diff options
Diffstat (limited to 'include')
-rw-r--r-- | include/linux/hmm.h | 2 | ||||
-rw-r--r-- | include/linux/memremap.h | 4 | ||||
-rw-r--r-- | include/linux/mmu_notifier.h | 2 | ||||
-rw-r--r-- | include/linux/sched/mm.h | 42 | ||||
-rw-r--r-- | include/linux/swap.h | 2 |
5 files changed, 45 insertions, 7 deletions
diff --git a/include/linux/hmm.h b/include/linux/hmm.h index 39988924de3a..2f1327c37a63 100644 --- a/include/linux/hmm.h +++ b/include/linux/hmm.h @@ -16,7 +16,7 @@ /* * Heterogeneous Memory Management (HMM) * - * See Documentation/vm/hmm.txt for reasons and overview of what HMM is and it + * See Documentation/vm/hmm.rst for reasons and overview of what HMM is and it * is for. Here we focus on the HMM API description, with some explanation of * the underlying implementation. * diff --git a/include/linux/memremap.h b/include/linux/memremap.h index 7b4899c06f49..74ea5e2310a8 100644 --- a/include/linux/memremap.h +++ b/include/linux/memremap.h @@ -45,7 +45,7 @@ struct vmem_altmap { * must be treated as an opaque object, rather than a "normal" struct page. * * A more complete discussion of unaddressable memory may be found in - * include/linux/hmm.h and Documentation/vm/hmm.txt. + * include/linux/hmm.h and Documentation/vm/hmm.rst. * * MEMORY_DEVICE_PUBLIC: * Device memory that is cache coherent from device and CPU point of view. This @@ -67,7 +67,7 @@ enum memory_type { * page_free() * * Additional notes about MEMORY_DEVICE_PRIVATE may be found in - * include/linux/hmm.h and Documentation/vm/hmm.txt. There is also a brief + * include/linux/hmm.h and Documentation/vm/hmm.rst. There is also a brief * explanation in include/linux/memory_hotplug.h. * * The page_fault() callback must migrate page back, from device memory to diff --git a/include/linux/mmu_notifier.h b/include/linux/mmu_notifier.h index 2d07a1ed5a31..392e6af82701 100644 --- a/include/linux/mmu_notifier.h +++ b/include/linux/mmu_notifier.h @@ -174,7 +174,7 @@ struct mmu_notifier_ops { * invalidate_range_start()/end() notifiers, as * invalidate_range() alread catches the points in time when an * external TLB range needs to be flushed. For more in depth - * discussion on this see Documentation/vm/mmu_notifier.txt + * discussion on this see Documentation/vm/mmu_notifier.rst * * Note that this function might be called with just a sub-range * of what was passed to invalidate_range_start()/end(), if diff --git a/include/linux/sched/mm.h b/include/linux/sched/mm.h index 2c570cd934af..76a8cb4ef178 100644 --- a/include/linux/sched/mm.h +++ b/include/linux/sched/mm.h @@ -28,7 +28,7 @@ extern struct mm_struct *mm_alloc(void); * * Use mmdrop() to release the reference acquired by mmgrab(). * - * See also <Documentation/vm/active_mm.txt> for an in-depth explanation + * See also <Documentation/vm/active_mm.rst> for an in-depth explanation * of &mm_struct.mm_count vs &mm_struct.mm_users. */ static inline void mmgrab(struct mm_struct *mm) @@ -62,7 +62,7 @@ static inline void mmdrop(struct mm_struct *mm) * * Use mmput() to release the reference acquired by mmget(). * - * See also <Documentation/vm/active_mm.txt> for an in-depth explanation + * See also <Documentation/vm/active_mm.rst> for an in-depth explanation * of &mm_struct.mm_count vs &mm_struct.mm_users. */ static inline void mmget(struct mm_struct *mm) @@ -170,6 +170,17 @@ static inline void fs_reclaim_acquire(gfp_t gfp_mask) { } static inline void fs_reclaim_release(gfp_t gfp_mask) { } #endif +/** + * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope. + * + * This functions marks the beginning of the GFP_NOIO allocation scope. + * All further allocations will implicitly drop __GFP_IO flag and so + * they are safe for the IO critical section from the allocation recursion + * point of view. Use memalloc_noio_restore to end the scope with flags + * returned by this function. + * + * This function is safe to be used from any context. + */ static inline unsigned int memalloc_noio_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOIO; @@ -177,11 +188,30 @@ static inline unsigned int memalloc_noio_save(void) return flags; } +/** + * memalloc_noio_restore - Ends the implicit GFP_NOIO scope. + * @flags: Flags to restore. + * + * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function. + * Always make sure that that the given flags is the return value from the + * pairing memalloc_noio_save call. + */ static inline void memalloc_noio_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; } +/** + * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope. + * + * This functions marks the beginning of the GFP_NOFS allocation scope. + * All further allocations will implicitly drop __GFP_FS flag and so + * they are safe for the FS critical section from the allocation recursion + * point of view. Use memalloc_nofs_restore to end the scope with flags + * returned by this function. + * + * This function is safe to be used from any context. + */ static inline unsigned int memalloc_nofs_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOFS; @@ -189,6 +219,14 @@ static inline unsigned int memalloc_nofs_save(void) return flags; } +/** + * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope. + * @flags: Flags to restore. + * + * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function. + * Always make sure that that the given flags is the return value from the + * pairing memalloc_nofs_save call. + */ static inline void memalloc_nofs_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags; diff --git a/include/linux/swap.h b/include/linux/swap.h index 2417d288e016..c063443d8638 100644 --- a/include/linux/swap.h +++ b/include/linux/swap.h @@ -53,7 +53,7 @@ static inline int current_is_kswapd(void) /* * Unaddressable device memory support. See include/linux/hmm.h and - * Documentation/vm/hmm.txt. Short description is we need struct pages for + * Documentation/vm/hmm.rst. Short description is we need struct pages for * device memory that is unaddressable (inaccessible) by CPU, so that we can * migrate part of a process memory to device memory. * |