wunner1-2/+4
When user space issues a KEYCTL_PKEY_QUERY system call for a NIST P521 key, the key_size is incorrectly reported as 528 bits instead of 521. That's because the key size obtained through crypto_sig_keysize() is in bytes and software_key_query() multiplies by 8 to yield the size in bits. The underlying assumption is that the key size is always a multiple of 8. With the recent addition of NIST P521, that's no longer the case. Fix by returning the key_size in bits from crypto_sig_keysize() and adjusting the calculations in software_key_query(). The ->key_size() callbacks of sig_alg algorithms now return the size in bits, whereas the ->digest_size() and ->max_size() callbacks return the size in bytes. This matches with the units in struct keyctl_pkey_query. Fixes: a7d45ba77d3d ("crypto: ecdsa - Register NIST P521 and extend test suite") Signed-off-by: Lukas Wunner <lukas@wunner.de> Reviewed-by: Stefan Berger <stefanb@linux.ibm.com> Reviewed-by: Ignat Korchagin <ignat@cloudflare.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2025-02-09crypto: ecdsa - Harden against integer overflows in DIV_ROUND_UP()Lukas Wunner1-1/+1
Herbert notes that DIV_ROUND_UP() may overflow unnecessarily if an ecdsa implementation's ->key_size() callback returns an unusually large value. Herbert instead suggests (for a division by 8): X / 8 + !!(X & 7) Based on this formula, introduce a generic DIV_ROUND_UP_POW2() macro and use it in lieu of DIV_ROUND_UP() for ->key_size() return values. Additionally, use the macro in ecc_digits_from_bytes(), whose "nbytes" parameter is a ->key_size() return value in some instances, or a user-specified ASN.1 length in the case of ecdsa_get_signature_rs(). Link: https://lore.kernel.org/r/Z3iElsILmoSu6FuC@gondor.apana.org.au/ Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-10-05crypto: ecdsa - Support P1363 signature decodingLukas Wunner1-0/+159
Alternatively to the X9.62 encoding of ecdsa signatures, which uses ASN.1 and is already supported by the kernel, there's another common encoding called P1363. It stores r and s as the concatenation of two big endian, unsigned integers. The name originates from IEEE P1363. Add a P1363 template in support of the forthcoming SPDM library (Security Protocol and Data Model) for PCI device authentication. P1363 is prescribed by SPDM 1.2.1 margin no 44: "For ECDSA signatures, excluding SM2, in SPDM, the signature shall be the concatenation of r and s. The size of r shall be the size of the selected curve. Likewise, the size of s shall be the size of the selected curve. See BaseAsymAlgo in NEGOTIATE_ALGORITHMS for the size of r and s. The byte order for r and s shall be in big endian order. When placing ECDSA signatures into an SPDM signature field, r shall come first followed by s." Link: https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.2.1.pdf Signed-off-by: Lukas Wunner <lukas@wunner.de> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Reviewed-by: Stefan Berger <stefanb@linux.ibm.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>