summaryrefslogtreecommitdiff
path: root/arch
diff options
context:
space:
mode:
Diffstat (limited to 'arch')
-rw-r--r--arch/powerpc/oprofile/Makefile19
-rw-r--r--arch/powerpc/oprofile/backtrace.c120
-rw-r--r--arch/powerpc/oprofile/cell/pr_util.h110
-rw-r--r--arch/powerpc/oprofile/cell/spu_profiler.c248
-rw-r--r--arch/powerpc/oprofile/cell/spu_task_sync.c657
-rw-r--r--arch/powerpc/oprofile/cell/vma_map.c279
-rw-r--r--arch/powerpc/oprofile/common.c243
-rw-r--r--arch/powerpc/oprofile/op_model_7450.c207
-rw-r--r--arch/powerpc/oprofile/op_model_cell.c1709
-rw-r--r--arch/powerpc/oprofile/op_model_fsl_emb.c380
-rw-r--r--arch/powerpc/oprofile/op_model_pa6t.c227
-rw-r--r--arch/powerpc/oprofile/op_model_power4.c438
12 files changed, 0 insertions, 4637 deletions
diff --git a/arch/powerpc/oprofile/Makefile b/arch/powerpc/oprofile/Makefile
deleted file mode 100644
index bb2d94c8cbe6..000000000000
--- a/arch/powerpc/oprofile/Makefile
+++ /dev/null
@@ -1,19 +0,0 @@
-# SPDX-License-Identifier: GPL-2.0
-
-ccflags-$(CONFIG_PPC64) := $(NO_MINIMAL_TOC)
-
-obj-$(CONFIG_OPROFILE) += oprofile.o
-
-DRIVER_OBJS := $(addprefix ../../../drivers/oprofile/, \
- oprof.o cpu_buffer.o buffer_sync.o \
- event_buffer.o oprofile_files.o \
- oprofilefs.o oprofile_stats.o \
- timer_int.o )
-
-oprofile-y := $(DRIVER_OBJS) common.o backtrace.o
-oprofile-$(CONFIG_OPROFILE_CELL) += op_model_cell.o \
- cell/spu_profiler.o cell/vma_map.o \
- cell/spu_task_sync.o
-oprofile-$(CONFIG_PPC_BOOK3S_64) += op_model_power4.o op_model_pa6t.o
-oprofile-$(CONFIG_FSL_EMB_PERFMON) += op_model_fsl_emb.o
-oprofile-$(CONFIG_PPC_BOOK3S_32) += op_model_7450.o
diff --git a/arch/powerpc/oprofile/backtrace.c b/arch/powerpc/oprofile/backtrace.c
deleted file mode 100644
index 9db7ada79d10..000000000000
--- a/arch/powerpc/oprofile/backtrace.c
+++ /dev/null
@@ -1,120 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/**
- * Copyright (C) 2005 Brian Rogan <bcr6@cornell.edu>, IBM
- *
-**/
-
-#include <linux/time.h>
-#include <linux/oprofile.h>
-#include <linux/sched.h>
-#include <asm/processor.h>
-#include <linux/uaccess.h>
-#include <linux/compat.h>
-#include <asm/oprofile_impl.h>
-
-#define STACK_SP(STACK) *(STACK)
-
-#define STACK_LR64(STACK) *((unsigned long *)(STACK) + 2)
-#define STACK_LR32(STACK) *((unsigned int *)(STACK) + 1)
-
-#ifdef CONFIG_PPC64
-#define STACK_LR(STACK) STACK_LR64(STACK)
-#else
-#define STACK_LR(STACK) STACK_LR32(STACK)
-#endif
-
-static unsigned int user_getsp32(unsigned int sp, int is_first)
-{
- unsigned int stack_frame[2];
- void __user *p = compat_ptr(sp);
-
- /*
- * The most likely reason for this is that we returned -EFAULT,
- * which means that we've done all that we can do from
- * interrupt context.
- */
- if (copy_from_user_nofault(stack_frame, (void __user *)p,
- sizeof(stack_frame)))
- return 0;
-
- if (!is_first)
- oprofile_add_trace(STACK_LR32(stack_frame));
-
- /*
- * We do not enforce increasing stack addresses here because
- * we may transition to a different stack, eg a signal handler.
- */
- return STACK_SP(stack_frame);
-}
-
-#ifdef CONFIG_PPC64
-static unsigned long user_getsp64(unsigned long sp, int is_first)
-{
- unsigned long stack_frame[3];
-
- if (copy_from_user_nofault(stack_frame, (void __user *)sp,
- sizeof(stack_frame)))
- return 0;
-
- if (!is_first)
- oprofile_add_trace(STACK_LR64(stack_frame));
-
- return STACK_SP(stack_frame);
-}
-#endif
-
-static unsigned long kernel_getsp(unsigned long sp, int is_first)
-{
- unsigned long *stack_frame = (unsigned long *)sp;
-
- if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
- return 0;
-
- if (!is_first)
- oprofile_add_trace(STACK_LR(stack_frame));
-
- /*
- * We do not enforce increasing stack addresses here because
- * we might be transitioning from an interrupt stack to a kernel
- * stack. validate_sp() is designed to understand this, so just
- * use it.
- */
- return STACK_SP(stack_frame);
-}
-
-void op_powerpc_backtrace(struct pt_regs * const regs, unsigned int depth)
-{
- unsigned long sp = regs->gpr[1];
- int first_frame = 1;
-
- /* We ditch the top stackframe so need to loop through an extra time */
- depth += 1;
-
- if (!user_mode(regs)) {
- while (depth--) {
- sp = kernel_getsp(sp, first_frame);
- if (!sp)
- break;
- first_frame = 0;
- }
- } else {
-#ifdef CONFIG_PPC64
- if (!is_32bit_task()) {
- while (depth--) {
- sp = user_getsp64(sp, first_frame);
- if (!sp)
- break;
- first_frame = 0;
- }
- return;
- }
-#endif
-
- while (depth--) {
- sp = user_getsp32(sp, first_frame);
- if (!sp)
- break;
- first_frame = 0;
- }
- }
-}
diff --git a/arch/powerpc/oprofile/cell/pr_util.h b/arch/powerpc/oprofile/cell/pr_util.h
deleted file mode 100644
index e198efa9113a..000000000000
--- a/arch/powerpc/oprofile/cell/pr_util.h
+++ /dev/null
@@ -1,110 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0-or-later */
- /*
- * Cell Broadband Engine OProfile Support
- *
- * (C) Copyright IBM Corporation 2006
- *
- * Author: Maynard Johnson <maynardj@us.ibm.com>
- */
-
-#ifndef PR_UTIL_H
-#define PR_UTIL_H
-
-#include <linux/cpumask.h>
-#include <linux/oprofile.h>
-#include <asm/cell-pmu.h>
-#include <asm/cell-regs.h>
-#include <asm/spu.h>
-
-/* Defines used for sync_start */
-#define SKIP_GENERIC_SYNC 0
-#define SYNC_START_ERROR -1
-#define DO_GENERIC_SYNC 1
-#define SPUS_PER_NODE 8
-#define DEFAULT_TIMER_EXPIRE (HZ / 10)
-
-extern struct delayed_work spu_work;
-extern int spu_prof_running;
-
-#define TRACE_ARRAY_SIZE 1024
-
-extern spinlock_t oprof_spu_smpl_arry_lck;
-
-struct spu_overlay_info { /* map of sections within an SPU overlay */
- unsigned int vma; /* SPU virtual memory address from elf */
- unsigned int size; /* size of section from elf */
- unsigned int offset; /* offset of section into elf file */
- unsigned int buf;
-};
-
-struct vma_to_fileoffset_map { /* map of sections within an SPU program */
- struct vma_to_fileoffset_map *next; /* list pointer */
- unsigned int vma; /* SPU virtual memory address from elf */
- unsigned int size; /* size of section from elf */
- unsigned int offset; /* offset of section into elf file */
- unsigned int guard_ptr;
- unsigned int guard_val;
- /*
- * The guard pointer is an entry in the _ovly_buf_table,
- * computed using ovly.buf as the index into the table. Since
- * ovly.buf values begin at '1' to reference the first (or 0th)
- * entry in the _ovly_buf_table, the computation subtracts 1
- * from ovly.buf.
- * The guard value is stored in the _ovly_buf_table entry and
- * is an index (starting at 1) back to the _ovly_table entry
- * that is pointing at this _ovly_buf_table entry. So, for
- * example, for an overlay scenario with one overlay segment
- * and two overlay sections:
- * - Section 1 points to the first entry of the
- * _ovly_buf_table, which contains a guard value
- * of '1', referencing the first (index=0) entry of
- * _ovly_table.
- * - Section 2 points to the second entry of the
- * _ovly_buf_table, which contains a guard value
- * of '2', referencing the second (index=1) entry of
- * _ovly_table.
- */
-
-};
-
-struct spu_buffer {
- int last_guard_val;
- int ctx_sw_seen;
- unsigned long *buff;
- unsigned int head, tail;
-};
-
-
-/* The three functions below are for maintaining and accessing
- * the vma-to-fileoffset map.
- */
-struct vma_to_fileoffset_map *create_vma_map(const struct spu *spu,
- unsigned long objectid);
-unsigned int vma_map_lookup(struct vma_to_fileoffset_map *map,
- unsigned int vma, const struct spu *aSpu,
- int *grd_val);
-void vma_map_free(struct vma_to_fileoffset_map *map);
-
-/*
- * Entry point for SPU profiling.
- * cycles_reset is the SPU_CYCLES count value specified by the user.
- */
-int start_spu_profiling_cycles(unsigned int cycles_reset);
-void start_spu_profiling_events(void);
-
-void stop_spu_profiling_cycles(void);
-void stop_spu_profiling_events(void);
-
-/* add the necessary profiling hooks */
-int spu_sync_start(void);
-
-/* remove the hooks */
-int spu_sync_stop(void);
-
-/* Record SPU program counter samples to the oprofile event buffer. */
-void spu_sync_buffer(int spu_num, unsigned int *samples,
- int num_samples);
-
-void set_spu_profiling_frequency(unsigned int freq_khz, unsigned int cycles_reset);
-
-#endif /* PR_UTIL_H */
diff --git a/arch/powerpc/oprofile/cell/spu_profiler.c b/arch/powerpc/oprofile/cell/spu_profiler.c
deleted file mode 100644
index cdf883445a9f..000000000000
--- a/arch/powerpc/oprofile/cell/spu_profiler.c
+++ /dev/null
@@ -1,248 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * Cell Broadband Engine OProfile Support
- *
- * (C) Copyright IBM Corporation 2006
- *
- * Authors: Maynard Johnson <maynardj@us.ibm.com>
- * Carl Love <carll@us.ibm.com>
- */
-
-#include <linux/hrtimer.h>
-#include <linux/smp.h>
-#include <linux/slab.h>
-#include <asm/cell-pmu.h>
-#include <asm/time.h>
-#include "pr_util.h"
-
-#define SCALE_SHIFT 14
-
-static u32 *samples;
-
-/* spu_prof_running is a flag used to indicate if spu profiling is enabled
- * or not. It is set by the routines start_spu_profiling_cycles() and
- * start_spu_profiling_events(). The flag is cleared by the routines
- * stop_spu_profiling_cycles() and stop_spu_profiling_events(). These
- * routines are called via global_start() and global_stop() which are called in
- * op_powerpc_start() and op_powerpc_stop(). These routines are called once
- * per system as a result of the user starting/stopping oprofile. Hence, only
- * one CPU per user at a time will be changing the value of spu_prof_running.
- * In general, OProfile does not protect against multiple users trying to run
- * OProfile at a time.
- */
-int spu_prof_running;
-static unsigned int profiling_interval;
-
-#define NUM_SPU_BITS_TRBUF 16
-#define SPUS_PER_TB_ENTRY 4
-
-#define SPU_PC_MASK 0xFFFF
-
-DEFINE_SPINLOCK(oprof_spu_smpl_arry_lck);
-static unsigned long oprof_spu_smpl_arry_lck_flags;
-
-void set_spu_profiling_frequency(unsigned int freq_khz, unsigned int cycles_reset)
-{
- unsigned long ns_per_cyc;
-
- if (!freq_khz)
- freq_khz = ppc_proc_freq/1000;
-
- /* To calculate a timeout in nanoseconds, the basic
- * formula is ns = cycles_reset * (NSEC_PER_SEC / cpu frequency).
- * To avoid floating point math, we use the scale math
- * technique as described in linux/jiffies.h. We use
- * a scale factor of SCALE_SHIFT, which provides 4 decimal places
- * of precision. This is close enough for the purpose at hand.
- *
- * The value of the timeout should be small enough that the hw
- * trace buffer will not get more than about 1/3 full for the
- * maximum user specified (the LFSR value) hw sampling frequency.
- * This is to ensure the trace buffer will never fill even if the
- * kernel thread scheduling varies under a heavy system load.
- */
-
- ns_per_cyc = (USEC_PER_SEC << SCALE_SHIFT)/freq_khz;
- profiling_interval = (ns_per_cyc * cycles_reset) >> SCALE_SHIFT;
-
-}
-
-/*
- * Extract SPU PC from trace buffer entry
- */
-static void spu_pc_extract(int cpu, int entry)
-{
- /* the trace buffer is 128 bits */
- u64 trace_buffer[2];
- u64 spu_mask;
- int spu;
-
- spu_mask = SPU_PC_MASK;
-
- /* Each SPU PC is 16 bits; hence, four spus in each of
- * the two 64-bit buffer entries that make up the
- * 128-bit trace_buffer entry. Process two 64-bit values
- * simultaneously.
- * trace[0] SPU PC contents are: 0 1 2 3
- * trace[1] SPU PC contents are: 4 5 6 7
- */
-
- cbe_read_trace_buffer(cpu, trace_buffer);
-
- for (spu = SPUS_PER_TB_ENTRY-1; spu >= 0; spu--) {
- /* spu PC trace entry is upper 16 bits of the
- * 18 bit SPU program counter
- */
- samples[spu * TRACE_ARRAY_SIZE + entry]
- = (spu_mask & trace_buffer[0]) << 2;
- samples[(spu + SPUS_PER_TB_ENTRY) * TRACE_ARRAY_SIZE + entry]
- = (spu_mask & trace_buffer[1]) << 2;
-
- trace_buffer[0] = trace_buffer[0] >> NUM_SPU_BITS_TRBUF;
- trace_buffer[1] = trace_buffer[1] >> NUM_SPU_BITS_TRBUF;
- }
-}
-
-static int cell_spu_pc_collection(int cpu)
-{
- u32 trace_addr;
- int entry;
-
- /* process the collected SPU PC for the node */
-
- entry = 0;
-
- trace_addr = cbe_read_pm(cpu, trace_address);
- while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
- /* there is data in the trace buffer to process */
- spu_pc_extract(cpu, entry);
-
- entry++;
-
- if (entry >= TRACE_ARRAY_SIZE)
- /* spu_samples is full */
- break;
-
- trace_addr = cbe_read_pm(cpu, trace_address);
- }
-
- return entry;
-}
-
-
-static enum hrtimer_restart profile_spus(struct hrtimer *timer)
-{
- ktime_t kt;
- int cpu, node, k, num_samples, spu_num;
-
- if (!spu_prof_running)
- goto stop;
-
- for_each_online_cpu(cpu) {
- if (cbe_get_hw_thread_id(cpu))
- continue;
-
- node = cbe_cpu_to_node(cpu);
-
- /* There should only be one kernel thread at a time processing
- * the samples. In the very unlikely case that the processing
- * is taking a very long time and multiple kernel threads are
- * started to process the samples. Make sure only one kernel
- * thread is working on the samples array at a time. The
- * sample array must be loaded and then processed for a given
- * cpu. The sample array is not per cpu.
- */
- spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
- oprof_spu_smpl_arry_lck_flags);
- num_samples = cell_spu_pc_collection(cpu);
-
- if (num_samples == 0) {
- spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
- oprof_spu_smpl_arry_lck_flags);
- continue;
- }
-
- for (k = 0; k < SPUS_PER_NODE; k++) {
- spu_num = k + (node * SPUS_PER_NODE);
- spu_sync_buffer(spu_num,
- samples + (k * TRACE_ARRAY_SIZE),
- num_samples);
- }
-
- spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
- oprof_spu_smpl_arry_lck_flags);
-
- }
- smp_wmb(); /* insure spu event buffer updates are written */
- /* don't want events intermingled... */
-
- kt = profiling_interval;
- if (!spu_prof_running)
- goto stop;
- hrtimer_forward(timer, timer->base->get_time(), kt);
- return HRTIMER_RESTART;
-
- stop:
- printk(KERN_INFO "SPU_PROF: spu-prof timer ending\n");
- return HRTIMER_NORESTART;
-}
-
-static struct hrtimer timer;
-/*
- * Entry point for SPU cycle profiling.
- * NOTE: SPU profiling is done system-wide, not per-CPU.
- *
- * cycles_reset is the count value specified by the user when
- * setting up OProfile to count SPU_CYCLES.
- */
-int start_spu_profiling_cycles(unsigned int cycles_reset)
-{
- ktime_t kt;
-
- pr_debug("timer resolution: %lu\n", TICK_NSEC);
- kt = profiling_interval;
- hrtimer_init(&timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
- hrtimer_set_expires(&timer, kt);
- timer.function = profile_spus;
-
- /* Allocate arrays for collecting SPU PC samples */
- samples = kcalloc(SPUS_PER_NODE * TRACE_ARRAY_SIZE, sizeof(u32),
- GFP_KERNEL);
-
- if (!samples)
- return -ENOMEM;
-
- spu_prof_running = 1;
- hrtimer_start(&timer, kt, HRTIMER_MODE_REL);
- schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
-
- return 0;
-}
-
-/*
- * Entry point for SPU event profiling.
- * NOTE: SPU profiling is done system-wide, not per-CPU.
- *
- * cycles_reset is the count value specified by the user when
- * setting up OProfile to count SPU_CYCLES.
- */
-void start_spu_profiling_events(void)
-{
- spu_prof_running = 1;
- schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
-
- return;
-}
-
-void stop_spu_profiling_cycles(void)
-{
- spu_prof_running = 0;
- hrtimer_cancel(&timer);
- kfree(samples);
- pr_debug("SPU_PROF: stop_spu_profiling_cycles issued\n");
-}
-
-void stop_spu_profiling_events(void)
-{
- spu_prof_running = 0;
-}
diff --git a/arch/powerpc/oprofile/cell/spu_task_sync.c b/arch/powerpc/oprofile/cell/spu_task_sync.c
deleted file mode 100644
index 489f993100d5..000000000000
--- a/arch/powerpc/oprofile/cell/spu_task_sync.c
+++ /dev/null
@@ -1,657 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * Cell Broadband Engine OProfile Support
- *
- * (C) Copyright IBM Corporation 2006
- *
- * Author: Maynard Johnson <maynardj@us.ibm.com>
- */
-
-/* The purpose of this file is to handle SPU event task switching
- * and to record SPU context information into the OProfile
- * event buffer.
- *
- * Additionally, the spu_sync_buffer function is provided as a helper
- * for recoding actual SPU program counter samples to the event buffer.
- */
-#include <linux/dcookies.h>
-#include <linux/kref.h>
-#include <linux/mm.h>
-#include <linux/fs.h>
-#include <linux/file.h>
-#include <linux/module.h>
-#include <linux/notifier.h>
-#include <linux/numa.h>
-#include <linux/oprofile.h>
-#include <linux/slab.h>
-#include <linux/spinlock.h>
-#include "pr_util.h"
-
-#define RELEASE_ALL 9999
-
-static DEFINE_SPINLOCK(buffer_lock);
-static DEFINE_SPINLOCK(cache_lock);
-static int num_spu_nodes;
-static int spu_prof_num_nodes;
-
-struct spu_buffer spu_buff[MAX_NUMNODES * SPUS_PER_NODE];
-struct delayed_work spu_work;
-static unsigned max_spu_buff;
-
-static void spu_buff_add(unsigned long int value, int spu)
-{
- /* spu buff is a circular buffer. Add entries to the
- * head. Head is the index to store the next value.
- * The buffer is full when there is one available entry
- * in the queue, i.e. head and tail can't be equal.
- * That way we can tell the difference between the
- * buffer being full versus empty.
- *
- * ASSUMPTION: the buffer_lock is held when this function
- * is called to lock the buffer, head and tail.
- */
- int full = 1;
-
- if (spu_buff[spu].head >= spu_buff[spu].tail) {
- if ((spu_buff[spu].head - spu_buff[spu].tail)
- < (max_spu_buff - 1))
- full = 0;
-
- } else if (spu_buff[spu].tail > spu_buff[spu].head) {
- if ((spu_buff[spu].tail - spu_buff[spu].head)
- > 1)
- full = 0;
- }
-
- if (!full) {
- spu_buff[spu].buff[spu_buff[spu].head] = value;
- spu_buff[spu].head++;
-
- if (spu_buff[spu].head >= max_spu_buff)
- spu_buff[spu].head = 0;
- } else {
- /* From the user's perspective make the SPU buffer
- * size management/overflow look like we are using
- * per cpu buffers. The user uses the same
- * per cpu parameter to adjust the SPU buffer size.
- * Increment the sample_lost_overflow to inform
- * the user the buffer size needs to be increased.
- */
- oprofile_cpu_buffer_inc_smpl_lost();
- }
-}
-
-/* This function copies the per SPU buffers to the
- * OProfile kernel buffer.
- */
-static void sync_spu_buff(void)
-{
- int spu;
- unsigned long flags;
- int curr_head;
-
- for (spu = 0; spu < num_spu_nodes; spu++) {
- /* In case there was an issue and the buffer didn't
- * get created skip it.
- */
- if (spu_buff[spu].buff == NULL)
- continue;
-
- /* Hold the lock to make sure the head/tail
- * doesn't change while spu_buff_add() is
- * deciding if the buffer is full or not.
- * Being a little paranoid.
- */
- spin_lock_irqsave(&buffer_lock, flags);
- curr_head = spu_buff[spu].head;
- spin_unlock_irqrestore(&buffer_lock, flags);
-
- /* Transfer the current contents to the kernel buffer.
- * data can still be added to the head of the buffer.
- */
- oprofile_put_buff(spu_buff[spu].buff,
- spu_buff[spu].tail,
- curr_head, max_spu_buff);
-
- spin_lock_irqsave(&buffer_lock, flags);
- spu_buff[spu].tail = curr_head;
- spin_unlock_irqrestore(&buffer_lock, flags);
- }
-
-}
-
-static void wq_sync_spu_buff(struct work_struct *work)
-{
- /* move data from spu buffers to kernel buffer */
- sync_spu_buff();
-
- /* only reschedule if profiling is not done */
- if (spu_prof_running)
- schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
-}
-
-/* Container for caching information about an active SPU task. */
-struct cached_info {
- struct vma_to_fileoffset_map *map;
- struct spu *the_spu; /* needed to access pointer to local_store */
- struct kref cache_ref;
-};
-
-static struct cached_info *spu_info[MAX_NUMNODES * 8];
-
-static void destroy_cached_info(struct kref *kref)
-{
- struct cached_info *info;
-
- info = container_of(kref, struct cached_info, cache_ref);
- vma_map_free(info->map);
- kfree(info);
- module_put(THIS_MODULE);
-}
-
-/* Return the cached_info for the passed SPU number.
- * ATTENTION: Callers are responsible for obtaining the
- * cache_lock if needed prior to invoking this function.
- */
-static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num)
-{
- struct kref *ref;
- struct cached_info *ret_info;
-
- if (spu_num >= num_spu_nodes) {
- printk(KERN_ERR "SPU_PROF: "
- "%s, line %d: Invalid index %d into spu info cache\n",
- __func__, __LINE__, spu_num);
- ret_info = NULL;
- goto out;
- }
- if (!spu_info[spu_num] && the_spu) {
- ref = spu_get_profile_private_kref(the_spu->ctx);
- if (ref) {
- spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref);
- kref_get(&spu_info[spu_num]->cache_ref);
- }
- }
-
- ret_info = spu_info[spu_num];
- out:
- return ret_info;
-}
-
-
-/* Looks for cached info for the passed spu. If not found, the
- * cached info is created for the passed spu.
- * Returns 0 for success; otherwise, -1 for error.
- */
-static int
-prepare_cached_spu_info(struct spu *spu, unsigned long objectId)
-{
- unsigned long flags;
- struct vma_to_fileoffset_map *new_map;
- int retval = 0;
- struct cached_info *info;
-
- /* We won't bother getting cache_lock here since
- * don't do anything with the cached_info that's returned.
- */
- info = get_cached_info(spu, spu->number);
-
- if (info) {
- pr_debug("Found cached SPU info.\n");
- goto out;
- }
-
- /* Create cached_info and set spu_info[spu->number] to point to it.
- * spu->number is a system-wide value, not a per-node value.
- */
- info = kzalloc(sizeof(*info), GFP_KERNEL);
- if (!info) {
- printk(KERN_ERR "SPU_PROF: "
- "%s, line %d: create vma_map failed\n",
- __func__, __LINE__);
- retval = -ENOMEM;
- goto err_alloc;
- }
- new_map = create_vma_map(spu, objectId);
- if (!new_map) {
- printk(KERN_ERR "SPU_PROF: "
- "%s, line %d: create vma_map failed\n",
- __func__, __LINE__);
- retval = -ENOMEM;
- goto err_alloc;
- }
-
- pr_debug("Created vma_map\n");
- info->map = new_map;
- info->the_spu = spu;
- kref_init(&info->cache_ref);
- spin_lock_irqsave(&cache_lock, flags);
- spu_info[spu->number] = info;
- /* Increment count before passing off ref to SPUFS. */
- kref_get(&info->cache_ref);
-
- /* We increment the module refcount here since SPUFS is
- * responsible for the final destruction of the cached_info,
- * and it must be able to access the destroy_cached_info()
- * function defined in the OProfile module. We decrement
- * the module refcount in destroy_cached_info.
- */
- try_module_get(THIS_MODULE);
- spu_set_profile_private_kref(spu->ctx, &info->cache_ref,
- destroy_cached_info);
- spin_unlock_irqrestore(&cache_lock, flags);
- goto out;
-
-err_alloc:
- kfree(info);
-out:
- return retval;
-}
-
-/*
- * NOTE: The caller is responsible for locking the
- * cache_lock prior to calling this function.
- */
-static int release_cached_info(int spu_index)
-{
- int index, end;
-
- if (spu_index == RELEASE_ALL) {
- end = num_spu_nodes;
- index = 0;
- } else {
- if (spu_index >= num_spu_nodes) {
- printk(KERN_ERR "SPU_PROF: "
- "%s, line %d: "
- "Invalid index %d into spu info cache\n",
- __func__, __LINE__, spu_index);
- goto out;
- }
- end = spu_index + 1;
- index = spu_index;
- }
- for (; index < end; index++) {
- if (spu_info[index]) {
- kref_put(&spu_info[index]->cache_ref,
- destroy_cached_info);
- spu_info[index] = NULL;
- }
- }
-
-out:
- return 0;
-}
-
-/* The source code for fast_get_dcookie was "borrowed"
- * from drivers/oprofile/buffer_sync.c.
- */
-
-/* Optimisation. We can manage without taking the dcookie sem
- * because we cannot reach this code without at least one
- * dcookie user still being registered (namely, the reader
- * of the event buffer).
- */
-static inline unsigned long fast_get_dcookie(const struct path *path)
-{
- unsigned long cookie;
-
- if (path->dentry->d_flags & DCACHE_COOKIE)
- return (unsigned long)path->dentry;
- get_dcookie(path, &cookie);
- return cookie;
-}
-
-/* Look up the dcookie for the task's mm->exe_file,
- * which corresponds loosely to "application name". Also, determine
- * the offset for the SPU ELF object. If computed offset is
- * non-zero, it implies an embedded SPU object; otherwise, it's a
- * separate SPU binary, in which case we retrieve it's dcookie.
- * For the embedded case, we must determine if SPU ELF is embedded
- * in the executable application or another file (i.e., shared lib).
- * If embedded in a shared lib, we must get the dcookie and return
- * that to the caller.
- */
-static unsigned long
-get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
- unsigned long *spu_bin_dcookie,
- unsigned long spu_ref)
-{
- unsigned long app_cookie = 0;
- unsigned int my_offset = 0;
- struct vm_area_struct *vma;
- struct file *exe_file;
- struct mm_struct *mm = spu->mm;
-
- if (!mm)
- goto out;
-
- exe_file = get_mm_exe_file(mm);
- if (exe_file) {
- app_cookie = fast_get_dcookie(&exe_file->f_path);
- pr_debug("got dcookie for %pD\n", exe_file);
- fput(exe_file);
- }
-
- mmap_read_lock(mm);
- for (vma = mm->mmap; vma; vma = vma->vm_next) {
- if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref)
- continue;
- my_offset = spu_ref - vma->vm_start;
- if (!vma->vm_file)
- goto fail_no_image_cookie;
-
- pr_debug("Found spu ELF at %X(object-id:%lx) for file %pD\n",
- my_offset, spu_ref, vma->vm_file);
- *offsetp = my_offset;
- break;
- }
-
- *spu_bin_dcookie = fast_get_dcookie(&vma->vm_file->f_path);
- pr_debug("got dcookie for %pD\n", vma->vm_file);
-
- mmap_read_unlock(mm);
-
-out:
- return app_cookie;
-
-fail_no_image_cookie:
- mmap_read_unlock(mm);
-
- printk(KERN_ERR "SPU_PROF: "
- "%s, line %d: Cannot find dcookie for SPU binary\n",
- __func__, __LINE__);
- goto out;
-}
-
-
-
-/* This function finds or creates cached context information for the
- * passed SPU and records SPU context information into the OProfile
- * event buffer.
- */
-static int process_context_switch(struct spu *spu, unsigned long objectId)
-{
- unsigned long flags;
- int retval;
- unsigned int offset = 0;
- unsigned long spu_cookie = 0, app_dcookie;
-
- retval = prepare_cached_spu_info(spu, objectId);
- if (retval)
- goto out;
-
- /* Get dcookie first because a mutex_lock is taken in that
- * code path, so interrupts must not be disabled.
- */
- app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId);
- if (!app_dcookie || !spu_cookie) {
- retval = -ENOENT;
- goto out;
- }
-
- /* Record context info in event buffer */
- spin_lock_irqsave(&buffer_lock, flags);
- spu_buff_add(ESCAPE_CODE, spu->number);
- spu_buff_add(SPU_CTX_SWITCH_CODE, spu->number);
- spu_buff_add(spu->number, spu->number);
- spu_buff_add(spu->pid, spu->number);
- spu_buff_add(spu->tgid, spu->number);
- spu_buff_add(app_dcookie, spu->number);
- spu_buff_add(spu_cookie, spu->number);
- spu_buff_add(offset, spu->number);
-
- /* Set flag to indicate SPU PC data can now be written out. If
- * the SPU program counter data is seen before an SPU context
- * record is seen, the postprocessing will fail.
- */
- spu_buff[spu->number].ctx_sw_seen = 1;
-
- spin_unlock_irqrestore(&buffer_lock, flags);
- smp_wmb(); /* insure spu event buffer updates are written */
- /* don't want entries intermingled... */
-out:
- return retval;
-}
-
-/*
- * This function is invoked on either a bind_context or unbind_context.
- * If called for an unbind_context, the val arg is 0; otherwise,
- * it is the object-id value for the spu context.
- * The data arg is of type 'struct spu *'.
- */
-static int spu_active_notify(struct notifier_block *self, unsigned long val,
- void *data)
-{
- int retval;
- unsigned long flags;
- struct spu *the_spu = data;
-
- pr_debug("SPU event notification arrived\n");
- if (!val) {
- spin_lock_irqsave(&cache_lock, flags);
- retval = release_cached_info(the_spu->number);
- spin_unlock_irqrestore(&cache_lock, flags);
- } else {
- retval = process_context_switch(the_spu, val);
- }
- return retval;
-}
-
-static struct notifier_block spu_active = {
- .notifier_call = spu_active_notify,
-};
-
-static int number_of_online_nodes(void)
-{
- u32 cpu; u32 tmp;
- int nodes = 0;
- for_each_online_cpu(cpu) {
- tmp = cbe_cpu_to_node(cpu) + 1;
- if (tmp > nodes)
- nodes++;
- }
- return nodes;
-}
-
-static int oprofile_spu_buff_create(void)
-{
- int spu;
-
- max_spu_buff = oprofile_get_cpu_buffer_size();
-
- for (spu = 0; spu < num_spu_nodes; spu++) {
- /* create circular buffers to store the data in.
- * use locks to manage accessing the buffers
- */
- spu_buff[spu].head = 0;
- spu_buff[spu].tail = 0;
-
- /*
- * Create a buffer for each SPU. Can't reliably
- * create a single buffer for all spus due to not
- * enough contiguous kernel memory.
- */
-
- spu_buff[spu].buff = kzalloc((max_spu_buff
- * sizeof(unsigned long)),
- GFP_KERNEL);
-
- if (!spu_buff[spu].buff) {
- printk(KERN_ERR "SPU_PROF: "
- "%s, line %d: oprofile_spu_buff_create "
- "failed to allocate spu buffer %d.\n",
- __func__, __LINE__, spu);
-
- /* release the spu buffers that have been allocated */
- while (spu >= 0) {
- kfree(spu_buff[spu].buff);
- spu_buff[spu].buff = 0;
- spu--;
- }
- return -ENOMEM;
- }
- }
- return 0;
-}
-
-/* The main purpose of this function is to synchronize
- * OProfile with SPUFS by registering to be notified of
- * SPU task switches.
- *
- * NOTE: When profiling SPUs, we must ensure that only
- * spu_sync_start is invoked and not the generic sync_start
- * in drivers/oprofile/oprof.c. A return value of
- * SKIP_GENERIC_SYNC or SYNC_START_ERROR will
- * accomplish this.
- */
-int spu_sync_start(void)
-{
- int spu;
- int ret = SKIP_GENERIC_SYNC;
- int register_ret;
- unsigned long flags = 0;
-
- spu_prof_num_nodes = number_of_online_nodes();
- num_spu_nodes = spu_prof_num_nodes * 8;
- INIT_DELAYED_WORK(&spu_work, wq_sync_spu_buff);
-
- /* create buffer for storing the SPU data to put in
- * the kernel buffer.
- */
- ret = oprofile_spu_buff_create();
- if (ret)
- goto out;
-
- spin_lock_irqsave(&buffer_lock, flags);
- for (spu = 0; spu < num_spu_nodes; spu++) {
- spu_buff_add(ESCAPE_CODE, spu);
- spu_buff_add(SPU_PROFILING_CODE, spu);
- spu_buff_add(num_spu_nodes, spu);
- }
- spin_unlock_irqrestore(&buffer_lock, flags);
-
- for (spu = 0; spu < num_spu_nodes; spu++) {
- spu_buff[spu].ctx_sw_seen = 0;
- spu_buff[spu].last_guard_val = 0;
- }
-
- /* Register for SPU events */
- register_ret = spu_switch_event_register(&spu_active);
- if (register_ret) {
- ret = SYNC_START_ERROR;
- goto out;
- }
-
- pr_debug("spu_sync_start -- running.\n");
-out:
- return ret;
-}
-
-/* Record SPU program counter samples to the oprofile event buffer. */
-void spu_sync_buffer(int spu_num, unsigned int *samples,
- int num_samples)
-{
- unsigned long long file_offset;
- unsigned long flags;
- int i;
- struct vma_to_fileoffset_map *map;
- struct spu *the_spu;
- unsigned long long spu_num_ll = spu_num;
- unsigned long long spu_num_shifted = spu_num_ll << 32;
- struct cached_info *c_info;
-
- /* We need to obtain the cache_lock here because it's
- * possible that after getting the cached_info, the SPU job
- * corresponding to this cached_info may end, thus resulting
- * in the destruction of the cached_info.
- */
- spin_lock_irqsave(&cache_lock, flags);
- c_info = get_cached_info(NULL, spu_num);
- if (!c_info) {
- /* This legitimately happens when the SPU task ends before all
- * samples are recorded.
- * No big deal -- so we just drop a few samples.
- */
- pr_debug("SPU_PROF: No cached SPU context "
- "for SPU #%d. Dropping samples.\n", spu_num);
- goto out;
- }
-
- map = c_info->map;
- the_spu = c_info->the_spu;
- spin_lock(&buffer_lock);
- for (i = 0; i < num_samples; i++) {
- unsigned int sample = *(samples+i);
- int grd_val = 0;
- file_offset = 0;
- if (sample == 0)
- continue;
- file_offset = vma_map_lookup( map, sample, the_spu, &grd_val);
-
- /* If overlays are used by this SPU application, the guard
- * value is non-zero, indicating which overlay section is in
- * use. We need to discard samples taken during the time
- * period which an overlay occurs (i.e., guard value changes).
- */
- if (grd_val && grd_val != spu_buff[spu_num].last_guard_val) {
- spu_buff[spu_num].last_guard_val = grd_val;
- /* Drop the rest of the samples. */
- break;
- }
-
- /* We must ensure that the SPU context switch has been written
- * out before samples for the SPU. Otherwise, the SPU context
- * information is not available and the postprocessing of the
- * SPU PC will fail with no available anonymous map information.
- */
- if (spu_buff[spu_num].ctx_sw_seen)
- spu_buff_add((file_offset | spu_num_shifted),
- spu_num);
- }
- spin_unlock(&buffer_lock);
-out:
- spin_unlock_irqrestore(&cache_lock, flags);
-}
-
-
-int spu_sync_stop(void)
-{
- unsigned long flags = 0;
- int ret;
- int k;
-
- ret = spu_switch_event_unregister(&spu_active);
-
- if (ret)
- printk(KERN_ERR "SPU_PROF: "
- "%s, line %d: spu_switch_event_unregister " \
- "returned %d\n",
- __func__, __LINE__, ret);
-
- /* flush any remaining data in the per SPU buffers */
- sync_spu_buff();
-
- spin_lock_irqsave(&cache_lock, flags);
- ret = release_cached_info(RELEASE_ALL);
- spin_unlock_irqrestore(&cache_lock, flags);
-
- /* remove scheduled work queue item rather then waiting
- * for every queued entry to execute. Then flush pending
- * system wide buffer to event buffer.
- */
- cancel_delayed_work(&spu_work);
-
- for (k = 0; k < num_spu_nodes; k++) {
- spu_buff[k].ctx_sw_seen = 0;
-
- /*
- * spu_sys_buff will be null if there was a problem
- * allocating the buffer. Only delete if it exists.
- */
- kfree(spu_buff[k].buff);
- spu_buff[k].buff = 0;
- }
- pr_debug("spu_sync_stop -- done.\n");
- return ret;
-}
-
diff --git a/arch/powerpc/oprofile/cell/vma_map.c b/arch/powerpc/oprofile/cell/vma_map.c
deleted file mode 100644
index 7c4b19cfde88..000000000000
--- a/arch/powerpc/oprofile/cell/vma_map.c
+++ /dev/null
@@ -1,279 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * Cell Broadband Engine OProfile Support
- *
- * (C) Copyright IBM Corporation 2006
- *
- * Author: Maynard Johnson <maynardj@us.ibm.com>
- */
-
-/* The code in this source file is responsible for generating
- * vma-to-fileOffset maps for both overlay and non-overlay SPU
- * applications.
- */
-
-#include <linux/mm.h>
-#include <linux/string.h>
-#include <linux/uaccess.h>
-#include <linux/elf.h>
-#include <linux/slab.h>
-#include "pr_util.h"
-
-
-void vma_map_free(struct vma_to_fileoffset_map *map)
-{
- while (map) {
- struct vma_to_fileoffset_map *next = map->next;
- kfree(map);
- map = next;
- }
-}
-
-unsigned int
-vma_map_lookup(struct vma_to_fileoffset_map *map, unsigned int vma,
- const struct spu *aSpu, int *grd_val)
-{
- /*
- * Default the offset to the physical address + a flag value.
- * Addresses of dynamically generated code can't be found in the vma
- * map. For those addresses the flagged value will be sent on to
- * the user space tools so they can be reported rather than just
- * thrown away.
- */
- u32 offset = 0x10000000 + vma;
- u32 ovly_grd;
-
- for (; map; map = map->next) {
- if (vma < map->vma || vma >= map->vma + map->size)
- continue;
-
- if (map->guard_ptr) {
- ovly_grd = *(u32 *)(aSpu->local_store + map->guard_ptr);
- if (ovly_grd != map->guard_val)
- continue;
- *grd_val = ovly_grd;
- }
- offset = vma - map->vma + map->offset;
- break;
- }
-
- return offset;
-}
-
-static struct vma_to_fileoffset_map *
-vma_map_add(struct vma_to_fileoffset_map *map, unsigned int vma,
- unsigned int size, unsigned int offset, unsigned int guard_ptr,
- unsigned int guard_val)
-{
- struct vma_to_fileoffset_map *new = kzalloc(sizeof(*new), GFP_KERNEL);
-
- if (!new) {
- printk(KERN_ERR "SPU_PROF: %s, line %d: malloc failed\n",
- __func__, __LINE__);
- vma_map_free(map);
- return NULL;
- }
-
- new->next = map;
- new->vma = vma;
- new->size = size;
- new->offset = offset;
- new->guard_ptr = guard_ptr;
- new->guard_val = guard_val;
-
- return new;
-}
-
-
-/* Parse SPE ELF header and generate a list of vma_maps.
- * A pointer to the first vma_map in the generated list
- * of vma_maps is returned. */
-struct vma_to_fileoffset_map *create_vma_map(const struct spu *aSpu,
- unsigned long __spu_elf_start)
-{
- static const unsigned char expected[EI_PAD] = {
- [EI_MAG0] = ELFMAG0,
- [EI_MAG1] = ELFMAG1,
- [EI_MAG2] = ELFMAG2,
- [EI_MAG3] = ELFMAG3,
- [EI_CLASS] = ELFCLASS32,
- [EI_DATA] = ELFDATA2MSB,
- [EI_VERSION] = EV_CURRENT,
- [EI_OSABI] = ELFOSABI_NONE
- };
-
- int grd_val;
- struct vma_to_fileoffset_map *map = NULL;
- void __user *spu_elf_start = (void __user *)__spu_elf_start;
- struct spu_overlay_info ovly;
- unsigned int overlay_tbl_offset = -1;
- Elf32_Phdr __user *phdr_start;
- Elf32_Shdr __user *shdr_start;
- Elf32_Ehdr ehdr;
- Elf32_Phdr phdr;
- Elf32_Shdr shdr, shdr_str;
- Elf32_Sym sym;
- int i, j;
- char name[32];
-
- unsigned int ovly_table_sym = 0;
- unsigned int ovly_buf_table_sym = 0;
- unsigned int ovly_table_end_sym = 0;
- unsigned int ovly_buf_table_end_sym = 0;
- struct spu_overlay_info __user *ovly_table;
- unsigned int n_ovlys;
-
- /* Get and validate ELF header. */
-
- if (copy_from_user(&ehdr, spu_elf_start, sizeof (ehdr)))
- goto fail;
-
- if (memcmp(ehdr.e_ident, expected, EI_PAD) != 0) {
- printk(KERN_ERR "SPU_PROF: "
- "%s, line %d: Unexpected e_ident parsing SPU ELF\n",
- __func__, __LINE__);
- goto fail;
- }
- if (ehdr.e_machine != EM_SPU) {
- printk(KERN_ERR "SPU_PROF: "
- "%s, line %d: Unexpected e_machine parsing SPU ELF\n",
- __func__, __LINE__);
- goto fail;
- }
- if (ehdr.e_type != ET_EXEC) {
- printk(KERN_ERR "SPU_PROF: "
- "%s, line %d: Unexpected e_type parsing SPU ELF\n",
- __func__, __LINE__);
- goto fail;
- }
- phdr_start = spu_elf_start + ehdr.e_phoff;
- shdr_start = spu_elf_start + ehdr.e_shoff;
-
- /* Traverse program headers. */
- for (i = 0; i < ehdr.e_phnum; i++) {
- if (copy_from_user(&phdr, phdr_start + i, sizeof(phdr)))
- goto fail;
-
- if (phdr.p_type != PT_LOAD)
- continue;
- if (phdr.p_flags & (1 << 27))
- continue;
-
- map = vma_map_add(map, phdr.p_vaddr, phdr.p_memsz,
- phdr.p_offset, 0, 0);
- if (!map)
- goto fail;
- }
-
- pr_debug("SPU_PROF: Created non-overlay maps\n");
- /* Traverse section table and search for overlay-related symbols. */
- for (i = 0; i < ehdr.e_shnum; i++) {
- if (copy_from_user(&shdr, shdr_start + i, sizeof(shdr)))
- goto fail;
-
- if (shdr.sh_type != SHT_SYMTAB)
- continue;
- if (shdr.sh_entsize != sizeof (sym))
- continue;
-
- if (copy_from_user(&shdr_str,
- shdr_start + shdr.sh_link,
- sizeof(shdr)))
- goto fail;
-
- if (shdr_str.sh_type != SHT_STRTAB)
- goto fail;
-
- for (j = 0; j < shdr.sh_size / sizeof (sym); j++) {
- if (copy_from_user(&sym, spu_elf_start +
- shdr.sh_offset +
- j * sizeof (sym),
- sizeof (sym)))
- goto fail;
-
- if (copy_from_user(name,
- spu_elf_start + shdr_str.sh_offset +
- sym.st_name,
- 20))
- goto fail;
-
- if (memcmp(name, "_ovly_table", 12) == 0)
- ovly_table_sym = sym.st_value;
- if (memcmp(name, "_ovly_buf_table", 16) == 0)
- ovly_buf_table_sym = sym.st_value;
- if (memcmp(name, "_ovly_table_end", 16) == 0)
- ovly_table_end_sym = sym.st_value;
- if (memcmp(name, "_ovly_buf_table_end", 20) == 0)
- ovly_buf_table_end_sym = sym.st_value;
- }
- }
-
- /* If we don't have overlays, we're done. */
- if (ovly_table_sym == 0 || ovly_buf_table_sym == 0
- || ovly_table_end_sym == 0 || ovly_buf_table_end_sym == 0) {
- pr_debug("SPU_PROF: No overlay table found\n");
- goto out;
- } else {
- pr_debug("SPU_PROF: Overlay table found\n");
- }
-
- /* The _ovly_table symbol represents a table with one entry
- * per overlay section. The _ovly_buf_table symbol represents
- * a table with one entry per overlay region.
- * The struct spu_overlay_info gives the structure of the _ovly_table
- * entries. The structure of _ovly_table_buf is simply one
- * u32 word per entry.
- */
- overlay_tbl_offset = vma_map_lookup(map, ovly_table_sym,
- aSpu, &grd_val);
- if (overlay_tbl_offset > 0x10000000) {
- printk(KERN_ERR "SPU_PROF: "
- "%s, line %d: Error finding SPU overlay table\n",
- __func__, __LINE__);
- goto fail;
- }
- ovly_table = spu_elf_start + overlay_tbl_offset;
-
- n_ovlys = (ovly_table_end_sym -
- ovly_table_sym) / sizeof (ovly);
-
- /* Traverse overlay table. */
- for (i = 0; i < n_ovlys; i++) {
- if (copy_from_user(&ovly, ovly_table + i, sizeof (ovly)))
- goto fail;
-
- /* The ovly.vma/size/offset arguments are analogous to the same
- * arguments used above for non-overlay maps. The final two
- * args are referred to as the guard pointer and the guard
- * value.
- * The guard pointer is an entry in the _ovly_buf_table,
- * computed using ovly.buf as the index into the table. Since
- * ovly.buf values begin at '1' to reference the first (or 0th)
- * entry in the _ovly_buf_table, the computation subtracts 1
- * from ovly.buf.
- * The guard value is stored in the _ovly_buf_table entry and
- * is an index (starting at 1) back to the _ovly_table entry
- * that is pointing at this _ovly_buf_table entry. So, for
- * example, for an overlay scenario with one overlay segment
- * and two overlay sections:
- * - Section 1 points to the first entry of the
- * _ovly_buf_table, which contains a guard value
- * of '1', referencing the first (index=0) entry of
- * _ovly_table.
- * - Section 2 points to the second entry of the
- * _ovly_buf_table, which contains a guard value
- * of '2', referencing the second (index=1) entry of
- * _ovly_table.
- */
- map = vma_map_add(map, ovly.vma, ovly.size, ovly.offset,
- ovly_buf_table_sym + (ovly.buf-1) * 4, i+1);
- if (!map)
- goto fail;
- }
- goto out;
-
- fail:
- map = NULL;
- out:
- return map;
-}
diff --git a/arch/powerpc/oprofile/common.c b/arch/powerpc/oprofile/common.c
deleted file mode 100644
index 0fb528c2b3a1..000000000000
--- a/arch/powerpc/oprofile/common.c
+++ /dev/null
@@ -1,243 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * PPC 64 oprofile support:
- * Copyright (C) 2004 Anton Blanchard <anton@au.ibm.com>, IBM
- * PPC 32 oprofile support: (based on PPC 64 support)
- * Copyright (C) Freescale Semiconductor, Inc 2004
- * Author: Andy Fleming
- *
- * Based on alpha version.
- */
-
-#include <linux/oprofile.h>
-#include <linux/init.h>
-#include <linux/smp.h>
-#include <linux/errno.h>
-#include <asm/ptrace.h>
-#include <asm/pmc.h>
-#include <asm/cputable.h>
-#include <asm/oprofile_impl.h>
-#include <asm/firmware.h>
-
-static struct op_powerpc_model *model;
-
-static struct op_counter_config ctr[OP_MAX_COUNTER];
-static struct op_system_config sys;
-
-static int op_per_cpu_rc;
-
-static void op_handle_interrupt(struct pt_regs *regs)
-{
- model->handle_interrupt(regs, ctr);
-}
-
-static void op_powerpc_cpu_setup(void *dummy)
-{
- int ret;
-
- ret = model->cpu_setup(ctr);
-
- if (ret != 0)
- op_per_cpu_rc = ret;
-}
-
-static int op_powerpc_setup(void)
-{
- int err;
-
- op_per_cpu_rc = 0;
-
- /* Grab the hardware */
- err = reserve_pmc_hardware(op_handle_interrupt);
- if (err)
- return err;
-
- /* Pre-compute the values to stuff in the hardware registers. */
- op_per_cpu_rc = model->reg_setup(ctr, &sys, model->num_counters);
-
- if (op_per_cpu_rc)
- goto out;
-
- /* Configure the registers on all cpus. If an error occurs on one
- * of the cpus, op_per_cpu_rc will be set to the error */
- on_each_cpu(op_powerpc_cpu_setup, NULL, 1);
-
-out: if (op_per_cpu_rc) {
- /* error on setup release the performance counter hardware */
- release_pmc_hardware();
- }
-
- return op_per_cpu_rc;
-}
-
-static void op_powerpc_shutdown(void)
-{
- release_pmc_hardware();
-}
-
-static void op_powerpc_cpu_start(void *dummy)
-{
- /* If any of the cpus have return an error, set the
- * global flag to the error so it can be returned
- * to the generic OProfile caller.
- */
- int ret;
-
- ret = model->start(ctr);
- if (ret != 0)
- op_per_cpu_rc = ret;
-}
-
-static int op_powerpc_start(void)
-{
- op_per_cpu_rc = 0;
-
- if (model->global_start)
- return model->global_start(ctr);
- if (model->start) {
- on_each_cpu(op_powerpc_cpu_start, NULL, 1);
- return op_per_cpu_rc;
- }
- return -EIO; /* No start function is defined for this
- power architecture */
-}
-
-static inline void op_powerpc_cpu_stop(void *dummy)
-{
- model->stop();
-}
-
-static void op_powerpc_stop(void)
-{
- if (model->stop)
- on_each_cpu(op_powerpc_cpu_stop, NULL, 1);
- if (model->global_stop)
- model->global_stop();
-}
-
-static int op_powerpc_create_files(struct dentry *root)
-{
- int i;
-
-#ifdef CONFIG_PPC64
- /*
- * There is one mmcr0, mmcr1 and mmcra for setting the events for
- * all of the counters.
- */
- oprofilefs_create_ulong(root, "mmcr0", &sys.mmcr0);
- oprofilefs_create_ulong(root, "mmcr1", &sys.mmcr1);
- oprofilefs_create_ulong(root, "mmcra", &sys.mmcra);
-#ifdef CONFIG_OPROFILE_CELL
- /* create a file the user tool can check to see what level of profiling
- * support exits with this kernel. Initialize bit mask to indicate
- * what support the kernel has:
- * bit 0 - Supports SPU event profiling in addition to PPU
- * event and cycles; and SPU cycle profiling
- * bits 1-31 - Currently unused.
- *
- * If the file does not exist, then the kernel only supports SPU
- * cycle profiling, PPU event and cycle profiling.
- */
- oprofilefs_create_ulong(root, "cell_support", &sys.cell_support);
- sys.cell_support = 0x1; /* Note, the user OProfile tool must check
- * that this bit is set before attempting to
- * user SPU event profiling. Older kernels
- * will not have this file, hence the user
- * tool is not allowed to do SPU event
- * profiling on older kernels. Older kernels
- * will accept SPU events but collected data
- * is garbage.
- */
-#endif
-#endif
-
- for (i = 0; i < model->num_counters; ++i) {
- struct dentry *dir;
- char buf[4];
-
- snprintf(buf, sizeof buf, "%d", i);
- dir = oprofilefs_mkdir(root, buf);
-
- oprofilefs_create_ulong(dir, "enabled", &ctr[i].enabled);
- oprofilefs_create_ulong(dir, "event", &ctr[i].event);
- oprofilefs_create_ulong(dir, "count", &ctr[i].count);
-
- /*
- * Classic PowerPC doesn't support per-counter
- * control like this, but the options are
- * expected, so they remain. For Freescale
- * Book-E style performance monitors, we do
- * support them.
- */
- oprofilefs_create_ulong(dir, "kernel", &ctr[i].kernel);
- oprofilefs_create_ulong(dir, "user", &ctr[i].user);
-
- oprofilefs_create_ulong(dir, "unit_mask", &ctr[i].unit_mask);
- }
-
- oprofilefs_create_ulong(root, "enable_kernel", &sys.enable_kernel);
- oprofilefs_create_ulong(root, "enable_user", &sys.enable_user);
-
- /* Default to tracing both kernel and user */
- sys.enable_kernel = 1;
- sys.enable_user = 1;
-
- return 0;
-}
-
-int __init oprofile_arch_init(struct oprofile_operations *ops)
-{
- if (!cur_cpu_spec->oprofile_cpu_type)
- return -ENODEV;
-
- switch (cur_cpu_spec->oprofile_type) {
-#ifdef CONFIG_PPC_BOOK3S_64
-#ifdef CONFIG_OPROFILE_CELL
- case PPC_OPROFILE_CELL:
- if (firmware_has_feature(FW_FEATURE_LPAR))
- return -ENODEV;
- model = &op_model_cell;
- ops->sync_start = model->sync_start;
- ops->sync_stop = model->sync_stop;
- break;
-#endif
- case PPC_OPROFILE_POWER4:
- model = &op_model_power4;
- break;
- case PPC_OPROFILE_PA6T:
- model = &op_model_pa6t;
- break;
-#endif
-#ifdef CONFIG_PPC_BOOK3S_32
- case PPC_OPROFILE_G4:
- model = &op_model_7450;
- break;
-#endif
-#if defined(CONFIG_FSL_EMB_PERFMON)
- case PPC_OPROFILE_FSL_EMB:
- model = &op_model_fsl_emb;
- break;
-#endif
- default:
- return -ENODEV;
- }
-
- model->num_counters = cur_cpu_spec->num_pmcs;
-
- ops->cpu_type = cur_cpu_spec->oprofile_cpu_type;
- ops->create_files = op_powerpc_create_files;
- ops->setup = op_powerpc_setup;
- ops->shutdown = op_powerpc_shutdown;
- ops->start = op_powerpc_start;
- ops->stop = op_powerpc_stop;
- ops->backtrace = op_powerpc_backtrace;
-
- printk(KERN_DEBUG "oprofile: using %s performance monitoring.\n",
- ops->cpu_type);
-
- return 0;
-}
-
-void oprofile_arch_exit(void)
-{
-}
diff --git a/arch/powerpc/oprofile/op_model_7450.c b/arch/powerpc/oprofile/op_model_7450.c
deleted file mode 100644
index 5ebc25188a72..000000000000
--- a/arch/powerpc/oprofile/op_model_7450.c
+++ /dev/null
@@ -1,207 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * arch/powerpc/oprofile/op_model_7450.c
- *
- * Freescale 745x/744x oprofile support, based on fsl_booke support
- * Copyright (C) 2004 Anton Blanchard <anton@au.ibm.com>, IBM
- *
- * Copyright (c) 2004 Freescale Semiconductor, Inc
- *
- * Author: Andy Fleming
- * Maintainer: Kumar Gala <galak@kernel.crashing.org>
- */
-
-#include <linux/oprofile.h>
-#include <linux/smp.h>
-#include <asm/ptrace.h>
-#include <asm/processor.h>
-#include <asm/cputable.h>
-#include <asm/page.h>
-#include <asm/pmc.h>
-#include <asm/oprofile_impl.h>
-
-static unsigned long reset_value[OP_MAX_COUNTER];
-
-static int oprofile_running;
-static u32 mmcr0_val, mmcr1_val, mmcr2_val, num_pmcs;
-
-#define MMCR0_PMC1_SHIFT 6
-#define MMCR0_PMC2_SHIFT 0
-#define MMCR1_PMC3_SHIFT 27
-#define MMCR1_PMC4_SHIFT 22
-#define MMCR1_PMC5_SHIFT 17
-#define MMCR1_PMC6_SHIFT 11
-
-#define mmcr0_event1(event) \
- ((event << MMCR0_PMC1_SHIFT) & MMCR0_PMC1SEL)
-#define mmcr0_event2(event) \
- ((event << MMCR0_PMC2_SHIFT) & MMCR0_PMC2SEL)
-
-#define mmcr1_event3(event) \
- ((event << MMCR1_PMC3_SHIFT) & MMCR1_PMC3SEL)
-#define mmcr1_event4(event) \
- ((event << MMCR1_PMC4_SHIFT) & MMCR1_PMC4SEL)
-#define mmcr1_event5(event) \
- ((event << MMCR1_PMC5_SHIFT) & MMCR1_PMC5SEL)
-#define mmcr1_event6(event) \
- ((event << MMCR1_PMC6_SHIFT) & MMCR1_PMC6SEL)
-
-#define MMCR0_INIT (MMCR0_FC | MMCR0_FCS | MMCR0_FCP | MMCR0_FCM1 | MMCR0_FCM0)
-
-/* Unfreezes the counters on this CPU, enables the interrupt,
- * enables the counters to trigger the interrupt, and sets the
- * counters to only count when the mark bit is not set.
- */
-static void pmc_start_ctrs(void)
-{
- u32 mmcr0 = mfspr(SPRN_MMCR0);
-
- mmcr0 &= ~(MMCR0_FC | MMCR0_FCM0);
- mmcr0 |= (MMCR0_FCECE | MMCR0_PMC1CE | MMCR0_PMCnCE | MMCR0_PMXE);
-
- mtspr(SPRN_MMCR0, mmcr0);
-}
-
-/* Disables the counters on this CPU, and freezes them */
-static void pmc_stop_ctrs(void)
-{
- u32 mmcr0 = mfspr(SPRN_MMCR0);
-
- mmcr0 |= MMCR0_FC;
- mmcr0 &= ~(MMCR0_FCECE | MMCR0_PMC1CE | MMCR0_PMCnCE | MMCR0_PMXE);
-
- mtspr(SPRN_MMCR0, mmcr0);
-}
-
-/* Configures the counters on this CPU based on the global
- * settings */
-static int fsl7450_cpu_setup(struct op_counter_config *ctr)
-{
- /* freeze all counters */
- pmc_stop_ctrs();
-
- mtspr(SPRN_MMCR0, mmcr0_val);
- mtspr(SPRN_MMCR1, mmcr1_val);
- if (num_pmcs > 4)
- mtspr(SPRN_MMCR2, mmcr2_val);
-
- return 0;
-}
-
-/* Configures the global settings for the countes on all CPUs. */
-static int fsl7450_reg_setup(struct op_counter_config *ctr,
- struct op_system_config *sys,
- int num_ctrs)
-{
- int i;
-
- num_pmcs = num_ctrs;
- /* Our counters count up, and "count" refers to
- * how much before the next interrupt, and we interrupt
- * on overflow. So we calculate the starting value
- * which will give us "count" until overflow.
- * Then we set the events on the enabled counters */
- for (i = 0; i < num_ctrs; ++i)
- reset_value[i] = 0x80000000UL - ctr[i].count;
-
- /* Set events for Counters 1 & 2 */
- mmcr0_val = MMCR0_INIT | mmcr0_event1(ctr[0].event)
- | mmcr0_event2(ctr[1].event);
-
- /* Setup user/kernel bits */
- if (sys->enable_kernel)
- mmcr0_val &= ~(MMCR0_FCS);
-
- if (sys->enable_user)
- mmcr0_val &= ~(MMCR0_FCP);
-
- /* Set events for Counters 3-6 */
- mmcr1_val = mmcr1_event3(ctr[2].event)
- | mmcr1_event4(ctr[3].event);
- if (num_ctrs > 4)
- mmcr1_val |= mmcr1_event5(ctr[4].event)
- | mmcr1_event6(ctr[5].event);
-
- mmcr2_val = 0;
-
- return 0;
-}
-
-/* Sets the counters on this CPU to the chosen values, and starts them */
-static int fsl7450_start(struct op_counter_config *ctr)
-{
- int i;
-
- mtmsr(mfmsr() | MSR_PMM);
-
- for (i = 0; i < num_pmcs; ++i) {
- if (ctr[i].enabled)
- classic_ctr_write(i, reset_value[i]);
- else
- classic_ctr_write(i, 0);
- }
-
- /* Clear the freeze bit, and enable the interrupt.
- * The counters won't actually start until the rfi clears
- * the PMM bit */
- pmc_start_ctrs();
-
- oprofile_running = 1;
-
- return 0;
-}
-
-/* Stop the counters on this CPU */
-static void fsl7450_stop(void)
-{
- /* freeze counters */
- pmc_stop_ctrs();
-
- oprofile_running = 0;
-
- mb();
-}
-
-
-/* Handle the interrupt on this CPU, and log a sample for each
- * event that triggered the interrupt */
-static void fsl7450_handle_interrupt(struct pt_regs *regs,
- struct op_counter_config *ctr)
-{
- unsigned long pc;
- int is_kernel;
- int val;
- int i;
-
- /* set the PMM bit (see comment below) */
- mtmsr(mfmsr() | MSR_PMM);
-
- pc = mfspr(SPRN_SIAR);
- is_kernel = is_kernel_addr(pc);
-
- for (i = 0; i < num_pmcs; ++i) {
- val = classic_ctr_read(i);
- if (val < 0) {
- if (oprofile_running && ctr[i].enabled) {
- oprofile_add_ext_sample(pc, regs, i, is_kernel);
- classic_ctr_write(i, reset_value[i]);
- } else {
- classic_ctr_write(i, 0);
- }
- }
- }
-
- /* The freeze bit was set by the interrupt. */
- /* Clear the freeze bit, and reenable the interrupt.
- * The counters won't actually start until the rfi clears
- * the PM/M bit */
- pmc_start_ctrs();
-}
-
-struct op_powerpc_model op_model_7450= {
- .reg_setup = fsl7450_reg_setup,
- .cpu_setup = fsl7450_cpu_setup,
- .start = fsl7450_start,
- .stop = fsl7450_stop,
- .handle_interrupt = fsl7450_handle_interrupt,
-};
diff --git a/arch/powerpc/oprofile/op_model_cell.c b/arch/powerpc/oprofile/op_model_cell.c
deleted file mode 100644
index 7eb73070b7be..000000000000
--- a/arch/powerpc/oprofile/op_model_cell.c
+++ /dev/null
@@ -1,1709 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * Cell Broadband Engine OProfile Support
- *
- * (C) Copyright IBM Corporation 2006
- *
- * Author: David Erb (djerb@us.ibm.com)
- * Modifications:
- * Carl Love <carll@us.ibm.com>
- * Maynard Johnson <maynardj@us.ibm.com>
- */
-
-#include <linux/cpufreq.h>
-#include <linux/delay.h>
-#include <linux/jiffies.h>
-#include <linux/kthread.h>
-#include <linux/oprofile.h>
-#include <linux/percpu.h>
-#include <linux/smp.h>
-#include <linux/spinlock.h>
-#include <linux/timer.h>
-#include <asm/cell-pmu.h>
-#include <asm/cputable.h>
-#include <asm/firmware.h>
-#include <asm/io.h>
-#include <asm/oprofile_impl.h>
-#include <asm/processor.h>
-#include <asm/prom.h>
-#include <asm/ptrace.h>
-#include <asm/reg.h>
-#include <asm/rtas.h>
-#include <asm/cell-regs.h>
-
-#include "../platforms/cell/interrupt.h"
-#include "cell/pr_util.h"
-
-#define PPU_PROFILING 0
-#define SPU_PROFILING_CYCLES 1
-#define SPU_PROFILING_EVENTS 2
-
-#define SPU_EVENT_NUM_START 4100
-#define SPU_EVENT_NUM_STOP 4399
-#define SPU_PROFILE_EVENT_ADDR 4363 /* spu, address trace, decimal */
-#define SPU_PROFILE_EVENT_ADDR_MASK_A 0x146 /* sub unit set to zero */
-#define SPU_PROFILE_EVENT_ADDR_MASK_B 0x186 /* sub unit set to zero */
-
-#define NUM_SPUS_PER_NODE 8
-#define SPU_CYCLES_EVENT_NUM 2 /* event number for SPU_CYCLES */
-
-#define PPU_CYCLES_EVENT_NUM 1 /* event number for CYCLES */
-#define PPU_CYCLES_GRP_NUM 1 /* special group number for identifying
- * PPU_CYCLES event
- */
-#define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
-
-#define NUM_THREADS 2 /* number of physical threads in
- * physical processor
- */
-#define NUM_DEBUG_BUS_WORDS 4
-#define NUM_INPUT_BUS_WORDS 2
-
-#define MAX_SPU_COUNT 0xFFFFFF /* maximum 24 bit LFSR value */
-
-/* Minimum HW interval timer setting to send value to trace buffer is 10 cycle.
- * To configure counter to send value every N cycles set counter to
- * 2^32 - 1 - N.
- */
-#define NUM_INTERVAL_CYC 0xFFFFFFFF - 10
-
-/*
- * spu_cycle_reset is the number of cycles between samples.
- * This variable is used for SPU profiling and should ONLY be set
- * at the beginning of cell_reg_setup; otherwise, it's read-only.
- */
-static unsigned int spu_cycle_reset;
-static unsigned int profiling_mode;
-static int spu_evnt_phys_spu_indx;
-
-struct pmc_cntrl_data {
- unsigned long vcntr;
- unsigned long evnts;
- unsigned long masks;
- unsigned long enabled;
-};
-
-/*
- * ibm,cbe-perftools rtas parameters
- */
-struct pm_signal {
- u16 cpu; /* Processor to modify */
- u16 sub_unit; /* hw subunit this applies to (if applicable)*/
- short int signal_group; /* Signal Group to Enable/Disable */
- u8 bus_word; /* Enable/Disable on this Trace/Trigger/Event
- * Bus Word(s) (bitmask)
- */
- u8 bit; /* Trigger/Event bit (if applicable) */
-};
-
-/*
- * rtas call arguments
- */
-enum {
- SUBFUNC_RESET = 1,
- SUBFUNC_ACTIVATE = 2,
- SUBFUNC_DEACTIVATE = 3,
-
- PASSTHRU_IGNORE = 0,
- PASSTHRU_ENABLE = 1,
- PASSTHRU_DISABLE = 2,
-};
-
-struct pm_cntrl {
- u16 enable;
- u16 stop_at_max;
- u16 trace_mode;
- u16 freeze;
- u16 count_mode;
- u16 spu_addr_trace;
- u8 trace_buf_ovflw;
-};
-
-static struct {
- u32 group_control;
- u32 debug_bus_control;
- struct pm_cntrl pm_cntrl;
- u32 pm07_cntrl[NR_PHYS_CTRS];
-} pm_regs;
-
-#define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
-#define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
-#define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
-#define GET_POLARITY(x) ((x & 0x00000002) >> 1)
-#define GET_COUNT_CYCLES(x) (x & 0x00000001)
-#define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
-
-static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
-static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
-static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
-
-/*
- * The CELL profiling code makes rtas calls to setup the debug bus to
- * route the performance signals. Additionally, SPU profiling requires
- * a second rtas call to setup the hardware to capture the SPU PCs.
- * The EIO error value is returned if the token lookups or the rtas
- * call fail. The EIO error number is the best choice of the existing
- * error numbers. The probability of rtas related error is very low. But
- * by returning EIO and printing additional information to dmsg the user
- * will know that OProfile did not start and dmesg will tell them why.
- * OProfile does not support returning errors on Stop. Not a huge issue
- * since failure to reset the debug bus or stop the SPU PC collection is
- * not a fatel issue. Chances are if the Stop failed, Start doesn't work
- * either.
- */
-
-/*
- * Interpetation of hdw_thread:
- * 0 - even virtual cpus 0, 2, 4,...
- * 1 - odd virtual cpus 1, 3, 5, ...
- *
- * FIXME: this is strictly wrong, we need to clean this up in a number
- * of places. It works for now. -arnd
- */
-static u32 hdw_thread;
-
-static u32 virt_cntr_inter_mask;
-static struct timer_list timer_virt_cntr;
-static struct timer_list timer_spu_event_swap;
-
-/*
- * pm_signal needs to be global since it is initialized in
- * cell_reg_setup at the time when the necessary information
- * is available.
- */
-static struct pm_signal pm_signal[NR_PHYS_CTRS];
-static int pm_rtas_token; /* token for debug bus setup call */
-static int spu_rtas_token; /* token for SPU cycle profiling */
-
-static u32 reset_value[NR_PHYS_CTRS];
-static int num_counters;
-static int oprofile_running;
-static DEFINE_SPINLOCK(cntr_lock);
-
-static u32 ctr_enabled;
-
-static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
-
-/*
- * Firmware interface functions
- */
-static int
-rtas_ibm_cbe_perftools(int subfunc, int passthru,
- void *address, unsigned long length)
-{
- u64 paddr = __pa(address);
-
- return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
- passthru, paddr >> 32, paddr & 0xffffffff, length);
-}
-
-static void pm_rtas_reset_signals(u32 node)
-{
- int ret;
- struct pm_signal pm_signal_local;
-
- /*
- * The debug bus is being set to the passthru disable state.
- * However, the FW still expects at least one legal signal routing
- * entry or it will return an error on the arguments. If we don't
- * supply a valid entry, we must ignore all return values. Ignoring
- * all return values means we might miss an error we should be
- * concerned about.
- */
-
- /* fw expects physical cpu #. */
- pm_signal_local.cpu = node;
- pm_signal_local.signal_group = 21;
- pm_signal_local.bus_word = 1;
- pm_signal_local.sub_unit = 0;
- pm_signal_local.bit = 0;
-
- ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
- &pm_signal_local,
- sizeof(struct pm_signal));
-
- if (unlikely(ret))
- /*
- * Not a fatal error. For Oprofile stop, the oprofile
- * functions do not support returning an error for
- * failure to stop OProfile.
- */
- printk(KERN_WARNING "%s: rtas returned: %d\n",
- __func__, ret);
-}
-
-static int pm_rtas_activate_signals(u32 node, u32 count)
-{
- int ret;
- int i, j;
- struct pm_signal pm_signal_local[NR_PHYS_CTRS];
-
- /*
- * There is no debug setup required for the cycles event.
- * Note that only events in the same group can be used.
- * Otherwise, there will be conflicts in correctly routing
- * the signals on the debug bus. It is the responsibility
- * of the OProfile user tool to check the events are in
- * the same group.
- */
- i = 0;
- for (j = 0; j < count; j++) {
- if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
-
- /* fw expects physical cpu # */
- pm_signal_local[i].cpu = node;
- pm_signal_local[i].signal_group
- = pm_signal[j].signal_group;
- pm_signal_local[i].bus_word = pm_signal[j].bus_word;
- pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
- pm_signal_local[i].bit = pm_signal[j].bit;
- i++;
- }
- }
-
- if (i != 0) {
- ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
- pm_signal_local,
- i * sizeof(struct pm_signal));
-
- if (unlikely(ret)) {
- printk(KERN_WARNING "%s: rtas returned: %d\n",
- __func__, ret);
- return -EIO;
- }
- }
-
- return 0;
-}
-
-/*
- * PM Signal functions
- */
-static void set_pm_event(u32 ctr, int event, u32 unit_mask)
-{
- struct pm_signal *p;
- u32 signal_bit;
- u32 bus_word, bus_type, count_cycles, polarity, input_control;
- int j, i;
-
- if (event == PPU_CYCLES_EVENT_NUM) {
- /* Special Event: Count all cpu cycles */
- pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
- p = &(pm_signal[ctr]);
- p->signal_group = PPU_CYCLES_GRP_NUM;
- p->bus_word = 1;
- p->sub_unit = 0;
- p->bit = 0;
- goto out;
- } else {
- pm_regs.pm07_cntrl[ctr] = 0;
- }
-
- bus_word = GET_BUS_WORD(unit_mask);
- bus_type = GET_BUS_TYPE(unit_mask);
- count_cycles = GET_COUNT_CYCLES(unit_mask);
- polarity = GET_POLARITY(unit_mask);
- input_control = GET_INPUT_CONTROL(unit_mask);
- signal_bit = (event % 100);
-
- p = &(pm_signal[ctr]);
-
- p->signal_group = event / 100;
- p->bus_word = bus_word;
- p->sub_unit = GET_SUB_UNIT(unit_mask);
-
- pm_regs.pm07_cntrl[ctr] = 0;
- pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
- pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
- pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
-
- /*
- * Some of the islands signal selection is based on 64 bit words.
- * The debug bus words are 32 bits, the input words to the performance
- * counters are defined as 32 bits. Need to convert the 64 bit island
- * specification to the appropriate 32 input bit and bus word for the
- * performance counter event selection. See the CELL Performance
- * monitoring signals manual and the Perf cntr hardware descriptions
- * for the details.
- */
- if (input_control == 0) {
- if (signal_bit > 31) {
- signal_bit -= 32;
- if (bus_word == 0x3)
- bus_word = 0x2;
- else if (bus_word == 0xc)
- bus_word = 0x8;
- }
-
- if ((bus_type == 0) && p->signal_group >= 60)
- bus_type = 2;
- if ((bus_type == 1) && p->signal_group >= 50)
- bus_type = 0;
-
- pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
- } else {
- pm_regs.pm07_cntrl[ctr] = 0;
- p->bit = signal_bit;
- }
-
- for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
- if (bus_word & (1 << i)) {
- pm_regs.debug_bus_control |=
- (bus_type << (30 - (2 * i)));
-
- for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
- if (input_bus[j] == 0xff) {
- input_bus[j] = i;
- pm_regs.group_control |=
- (i << (30 - (2 * j)));
-
- break;
- }
- }
- }
- }
-out:
- ;
-}
-
-static void write_pm_cntrl(int cpu)
-{
- /*
- * Oprofile will use 32 bit counters, set bits 7:10 to 0
- * pmregs.pm_cntrl is a global
- */
-
- u32 val = 0;
- if (pm_regs.pm_cntrl.enable == 1)
- val |= CBE_PM_ENABLE_PERF_MON;
-
- if (pm_regs.pm_cntrl.stop_at_max == 1)
- val |= CBE_PM_STOP_AT_MAX;
-
- if (pm_regs.pm_cntrl.trace_mode != 0)
- val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
-
- if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
- val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
- if (pm_regs.pm_cntrl.freeze == 1)
- val |= CBE_PM_FREEZE_ALL_CTRS;
-
- val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
-
- /*
- * Routine set_count_mode must be called previously to set
- * the count mode based on the user selection of user and kernel.
- */
- val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
- cbe_write_pm(cpu, pm_control, val);
-}
-
-static inline void
-set_count_mode(u32 kernel, u32 user)
-{
- /*
- * The user must specify user and kernel if they want them. If
- * neither is specified, OProfile will count in hypervisor mode.
- * pm_regs.pm_cntrl is a global
- */
- if (kernel) {
- if (user)
- pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
- else
- pm_regs.pm_cntrl.count_mode =
- CBE_COUNT_SUPERVISOR_MODE;
- } else {
- if (user)
- pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
- else
- pm_regs.pm_cntrl.count_mode =
- CBE_COUNT_HYPERVISOR_MODE;
- }
-}
-
-static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
-{
-
- pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
- cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
-}
-
-/*
- * Oprofile is expected to collect data on all CPUs simultaneously.
- * However, there is one set of performance counters per node. There are
- * two hardware threads or virtual CPUs on each node. Hence, OProfile must
- * multiplex in time the performance counter collection on the two virtual
- * CPUs. The multiplexing of the performance counters is done by this
- * virtual counter routine.
- *
- * The pmc_values used below is defined as 'per-cpu' but its use is
- * more akin to 'per-node'. We need to store two sets of counter
- * values per node -- one for the previous run and one for the next.
- * The per-cpu[NR_PHYS_CTRS] gives us the storage we need. Each odd/even
- * pair of per-cpu arrays is used for storing the previous and next
- * pmc values for a given node.
- * NOTE: We use the per-cpu variable to improve cache performance.
- *
- * This routine will alternate loading the virtual counters for
- * virtual CPUs
- */
-static void cell_virtual_cntr(struct timer_list *unused)
-{
- int i, prev_hdw_thread, next_hdw_thread;
- u32 cpu;
- unsigned long flags;
-
- /*
- * Make sure that the interrupt_hander and the virt counter are
- * not both playing with the counters on the same node.
- */
-
- spin_lock_irqsave(&cntr_lock, flags);
-
- prev_hdw_thread = hdw_thread;
-
- /* switch the cpu handling the interrupts */
- hdw_thread = 1 ^ hdw_thread;
- next_hdw_thread = hdw_thread;
-
- pm_regs.group_control = 0;
- pm_regs.debug_bus_control = 0;
-
- for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
- input_bus[i] = 0xff;
-
- /*
- * There are some per thread events. Must do the
- * set event, for the thread that is being started
- */
- for (i = 0; i < num_counters; i++)
- set_pm_event(i,
- pmc_cntrl[next_hdw_thread][i].evnts,
- pmc_cntrl[next_hdw_thread][i].masks);
-
- /*
- * The following is done only once per each node, but
- * we need cpu #, not node #, to pass to the cbe_xxx functions.
- */
- for_each_online_cpu(cpu) {
- if (cbe_get_hw_thread_id(cpu))
- continue;
-
- /*
- * stop counters, save counter values, restore counts
- * for previous thread
- */
- cbe_disable_pm(cpu);
- cbe_disable_pm_interrupts(cpu);
- for (i = 0; i < num_counters; i++) {
- per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
- = cbe_read_ctr(cpu, i);
-
- if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
- == 0xFFFFFFFF)
- /* If the cntr value is 0xffffffff, we must
- * reset that to 0xfffffff0 when the current
- * thread is restarted. This will generate a
- * new interrupt and make sure that we never
- * restore the counters to the max value. If
- * the counters were restored to the max value,
- * they do not increment and no interrupts are
- * generated. Hence no more samples will be
- * collected on that cpu.
- */
- cbe_write_ctr(cpu, i, 0xFFFFFFF0);
- else
- cbe_write_ctr(cpu, i,
- per_cpu(pmc_values,
- cpu +
- next_hdw_thread)[i]);
- }
-
- /*
- * Switch to the other thread. Change the interrupt
- * and control regs to be scheduled on the CPU
- * corresponding to the thread to execute.
- */
- for (i = 0; i < num_counters; i++) {
- if (pmc_cntrl[next_hdw_thread][i].enabled) {
- /*
- * There are some per thread events.
- * Must do the set event, enable_cntr
- * for each cpu.
- */
- enable_ctr(cpu, i,
- pm_regs.pm07_cntrl);
- } else {
- cbe_write_pm07_control(cpu, i, 0);
- }
- }
-
- /* Enable interrupts on the CPU thread that is starting */
- cbe_enable_pm_interrupts(cpu, next_hdw_thread,
- virt_cntr_inter_mask);
- cbe_enable_pm(cpu);
- }
-
- spin_unlock_irqrestore(&cntr_lock, flags);
-
- mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
-}
-
-static void start_virt_cntrs(void)
-{
- timer_setup(&timer_virt_cntr, cell_virtual_cntr, 0);
- timer_virt_cntr.expires = jiffies + HZ / 10;
- add_timer(&timer_virt_cntr);
-}
-
-static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
- struct op_system_config *sys, int num_ctrs)
-{
- spu_cycle_reset = ctr[0].count;
-
- /*
- * Each node will need to make the rtas call to start
- * and stop SPU profiling. Get the token once and store it.
- */
- spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
-
- if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
- printk(KERN_ERR
- "%s: rtas token ibm,cbe-spu-perftools unknown\n",
- __func__);
- return -EIO;
- }
- return 0;
-}
-
-/* Unfortunately, the hardware will only support event profiling
- * on one SPU per node at a time. Therefore, we must time slice
- * the profiling across all SPUs in the node. Note, we do this
- * in parallel for each node. The following routine is called
- * periodically based on kernel timer to switch which SPU is
- * being monitored in a round robbin fashion.
- */
-static void spu_evnt_swap(struct timer_list *unused)
-{
- int node;
- int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
- unsigned long flags;
- int cpu;
- int ret;
- u32 interrupt_mask;
-
-
- /* enable interrupts on cntr 0 */
- interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
-
- hdw_thread = 0;
-
- /* Make sure spu event interrupt handler and spu event swap
- * don't access the counters simultaneously.
- */
- spin_lock_irqsave(&cntr_lock, flags);
-
- cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
-
- if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
- spu_evnt_phys_spu_indx = 0;
-
- pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
- pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
- pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
-
- /* switch the SPU being profiled on each node */
- for_each_online_cpu(cpu) {
- if (cbe_get_hw_thread_id(cpu))
- continue;
-
- node = cbe_cpu_to_node(cpu);
- cur_phys_spu = (node * NUM_SPUS_PER_NODE)
- + cur_spu_evnt_phys_spu_indx;
- nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
- + spu_evnt_phys_spu_indx;
-
- /*
- * stop counters, save counter values, restore counts
- * for previous physical SPU
- */
- cbe_disable_pm(cpu);
- cbe_disable_pm_interrupts(cpu);
-
- spu_pm_cnt[cur_phys_spu]
- = cbe_read_ctr(cpu, 0);
-
- /* restore previous count for the next spu to sample */
- /* NOTE, hardware issue, counter will not start if the
- * counter value is at max (0xFFFFFFFF).
- */
- if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
- cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
- else
- cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
-
- pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
-
- /* setup the debug bus measure the one event and
- * the two events to route the next SPU's PC on
- * the debug bus
- */
- ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
- if (ret)
- printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
- "SPU event swap\n", __func__);
-
- /* clear the trace buffer, don't want to take PC for
- * previous SPU*/
- cbe_write_pm(cpu, trace_address, 0);
-
- enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
-
- /* Enable interrupts on the CPU thread that is starting */
- cbe_enable_pm_interrupts(cpu, hdw_thread,
- interrupt_mask);
- cbe_enable_pm(cpu);
- }
-
- spin_unlock_irqrestore(&cntr_lock, flags);
-
- /* swap approximately every 0.1 seconds */
- mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
-}
-
-static void start_spu_event_swap(void)
-{
- timer_setup(&timer_spu_event_swap, spu_evnt_swap, 0);
- timer_spu_event_swap.expires = jiffies + HZ / 25;
- add_timer(&timer_spu_event_swap);
-}
-
-static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
- struct op_system_config *sys, int num_ctrs)
-{
- int i;
-
- /* routine is called once for all nodes */
-
- spu_evnt_phys_spu_indx = 0;
- /*
- * For all events except PPU CYCLEs, each node will need to make
- * the rtas cbe-perftools call to setup and reset the debug bus.
- * Make the token lookup call once and store it in the global
- * variable pm_rtas_token.
- */
- pm_rtas_token = rtas_token("ibm,cbe-perftools");
-
- if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
- printk(KERN_ERR
- "%s: rtas token ibm,cbe-perftools unknown\n",
- __func__);
- return -EIO;
- }
-
- /* setup the pm_control register settings,
- * settings will be written per node by the
- * cell_cpu_setup() function.
- */
- pm_regs.pm_cntrl.trace_buf_ovflw = 1;
-
- /* Use the occurrence trace mode to have SPU PC saved
- * to the trace buffer. Occurrence data in trace buffer
- * is not used. Bit 2 must be set to store SPU addresses.
- */
- pm_regs.pm_cntrl.trace_mode = 2;
-
- pm_regs.pm_cntrl.spu_addr_trace = 0x1; /* using debug bus
- event 2 & 3 */
-
- /* setup the debug bus event array with the SPU PC routing events.
- * Note, pm_signal[0] will be filled in by set_pm_event() call below.
- */
- pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
- pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
- pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
- pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
-
- pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
- pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
- pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
- pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
-
- /* Set the user selected spu event to profile on,
- * note, only one SPU profiling event is supported
- */
- num_counters = 1; /* Only support one SPU event at a time */
- set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
-
- reset_value[0] = 0xFFFFFFFF - ctr[0].count;
-
- /* global, used by cell_cpu_setup */
- ctr_enabled |= 1;
-
- /* Initialize the count for each SPU to the reset value */
- for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
- spu_pm_cnt[i] = reset_value[0];
-
- return 0;
-}
-
-static int cell_reg_setup_ppu(struct op_counter_config *ctr,
- struct op_system_config *sys, int num_ctrs)
-{
- /* routine is called once for all nodes */
- int i, j, cpu;
-
- num_counters = num_ctrs;
-
- if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
- printk(KERN_ERR
- "%s: Oprofile, number of specified events " \
- "exceeds number of physical counters\n",
- __func__);
- return -EIO;
- }
-
- set_count_mode(sys->enable_kernel, sys->enable_user);
-
- /* Setup the thread 0 events */
- for (i = 0; i < num_ctrs; ++i) {
-
- pmc_cntrl[0][i].evnts = ctr[i].event;
- pmc_cntrl[0][i].masks = ctr[i].unit_mask;
- pmc_cntrl[0][i].enabled = ctr[i].enabled;
- pmc_cntrl[0][i].vcntr = i;
-
- for_each_possible_cpu(j)
- per_cpu(pmc_values, j)[i] = 0;
- }
-
- /*
- * Setup the thread 1 events, map the thread 0 event to the
- * equivalent thread 1 event.
- */
- for (i = 0; i < num_ctrs; ++i) {
- if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
- pmc_cntrl[1][i].evnts = ctr[i].event + 19;
- else if (ctr[i].event == 2203)
- pmc_cntrl[1][i].evnts = ctr[i].event;
- else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
- pmc_cntrl[1][i].evnts = ctr[i].event + 16;
- else
- pmc_cntrl[1][i].evnts = ctr[i].event;
-
- pmc_cntrl[1][i].masks = ctr[i].unit_mask;
- pmc_cntrl[1][i].enabled = ctr[i].enabled;
- pmc_cntrl[1][i].vcntr = i;
- }
-
- for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
- input_bus[i] = 0xff;
-
- /*
- * Our counters count up, and "count" refers to
- * how much before the next interrupt, and we interrupt
- * on overflow. So we calculate the starting value
- * which will give us "count" until overflow.
- * Then we set the events on the enabled counters.
- */
- for (i = 0; i < num_counters; ++i) {
- /* start with virtual counter set 0 */
- if (pmc_cntrl[0][i].enabled) {
- /* Using 32bit counters, reset max - count */
- reset_value[i] = 0xFFFFFFFF - ctr[i].count;
- set_pm_event(i,
- pmc_cntrl[0][i].evnts,
- pmc_cntrl[0][i].masks);
-
- /* global, used by cell_cpu_setup */
- ctr_enabled |= (1 << i);
- }
- }
-
- /* initialize the previous counts for the virtual cntrs */
- for_each_online_cpu(cpu)
- for (i = 0; i < num_counters; ++i) {
- per_cpu(pmc_values, cpu)[i] = reset_value[i];
- }
-
- return 0;
-}
-
-
-/* This function is called once for all cpus combined */
-static int cell_reg_setup(struct op_counter_config *ctr,
- struct op_system_config *sys, int num_ctrs)
-{
- int ret=0;
- spu_cycle_reset = 0;
-
- /* initialize the spu_arr_trace value, will be reset if
- * doing spu event profiling.
- */
- pm_regs.group_control = 0;
- pm_regs.debug_bus_control = 0;
- pm_regs.pm_cntrl.stop_at_max = 1;
- pm_regs.pm_cntrl.trace_mode = 0;
- pm_regs.pm_cntrl.freeze = 1;
- pm_regs.pm_cntrl.trace_buf_ovflw = 0;
- pm_regs.pm_cntrl.spu_addr_trace = 0;
-
- /*
- * For all events except PPU CYCLEs, each node will need to make
- * the rtas cbe-perftools call to setup and reset the debug bus.
- * Make the token lookup call once and store it in the global
- * variable pm_rtas_token.
- */
- pm_rtas_token = rtas_token("ibm,cbe-perftools");
-
- if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
- printk(KERN_ERR
- "%s: rtas token ibm,cbe-perftools unknown\n",
- __func__);
- return -EIO;
- }
-
- if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
- profiling_mode = SPU_PROFILING_CYCLES;
- ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
- } else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
- (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
- profiling_mode = SPU_PROFILING_EVENTS;
- spu_cycle_reset = ctr[0].count;
-
- /* for SPU event profiling, need to setup the
- * pm_signal array with the events to route the
- * SPU PC before making the FW call. Note, only
- * one SPU event for profiling can be specified
- * at a time.
- */
- cell_reg_setup_spu_events(ctr, sys, num_ctrs);
- } else {
- profiling_mode = PPU_PROFILING;
- ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
- }
-
- return ret;
-}
-
-
-
-/* This function is called once for each cpu */
-static int cell_cpu_setup(struct op_counter_config *cntr)
-{
- u32 cpu = smp_processor_id();
- u32 num_enabled = 0;
- int i;
- int ret;
-
- /* Cycle based SPU profiling does not use the performance
- * counters. The trace array is configured to collect
- * the data.
- */
- if (profiling_mode == SPU_PROFILING_CYCLES)
- return 0;
-
- /* There is one performance monitor per processor chip (i.e. node),
- * so we only need to perform this function once per node.
- */
- if (cbe_get_hw_thread_id(cpu))
- return 0;
-
- /* Stop all counters */
- cbe_disable_pm(cpu);
- cbe_disable_pm_interrupts(cpu);
-
- cbe_write_pm(cpu, pm_start_stop, 0);
- cbe_write_pm(cpu, group_control, pm_regs.group_control);
- cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
- write_pm_cntrl(cpu);
-
- for (i = 0; i < num_counters; ++i) {
- if (ctr_enabled & (1 << i)) {
- pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
- num_enabled++;
- }
- }
-
- /*
- * The pm_rtas_activate_signals will return -EIO if the FW
- * call failed.
- */
- if (profiling_mode == SPU_PROFILING_EVENTS) {
- /* For SPU event profiling also need to setup the
- * pm interval timer
- */
- ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
- num_enabled+2);
- /* store PC from debug bus to Trace buffer as often
- * as possible (every 10 cycles)
- */
- cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
- return ret;
- } else
- return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
- num_enabled);
-}
-
-#define ENTRIES 303
-#define MAXLFSR 0xFFFFFF
-
-/* precomputed table of 24 bit LFSR values */
-static int initial_lfsr[] = {
- 8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
- 15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
- 4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
- 3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
- 9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
- 2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
- 3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
- 14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
- 11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
- 6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
- 15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
- 7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
- 16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
- 15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
- 15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
- 10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
- 3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
- 3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
- 8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
- 8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
- 4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
- 16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
- 2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
- 14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
- 1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
- 6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
- 10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
- 10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
- 14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
- 7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
- 9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
- 14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
- 13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
- 5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
- 3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
- 6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
- 7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
- 6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
-};
-
-/*
- * The hardware uses an LFSR counting sequence to determine when to capture
- * the SPU PCs. An LFSR sequence is like a puesdo random number sequence
- * where each number occurs once in the sequence but the sequence is not in
- * numerical order. The SPU PC capture is done when the LFSR sequence reaches
- * the last value in the sequence. Hence the user specified value N
- * corresponds to the LFSR number that is N from the end of the sequence.
- *
- * To avoid the time to compute the LFSR, a lookup table is used. The 24 bit
- * LFSR sequence is broken into four ranges. The spacing of the precomputed
- * values is adjusted in each range so the error between the user specified
- * number (N) of events between samples and the actual number of events based
- * on the precomputed value will be les then about 6.2%. Note, if the user
- * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
- * This is to prevent the loss of samples because the trace buffer is full.
- *
- * User specified N Step between Index in
- * precomputed values precomputed
- * table
- * 0 to 2^16-1 ---- 0
- * 2^16 to 2^16+2^19-1 2^12 1 to 128
- * 2^16+2^19 to 2^16+2^19+2^22-1 2^15 129 to 256
- * 2^16+2^19+2^22 to 2^24-1 2^18 257 to 302
- *
- *
- * For example, the LFSR values in the second range are computed for 2^16,
- * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
- * 1, 2,..., 127, 128.
- *
- * The 24 bit LFSR value for the nth number in the sequence can be
- * calculated using the following code:
- *
- * #define size 24
- * int calculate_lfsr(int n)
- * {
- * int i;
- * unsigned int newlfsr0;
- * unsigned int lfsr = 0xFFFFFF;
- * unsigned int howmany = n;
- *
- * for (i = 2; i < howmany + 2; i++) {
- * newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
- * ((lfsr >> (size - 1 - 1)) & 1) ^
- * (((lfsr >> (size - 1 - 6)) & 1) ^
- * ((lfsr >> (size - 1 - 23)) & 1)));
- *
- * lfsr >>= 1;
- * lfsr = lfsr | (newlfsr0 << (size - 1));
- * }
- * return lfsr;
- * }
- */
-
-#define V2_16 (0x1 << 16)
-#define V2_19 (0x1 << 19)
-#define V2_22 (0x1 << 22)
-
-static int calculate_lfsr(int n)
-{
- /*
- * The ranges and steps are in powers of 2 so the calculations
- * can be done using shifts rather then divide.
- */
- int index;
-
- if ((n >> 16) == 0)
- index = 0;
- else if (((n - V2_16) >> 19) == 0)
- index = ((n - V2_16) >> 12) + 1;
- else if (((n - V2_16 - V2_19) >> 22) == 0)
- index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
- else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
- index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
- else
- index = ENTRIES-1;
-
- /* make sure index is valid */
- if ((index >= ENTRIES) || (index < 0))
- index = ENTRIES-1;
-
- return initial_lfsr[index];
-}
-
-static int pm_rtas_activate_spu_profiling(u32 node)
-{
- int ret, i;
- struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
-
- /*
- * Set up the rtas call to configure the debug bus to
- * route the SPU PCs. Setup the pm_signal for each SPU
- */
- for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
- pm_signal_local[i].cpu = node;
- pm_signal_local[i].signal_group = 41;
- /* spu i on word (i/2) */
- pm_signal_local[i].bus_word = 1 << i / 2;
- /* spu i */
- pm_signal_local[i].sub_unit = i;
- pm_signal_local[i].bit = 63;
- }
-
- ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
- PASSTHRU_ENABLE, pm_signal_local,
- (ARRAY_SIZE(pm_signal_local)
- * sizeof(struct pm_signal)));
-
- if (unlikely(ret)) {
- printk(KERN_WARNING "%s: rtas returned: %d\n",
- __func__, ret);
- return -EIO;
- }
-
- return 0;
-}
-
-#ifdef CONFIG_CPU_FREQ
-static int
-oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
-{
- int ret = 0;
- struct cpufreq_freqs *frq = data;
- if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
- (val == CPUFREQ_POSTCHANGE && frq->old > frq->new))
- set_spu_profiling_frequency(frq->new, spu_cycle_reset);
- return ret;
-}
-
-static struct notifier_block cpu_freq_notifier_block = {
- .notifier_call = oprof_cpufreq_notify
-};
-#endif
-
-/*
- * Note the generic OProfile stop calls do not support returning
- * an error on stop. Hence, will not return an error if the FW
- * calls fail on stop. Failure to reset the debug bus is not an issue.
- * Failure to disable the SPU profiling is not an issue. The FW calls
- * to enable the performance counters and debug bus will work even if
- * the hardware was not cleanly reset.
- */
-static void cell_global_stop_spu_cycles(void)
-{
- int subfunc, rtn_value;
- unsigned int lfsr_value;
- int cpu;
-
- oprofile_running = 0;
- smp_wmb();
-
-#ifdef CONFIG_CPU_FREQ
- cpufreq_unregister_notifier(&cpu_freq_notifier_block,
- CPUFREQ_TRANSITION_NOTIFIER);
-#endif
-
- for_each_online_cpu(cpu) {
- if (cbe_get_hw_thread_id(cpu))
- continue;
-
- subfunc = 3; /*
- * 2 - activate SPU tracing,
- * 3 - deactivate
- */
- lfsr_value = 0x8f100000;
-
- rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
- subfunc, cbe_cpu_to_node(cpu),
- lfsr_value);
-
- if (unlikely(rtn_value != 0)) {
- printk(KERN_ERR
- "%s: rtas call ibm,cbe-spu-perftools " \
- "failed, return = %d\n",
- __func__, rtn_value);
- }
-
- /* Deactivate the signals */
- pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
- }
-
- stop_spu_profiling_cycles();
-}
-
-static void cell_global_stop_spu_events(void)
-{
- int cpu;
- oprofile_running = 0;
-
- stop_spu_profiling_events();
- smp_wmb();
-
- for_each_online_cpu(cpu) {
- if (cbe_get_hw_thread_id(cpu))
- continue;
-
- cbe_sync_irq(cbe_cpu_to_node(cpu));
- /* Stop the counters */
- cbe_disable_pm(cpu);
- cbe_write_pm07_control(cpu, 0, 0);
-
- /* Deactivate the signals */
- pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
-
- /* Deactivate interrupts */
- cbe_disable_pm_interrupts(cpu);
- }
- del_timer_sync(&timer_spu_event_swap);
-}
-
-static void cell_global_stop_ppu(void)
-{
- int cpu;
-
- /*
- * This routine will be called once for the system.
- * There is one performance monitor per node, so we
- * only need to perform this function once per node.
- */
- del_timer_sync(&timer_virt_cntr);
- oprofile_running = 0;
- smp_wmb();
-
- for_each_online_cpu(cpu) {
- if (cbe_get_hw_thread_id(cpu))
- continue;
-
- cbe_sync_irq(cbe_cpu_to_node(cpu));
- /* Stop the counters */
- cbe_disable_pm(cpu);
-
- /* Deactivate the signals */
- pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
-
- /* Deactivate interrupts */
- cbe_disable_pm_interrupts(cpu);
- }
-}
-
-static void cell_global_stop(void)
-{
- if (profiling_mode == PPU_PROFILING)
- cell_global_stop_ppu();
- else if (profiling_mode == SPU_PROFILING_EVENTS)
- cell_global_stop_spu_events();
- else
- cell_global_stop_spu_cycles();
-}
-
-static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
-{
- int subfunc;
- unsigned int lfsr_value;
- int cpu;
- int ret;
- int rtas_error;
- unsigned int cpu_khzfreq = 0;
-
- /* The SPU profiling uses time-based profiling based on
- * cpu frequency, so if configured with the CPU_FREQ
- * option, we should detect frequency changes and react
- * accordingly.
- */
-#ifdef CONFIG_CPU_FREQ
- ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
- CPUFREQ_TRANSITION_NOTIFIER);
- if (ret < 0)
- /* this is not a fatal error */
- printk(KERN_ERR "CPU freq change registration failed: %d\n",
- ret);
-
- else
- cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
-#endif
-
- set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
-
- for_each_online_cpu(cpu) {
- if (cbe_get_hw_thread_id(cpu))
- continue;
-
- /*
- * Setup SPU cycle-based profiling.
- * Set perf_mon_control bit 0 to a zero before
- * enabling spu collection hardware.
- */
- cbe_write_pm(cpu, pm_control, 0);
-
- if (spu_cycle_reset > MAX_SPU_COUNT)
- /* use largest possible value */
- lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
- else
- lfsr_value = calculate_lfsr(spu_cycle_reset);
-
- /* must use a non zero value. Zero disables data collection. */
- if (lfsr_value == 0)
- lfsr_value = calculate_lfsr(1);
-
- lfsr_value = lfsr_value << 8; /* shift lfsr to correct
- * register location
- */
-
- /* debug bus setup */
- ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
-
- if (unlikely(ret)) {
- rtas_error = ret;
- goto out;
- }
-
-
- subfunc = 2; /* 2 - activate SPU tracing, 3 - deactivate */
-
- /* start profiling */
- ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
- cbe_cpu_to_node(cpu), lfsr_value);
-
- if (unlikely(ret != 0)) {
- printk(KERN_ERR
- "%s: rtas call ibm,cbe-spu-perftools failed, " \
- "return = %d\n", __func__, ret);
- rtas_error = -EIO;
- goto out;
- }
- }
-
- rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
- if (rtas_error)
- goto out_stop;
-
- oprofile_running = 1;
- return 0;
-
-out_stop:
- cell_global_stop_spu_cycles(); /* clean up the PMU/debug bus */
-out:
- return rtas_error;
-}
-
-static int cell_global_start_spu_events(struct op_counter_config *ctr)
-{
- int cpu;
- u32 interrupt_mask = 0;
- int rtn = 0;
-
- hdw_thread = 0;
-
- /* spu event profiling, uses the performance counters to generate
- * an interrupt. The hardware is setup to store the SPU program
- * counter into the trace array. The occurrence mode is used to
- * enable storing data to the trace buffer. The bits are set
- * to send/store the SPU address in the trace buffer. The debug
- * bus must be setup to route the SPU program counter onto the
- * debug bus. The occurrence data in the trace buffer is not used.
- */
-
- /* This routine gets called once for the system.
- * There is one performance monitor per node, so we
- * only need to perform this function once per node.
- */
-
- for_each_online_cpu(cpu) {
- if (cbe_get_hw_thread_id(cpu))
- continue;
-
- /*
- * Setup SPU event-based profiling.
- * Set perf_mon_control bit 0 to a zero before
- * enabling spu collection hardware.
- *
- * Only support one SPU event on one SPU per node.
- */
- if (ctr_enabled & 1) {
- cbe_write_ctr(cpu, 0, reset_value[0]);
- enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
- interrupt_mask |=
- CBE_PM_CTR_OVERFLOW_INTR(0);
- } else {
- /* Disable counter */
- cbe_write_pm07_control(cpu, 0, 0);
- }
-
- cbe_get_and_clear_pm_interrupts(cpu);
- cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
- cbe_enable_pm(cpu);
-
- /* clear the trace buffer */
- cbe_write_pm(cpu, trace_address, 0);
- }
-
- /* Start the timer to time slice collecting the event profile
- * on each of the SPUs. Note, can collect profile on one SPU
- * per node at a time.
- */
- start_spu_event_swap();
- start_spu_profiling_events();
- oprofile_running = 1;
- smp_wmb();
-
- return rtn;
-}
-
-static int cell_global_start_ppu(struct op_counter_config *ctr)
-{
- u32 cpu, i;
- u32 interrupt_mask = 0;
-
- /* This routine gets called once for the system.
- * There is one performance monitor per node, so we
- * only need to perform this function once per node.
- */
- for_each_online_cpu(cpu) {
- if (cbe_get_hw_thread_id(cpu))
- continue;
-
- interrupt_mask = 0;
-
- for (i = 0; i < num_counters; ++i) {
- if (ctr_enabled & (1 << i)) {
- cbe_write_ctr(cpu, i, reset_value[i]);
- enable_ctr(cpu, i, pm_regs.pm07_cntrl);
- interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
- } else {
- /* Disable counter */
- cbe_write_pm07_control(cpu, i, 0);
- }
- }
-
- cbe_get_and_clear_pm_interrupts(cpu);
- cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
- cbe_enable_pm(cpu);
- }
-
- virt_cntr_inter_mask = interrupt_mask;
- oprofile_running = 1;
- smp_wmb();
-
- /*
- * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
- * executed which manipulates the PMU. We start the "virtual counter"
- * here so that we do not need to synchronize access to the PMU in
- * the above for-loop.
- */
- start_virt_cntrs();
-
- return 0;
-}
-
-static int cell_global_start(struct op_counter_config *ctr)
-{
- if (profiling_mode == SPU_PROFILING_CYCLES)
- return cell_global_start_spu_cycles(ctr);
- else if (profiling_mode == SPU_PROFILING_EVENTS)
- return cell_global_start_spu_events(ctr);
- else
- return cell_global_start_ppu(ctr);
-}
-
-
-/* The SPU interrupt handler
- *
- * SPU event profiling works as follows:
- * The pm_signal[0] holds the one SPU event to be measured. It is routed on
- * the debug bus using word 0 or 1. The value of pm_signal[1] and
- * pm_signal[2] contain the necessary events to route the SPU program
- * counter for the selected SPU onto the debug bus using words 2 and 3.
- * The pm_interval register is setup to write the SPU PC value into the
- * trace buffer at the maximum rate possible. The trace buffer is configured
- * to store the PCs, wrapping when it is full. The performance counter is
- * initialized to the max hardware count minus the number of events, N, between
- * samples. Once the N events have occurred, a HW counter overflow occurs
- * causing the generation of a HW counter interrupt which also stops the
- * writing of the SPU PC values to the trace buffer. Hence the last PC
- * written to the trace buffer is the SPU PC that we want. Unfortunately,
- * we have to read from the beginning of the trace buffer to get to the
- * last value written. We just hope the PPU has nothing better to do then
- * service this interrupt. The PC for the specific SPU being profiled is
- * extracted from the trace buffer processed and stored. The trace buffer
- * is cleared, interrupts are cleared, the counter is reset to max - N.
- * A kernel timer is used to periodically call the routine spu_evnt_swap()
- * to switch to the next physical SPU in the node to profile in round robbin
- * order. This way data is collected for all SPUs on the node. It does mean
- * that we need to use a relatively small value of N to ensure enough samples
- * on each SPU are collected each SPU is being profiled 1/8 of the time.
- * It may also be necessary to use a longer sample collection period.
- */
-static void cell_handle_interrupt_spu(struct pt_regs *regs,
- struct op_counter_config *ctr)
-{
- u32 cpu, cpu_tmp;
- u64 trace_entry;
- u32 interrupt_mask;
- u64 trace_buffer[2];
- u64 last_trace_buffer;
- u32 sample;
- u32 trace_addr;
- unsigned long sample_array_lock_flags;
- int spu_num;
- unsigned long flags;
-
- /* Make sure spu event interrupt handler and spu event swap
- * don't access the counters simultaneously.
- */
- cpu = smp_processor_id();
- spin_lock_irqsave(&cntr_lock, flags);
-
- cpu_tmp = cpu;
- cbe_disable_pm(cpu);
-
- interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
-
- sample = 0xABCDEF;
- trace_entry = 0xfedcba;
- last_trace_buffer = 0xdeadbeaf;
-
- if ((oprofile_running == 1) && (interrupt_mask != 0)) {
- /* disable writes to trace buff */
- cbe_write_pm(cpu, pm_interval, 0);
-
- /* only have one perf cntr being used, cntr 0 */
- if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
- && ctr[0].enabled)
- /* The SPU PC values will be read
- * from the trace buffer, reset counter
- */
-
- cbe_write_ctr(cpu, 0, reset_value[0]);
-
- trace_addr = cbe_read_pm(cpu, trace_address);
-
- while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
- /* There is data in the trace buffer to process
- * Read the buffer until you get to the last
- * entry. This is the value we want.
- */
-
- cbe_read_trace_buffer(cpu, trace_buffer);
- trace_addr = cbe_read_pm(cpu, trace_address);
- }
-
- /* SPU Address 16 bit count format for 128 bit
- * HW trace buffer is used for the SPU PC storage
- * HDR bits 0:15
- * SPU Addr 0 bits 16:31
- * SPU Addr 1 bits 32:47
- * unused bits 48:127
- *
- * HDR: bit4 = 1 SPU Address 0 valid
- * HDR: bit5 = 1 SPU Address 1 valid
- * - unfortunately, the valid bits don't seem to work
- *
- * Note trace_buffer[0] holds bits 0:63 of the HW
- * trace buffer, trace_buffer[1] holds bits 64:127
- */
-
- trace_entry = trace_buffer[0]
- & 0x00000000FFFF0000;
-
- /* only top 16 of the 18 bit SPU PC address
- * is stored in trace buffer, hence shift right
- * by 16 -2 bits */
- sample = trace_entry >> 14;
- last_trace_buffer = trace_buffer[0];
-
- spu_num = spu_evnt_phys_spu_indx
- + (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
-
- /* make sure only one process at a time is calling
- * spu_sync_buffer()
- */
- spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
- sample_array_lock_flags);
- spu_sync_buffer(spu_num, &sample, 1);
- spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
- sample_array_lock_flags);
-
- smp_wmb(); /* insure spu event buffer updates are written
- * don't want events intermingled... */
-
- /* The counters were frozen by the interrupt.
- * Reenable the interrupt and restart the counters.
- */
- cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
- cbe_enable_pm_interrupts(cpu, hdw_thread,
- virt_cntr_inter_mask);
-
- /* clear the trace buffer, re-enable writes to trace buff */
- cbe_write_pm(cpu, trace_address, 0);
- cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
-
- /* The writes to the various performance counters only writes
- * to a latch. The new values (interrupt setting bits, reset
- * counter value etc.) are not copied to the actual registers
- * until the performance monitor is enabled. In order to get
- * this to work as desired, the performance monitor needs to
- * be disabled while writing to the latches. This is a
- * HW design issue.
- */
- write_pm_cntrl(cpu);
- cbe_enable_pm(cpu);
- }
- spin_unlock_irqrestore(&cntr_lock, flags);
-}
-
-static void cell_handle_interrupt_ppu(struct pt_regs *regs,
- struct op_counter_config *ctr)
-{
- u32 cpu;
- u64 pc;
- int is_kernel;
- unsigned long flags = 0;
- u32 interrupt_mask;
- int i;
-
- cpu = smp_processor_id();
-
- /*
- * Need to make sure the interrupt handler and the virt counter
- * routine are not running at the same time. See the
- * cell_virtual_cntr() routine for additional comments.
- */
- spin_lock_irqsave(&cntr_lock, flags);
-
- /*
- * Need to disable and reenable the performance counters
- * to get the desired behavior from the hardware. This
- * is hardware specific.
- */
-
- cbe_disable_pm(cpu);
-
- interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
-
- /*
- * If the interrupt mask has been cleared, then the virt cntr
- * has cleared the interrupt. When the thread that generated
- * the interrupt is restored, the data count will be restored to
- * 0xffffff0 to cause the interrupt to be regenerated.
- */
-
- if ((oprofile_running == 1) && (interrupt_mask != 0)) {
- pc = regs->nip;
- is_kernel = is_kernel_addr(pc);
-
- for (i = 0; i < num_counters; ++i) {
- if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
- && ctr[i].enabled) {
- oprofile_add_ext_sample(pc, regs, i, is_kernel);
- cbe_write_ctr(cpu, i, reset_value[i]);
- }
- }
-
- /*
- * The counters were frozen by the interrupt.
- * Reenable the interrupt and restart the counters.
- * If there was a race between the interrupt handler and
- * the virtual counter routine. The virtual counter
- * routine may have cleared the interrupts. Hence must
- * use the virt_cntr_inter_mask to re-enable the interrupts.
- */
- cbe_enable_pm_interrupts(cpu, hdw_thread,
- virt_cntr_inter_mask);
-
- /*
- * The writes to the various performance counters only writes
- * to a latch. The new values (interrupt setting bits, reset
- * counter value etc.) are not copied to the actual registers
- * until the performance monitor is enabled. In order to get
- * this to work as desired, the performance monitor needs to
- * be disabled while writing to the latches. This is a
- * HW design issue.
- */
- cbe_enable_pm(cpu);
- }
- spin_unlock_irqrestore(&cntr_lock, flags);
-}
-
-static void cell_handle_interrupt(struct pt_regs *regs,
- struct op_counter_config *ctr)
-{
- if (profiling_mode == PPU_PROFILING)
- cell_handle_interrupt_ppu(regs, ctr);
- else
- cell_handle_interrupt_spu(regs, ctr);
-}
-
-/*
- * This function is called from the generic OProfile
- * driver. When profiling PPUs, we need to do the
- * generic sync start; otherwise, do spu_sync_start.
- */
-static int cell_sync_start(void)
-{
- if ((profiling_mode == SPU_PROFILING_CYCLES) ||
- (profiling_mode == SPU_PROFILING_EVENTS))
- return spu_sync_start();
- else
- return DO_GENERIC_SYNC;
-}
-
-static int cell_sync_stop(void)
-{
- if ((profiling_mode == SPU_PROFILING_CYCLES) ||
- (profiling_mode == SPU_PROFILING_EVENTS))
- return spu_sync_stop();
- else
- return 1;
-}
-
-struct op_powerpc_model op_model_cell = {
- .reg_setup = cell_reg_setup,
- .cpu_setup = cell_cpu_setup,
- .global_start = cell_global_start,
- .global_stop = cell_global_stop,
- .sync_start = cell_sync_start,
- .sync_stop = cell_sync_stop,
- .handle_interrupt = cell_handle_interrupt,
-};
diff --git a/arch/powerpc/oprofile/op_model_fsl_emb.c b/arch/powerpc/oprofile/op_model_fsl_emb.c
deleted file mode 100644
index 25dc6813ecee..000000000000
--- a/arch/powerpc/oprofile/op_model_fsl_emb.c
+++ /dev/null
@@ -1,380 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * Freescale Embedded oprofile support, based on ppc64 oprofile support
- * Copyright (C) 2004 Anton Blanchard <anton@au.ibm.com>, IBM
- *
- * Copyright (c) 2004, 2010 Freescale Semiconductor, Inc
- *
- * Author: Andy Fleming
- * Maintainer: Kumar Gala <galak@kernel.crashing.org>
- */
-
-#include <linux/oprofile.h>
-#include <linux/smp.h>
-#include <asm/ptrace.h>
-#include <asm/processor.h>
-#include <asm/cputable.h>
-#include <asm/reg_fsl_emb.h>
-#include <asm/page.h>
-#include <asm/pmc.h>
-#include <asm/oprofile_impl.h>
-
-static unsigned long reset_value[OP_MAX_COUNTER];
-
-static int num_counters;
-static int oprofile_running;
-
-static inline u32 get_pmlca(int ctr)
-{
- u32 pmlca;
-
- switch (ctr) {
- case 0:
- pmlca = mfpmr(PMRN_PMLCA0);
- break;
- case 1:
- pmlca = mfpmr(PMRN_PMLCA1);
- break;
- case 2:
- pmlca = mfpmr(PMRN_PMLCA2);
- break;
- case 3:
- pmlca = mfpmr(PMRN_PMLCA3);
- break;
- case 4:
- pmlca = mfpmr(PMRN_PMLCA4);
- break;
- case 5:
- pmlca = mfpmr(PMRN_PMLCA5);
- break;
- default:
- panic("Bad ctr number\n");
- }
-
- return pmlca;
-}
-
-static inline void set_pmlca(int ctr, u32 pmlca)
-{
- switch (ctr) {
- case 0:
- mtpmr(PMRN_PMLCA0, pmlca);
- break;
- case 1:
- mtpmr(PMRN_PMLCA1, pmlca);
- break;
- case 2:
- mtpmr(PMRN_PMLCA2, pmlca);
- break;
- case 3:
- mtpmr(PMRN_PMLCA3, pmlca);
- break;
- case 4:
- mtpmr(PMRN_PMLCA4, pmlca);
- break;
- case 5:
- mtpmr(PMRN_PMLCA5, pmlca);
- break;
- default:
- panic("Bad ctr number\n");
- }
-}
-
-static inline unsigned int ctr_read(unsigned int i)
-{
- switch(i) {
- case 0:
- return mfpmr(PMRN_PMC0);
- case 1:
- return mfpmr(PMRN_PMC1);
- case 2:
- return mfpmr(PMRN_PMC2);
- case 3:
- return mfpmr(PMRN_PMC3);
- case 4:
- return mfpmr(PMRN_PMC4);
- case 5:
- return mfpmr(PMRN_PMC5);
- default:
- return 0;
- }
-}
-
-static inline void ctr_write(unsigned int i, unsigned int val)
-{
- switch(i) {
- case 0:
- mtpmr(PMRN_PMC0, val);
- break;
- case 1:
- mtpmr(PMRN_PMC1, val);
- break;
- case 2:
- mtpmr(PMRN_PMC2, val);
- break;
- case 3:
- mtpmr(PMRN_PMC3, val);
- break;
- case 4:
- mtpmr(PMRN_PMC4, val);
- break;
- case 5:
- mtpmr(PMRN_PMC5, val);
- break;
- default:
- break;
- }
-}
-
-
-static void init_pmc_stop(int ctr)
-{
- u32 pmlca = (PMLCA_FC | PMLCA_FCS | PMLCA_FCU |
- PMLCA_FCM1 | PMLCA_FCM0);
- u32 pmlcb = 0;
-
- switch (ctr) {
- case 0:
- mtpmr(PMRN_PMLCA0, pmlca);
- mtpmr(PMRN_PMLCB0, pmlcb);
- break;
- case 1:
- mtpmr(PMRN_PMLCA1, pmlca);
- mtpmr(PMRN_PMLCB1, pmlcb);
- break;
- case 2:
- mtpmr(PMRN_PMLCA2, pmlca);
- mtpmr(PMRN_PMLCB2, pmlcb);
- break;
- case 3:
- mtpmr(PMRN_PMLCA3, pmlca);
- mtpmr(PMRN_PMLCB3, pmlcb);
- break;
- case 4:
- mtpmr(PMRN_PMLCA4, pmlca);
- mtpmr(PMRN_PMLCB4, pmlcb);
- break;
- case 5:
- mtpmr(PMRN_PMLCA5, pmlca);
- mtpmr(PMRN_PMLCB5, pmlcb);
- break;
- default:
- panic("Bad ctr number!\n");
- }
-}
-
-static void set_pmc_event(int ctr, int event)
-{
- u32 pmlca;
-
- pmlca = get_pmlca(ctr);
-
- pmlca = (pmlca & ~PMLCA_EVENT_MASK) |
- ((event << PMLCA_EVENT_SHIFT) &
- PMLCA_EVENT_MASK);
-
- set_pmlca(ctr, pmlca);
-}
-
-static void set_pmc_user_kernel(int ctr, int user, int kernel)
-{
- u32 pmlca;
-
- pmlca = get_pmlca(ctr);
-
- if(user)
- pmlca &= ~PMLCA_FCU;
- else
- pmlca |= PMLCA_FCU;
-
- if(kernel)
- pmlca &= ~PMLCA_FCS;
- else
- pmlca |= PMLCA_FCS;
-
- set_pmlca(ctr, pmlca);
-}
-
-static void set_pmc_marked(int ctr, int mark0, int mark1)
-{
- u32 pmlca = get_pmlca(ctr);
-
- if(mark0)
- pmlca &= ~PMLCA_FCM0;
- else
- pmlca |= PMLCA_FCM0;
-
- if(mark1)
- pmlca &= ~PMLCA_FCM1;
- else
- pmlca |= PMLCA_FCM1;
-
- set_pmlca(ctr, pmlca);
-}
-
-static void pmc_start_ctr(int ctr, int enable)
-{
- u32 pmlca = get_pmlca(ctr);
-
- pmlca &= ~PMLCA_FC;
-
- if (enable)
- pmlca |= PMLCA_CE;
- else
- pmlca &= ~PMLCA_CE;
-
- set_pmlca(ctr, pmlca);
-}
-
-static void pmc_start_ctrs(int enable)
-{
- u32 pmgc0 = mfpmr(PMRN_PMGC0);
-
- pmgc0 &= ~PMGC0_FAC;
- pmgc0 |= PMGC0_FCECE;
-
- if (enable)
- pmgc0 |= PMGC0_PMIE;
- else
- pmgc0 &= ~PMGC0_PMIE;
-
- mtpmr(PMRN_PMGC0, pmgc0);
-}
-
-static void pmc_stop_ctrs(void)
-{
- u32 pmgc0 = mfpmr(PMRN_PMGC0);
-
- pmgc0 |= PMGC0_FAC;
-
- pmgc0 &= ~(PMGC0_PMIE | PMGC0_FCECE);
-
- mtpmr(PMRN_PMGC0, pmgc0);
-}
-
-static int fsl_emb_cpu_setup(struct op_counter_config *ctr)
-{
- int i;
-
- /* freeze all counters */
- pmc_stop_ctrs();
-
- for (i = 0;i < num_counters;i++) {
- init_pmc_stop(i);
-
- set_pmc_event(i, ctr[i].event);
-
- set_pmc_user_kernel(i, ctr[i].user, ctr[i].kernel);
- }
-
- return 0;
-}
-
-static int fsl_emb_reg_setup(struct op_counter_config *ctr,
- struct op_system_config *sys,
- int num_ctrs)
-{
- int i;
-
- num_counters = num_ctrs;
-
- /* Our counters count up, and "count" refers to
- * how much before the next interrupt, and we interrupt
- * on overflow. So we calculate the starting value
- * which will give us "count" until overflow.
- * Then we set the events on the enabled counters */
- for (i = 0; i < num_counters; ++i)
- reset_value[i] = 0x80000000UL - ctr[i].count;
-
- return 0;
-}
-
-static int fsl_emb_start(struct op_counter_config *ctr)
-{
- int i;
-
- mtmsr(mfmsr() | MSR_PMM);
-
- for (i = 0; i < num_counters; ++i) {
- if (ctr[i].enabled) {
- ctr_write(i, reset_value[i]);
- /* Set each enabled counter to only
- * count when the Mark bit is *not* set */
- set_pmc_marked(i, 1, 0);
- pmc_start_ctr(i, 1);
- } else {
- ctr_write(i, 0);
-
- /* Set the ctr to be stopped */
- pmc_start_ctr(i, 0);
- }
- }
-
- /* Clear the freeze bit, and enable the interrupt.
- * The counters won't actually start until the rfi clears
- * the PMM bit */
- pmc_start_ctrs(1);
-
- oprofile_running = 1;
-
- pr_debug("start on cpu %d, pmgc0 %x\n", smp_processor_id(),
- mfpmr(PMRN_PMGC0));
-
- return 0;
-}
-
-static void fsl_emb_stop(void)
-{
- /* freeze counters */
- pmc_stop_ctrs();
-
- oprofile_running = 0;
-
- pr_debug("stop on cpu %d, pmgc0 %x\n", smp_processor_id(),
- mfpmr(PMRN_PMGC0));
-
- mb();
-}
-
-
-static void fsl_emb_handle_interrupt(struct pt_regs *regs,
- struct op_counter_config *ctr)
-{
- unsigned long pc;
- int is_kernel;
- int val;
- int i;
-
- pc = regs->nip;
- is_kernel = is_kernel_addr(pc);
-
- for (i = 0; i < num_counters; ++i) {
- val = ctr_read(i);
- if (val < 0) {
- if (oprofile_running && ctr[i].enabled) {
- oprofile_add_ext_sample(pc, regs, i, is_kernel);
- ctr_write(i, reset_value[i]);
- } else {
- ctr_write(i, 0);
- }
- }
- }
-
- /* The freeze bit was set by the interrupt. */
- /* Clear the freeze bit, and reenable the interrupt. The
- * counters won't actually start until the rfi clears the PMM
- * bit. The PMM bit should not be set until after the interrupt
- * is cleared to avoid it getting lost in some hypervisor
- * environments.
- */
- mtmsr(mfmsr() | MSR_PMM);
- pmc_start_ctrs(1);
-}
-
-struct op_powerpc_model op_model_fsl_emb = {
- .reg_setup = fsl_emb_reg_setup,
- .cpu_setup = fsl_emb_cpu_setup,
- .start = fsl_emb_start,
- .stop = fsl_emb_stop,
- .handle_interrupt = fsl_emb_handle_interrupt,
-};
diff --git a/arch/powerpc/oprofile/op_model_pa6t.c b/arch/powerpc/oprofile/op_model_pa6t.c
deleted file mode 100644
index d23061cf76bc..000000000000
--- a/arch/powerpc/oprofile/op_model_pa6t.c
+++ /dev/null
@@ -1,227 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-only
-/*
- * Copyright (C) 2006-2007 PA Semi, Inc
- *
- * Author: Shashi Rao, PA Semi
- *
- * Maintained by: Olof Johansson <olof@lixom.net>
- *
- * Based on arch/powerpc/oprofile/op_model_power4.c
- */
-
-#include <linux/oprofile.h>
-#include <linux/smp.h>
-#include <linux/percpu.h>
-#include <asm/processor.h>
-#include <asm/cputable.h>
-#include <asm/oprofile_impl.h>
-#include <asm/reg.h>
-
-static unsigned char oprofile_running;
-
-/* mmcr values are set in pa6t_reg_setup, used in pa6t_cpu_setup */
-static u64 mmcr0_val;
-static u64 mmcr1_val;
-
-/* inited in pa6t_reg_setup */
-static u64 reset_value[OP_MAX_COUNTER];
-
-static inline u64 ctr_read(unsigned int i)
-{
- switch (i) {
- case 0:
- return mfspr(SPRN_PA6T_PMC0);
- case 1:
- return mfspr(SPRN_PA6T_PMC1);
- case 2:
- return mfspr(SPRN_PA6T_PMC2);
- case 3:
- return mfspr(SPRN_PA6T_PMC3);
- case 4:
- return mfspr(SPRN_PA6T_PMC4);
- case 5:
- return mfspr(SPRN_PA6T_PMC5);
- default:
- printk(KERN_ERR "ctr_read called with bad arg %u\n", i);
- return 0;
- }
-}
-
-static inline void ctr_write(unsigned int i, u64 val)
-{
- switch (i) {
- case 0:
- mtspr(SPRN_PA6T_PMC0, val);
- break;
- case 1:
- mtspr(SPRN_PA6T_PMC1, val);
- break;
- case 2:
- mtspr(SPRN_PA6T_PMC2, val);
- break;
- case 3:
- mtspr(SPRN_PA6T_PMC3, val);
- break;
- case 4:
- mtspr(SPRN_PA6T_PMC4, val);
- break;
- case 5:
- mtspr(SPRN_PA6T_PMC5, val);
- break;
- default:
- printk(KERN_ERR "ctr_write called with bad arg %u\n", i);
- break;
- }
-}
-
-
-/* precompute the values to stuff in the hardware registers */
-static int pa6t_reg_setup(struct op_counter_config *ctr,
- struct op_system_config *sys,
- int num_ctrs)
-{
- int pmc;
-
- /*
- * adjust the mmcr0.en[0-5] and mmcr0.inten[0-5] values obtained from the
- * event_mappings file by turning off the counters that the user doesn't
- * care about
- *
- * setup user and kernel profiling
- */
- for (pmc = 0; pmc < cur_cpu_spec->num_pmcs; pmc++)
- if (!ctr[pmc].enabled) {
- sys->mmcr0 &= ~(0x1UL << pmc);
- sys->mmcr0 &= ~(0x1UL << (pmc+12));
- pr_debug("turned off counter %u\n", pmc);
- }
-
- if (sys->enable_kernel)
- sys->mmcr0 |= PA6T_MMCR0_SUPEN | PA6T_MMCR0_HYPEN;
- else
- sys->mmcr0 &= ~(PA6T_MMCR0_SUPEN | PA6T_MMCR0_HYPEN);
-
- if (sys->enable_user)
- sys->mmcr0 |= PA6T_MMCR0_PREN;
- else
- sys->mmcr0 &= ~PA6T_MMCR0_PREN;
-
- /*
- * The performance counter event settings are given in the mmcr0 and
- * mmcr1 values passed from the user in the op_system_config
- * structure (sys variable).
- */
- mmcr0_val = sys->mmcr0;
- mmcr1_val = sys->mmcr1;
- pr_debug("mmcr0_val inited to %016lx\n", sys->mmcr0);
- pr_debug("mmcr1_val inited to %016lx\n", sys->mmcr1);
-
- for (pmc = 0; pmc < cur_cpu_spec->num_pmcs; pmc++) {
- /* counters are 40 bit. Move to cputable at some point? */
- reset_value[pmc] = (0x1UL << 39) - ctr[pmc].count;
- pr_debug("reset_value for pmc%u inited to 0x%llx\n",
- pmc, reset_value[pmc]);
- }
-
- return 0;
-}
-
-/* configure registers on this cpu */
-static int pa6t_cpu_setup(struct op_counter_config *ctr)
-{
- u64 mmcr0 = mmcr0_val;
- u64 mmcr1 = mmcr1_val;
-
- /* Default is all PMCs off */
- mmcr0 &= ~(0x3FUL);
- mtspr(SPRN_PA6T_MMCR0, mmcr0);
-
- /* program selected programmable events in */
- mtspr(SPRN_PA6T_MMCR1, mmcr1);
-
- pr_debug("setup on cpu %d, mmcr0 %016lx\n", smp_processor_id(),
- mfspr(SPRN_PA6T_MMCR0));
- pr_debug("setup on cpu %d, mmcr1 %016lx\n", smp_processor_id(),
- mfspr(SPRN_PA6T_MMCR1));
-
- return 0;
-}
-
-static int pa6t_start(struct op_counter_config *ctr)
-{
- int i;
-
- /* Hold off event counting until rfid */
- u64 mmcr0 = mmcr0_val | PA6T_MMCR0_HANDDIS;
-
- for (i = 0; i < cur_cpu_spec->num_pmcs; i++)
- if (ctr[i].enabled)
- ctr_write(i, reset_value[i]);
- else
- ctr_write(i, 0UL);
-
- mtspr(SPRN_PA6T_MMCR0, mmcr0);
-
- oprofile_running = 1;
-
- pr_debug("start on cpu %d, mmcr0 %llx\n", smp_processor_id(), mmcr0);
-
- return 0;
-}
-
-static void pa6t_stop(void)
-{
- u64 mmcr0;
-
- /* freeze counters */
- mmcr0 = mfspr(SPRN_PA6T_MMCR0);
- mmcr0 |= PA6T_MMCR0_FCM0;
- mtspr(SPRN_PA6T_MMCR0, mmcr0);
-
- oprofile_running = 0;
-
- pr_debug("stop on cpu %d, mmcr0 %llx\n", smp_processor_id(), mmcr0);
-}
-
-/* handle the perfmon overflow vector */
-static void pa6t_handle_interrupt(struct pt_regs *regs,
- struct op_counter_config *ctr)
-{
- unsigned long pc = mfspr(SPRN_PA6T_SIAR);
- int is_kernel = is_kernel_addr(pc);
- u64 val;
- int i;
- u64 mmcr0;
-
- /* disable perfmon counting until rfid */
- mmcr0 = mfspr(SPRN_PA6T_MMCR0);
- mtspr(SPRN_PA6T_MMCR0, mmcr0 | PA6T_MMCR0_HANDDIS);
-
- /* Record samples. We've got one global bit for whether a sample
- * was taken, so add it for any counter that triggered overflow.
- */
- for (i = 0; i < cur_cpu_spec->num_pmcs; i++) {
- val = ctr_read(i);
- if (val & (0x1UL << 39)) { /* Overflow bit set */
- if (oprofile_running && ctr[i].enabled) {
- if (mmcr0 & PA6T_MMCR0_SIARLOG)
- oprofile_add_ext_sample(pc, regs, i, is_kernel);
- ctr_write(i, reset_value[i]);
- } else {
- ctr_write(i, 0UL);
- }
- }
- }
-
- /* Restore mmcr0 to a good known value since the PMI changes it */
- mmcr0 = mmcr0_val | PA6T_MMCR0_HANDDIS;
- mtspr(SPRN_PA6T_MMCR0, mmcr0);
-}
-
-struct op_powerpc_model op_model_pa6t = {
- .reg_setup = pa6t_reg_setup,
- .cpu_setup = pa6t_cpu_setup,
- .start = pa6t_start,
- .stop = pa6t_stop,
- .handle_interrupt = pa6t_handle_interrupt,
-};
diff --git a/arch/powerpc/oprofile/op_model_power4.c b/arch/powerpc/oprofile/op_model_power4.c
deleted file mode 100644
index 2ae6b86ff97b..000000000000
--- a/arch/powerpc/oprofile/op_model_power4.c
+++ /dev/null
@@ -1,438 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * Copyright (C) 2004 Anton Blanchard <anton@au.ibm.com>, IBM
- * Added mmcra[slot] support:
- * Copyright (C) 2006-2007 Will Schmidt <willschm@us.ibm.com>, IBM
- */
-
-#include <linux/oprofile.h>
-#include <linux/smp.h>
-#include <asm/firmware.h>
-#include <asm/ptrace.h>
-#include <asm/processor.h>
-#include <asm/cputable.h>
-#include <asm/rtas.h>
-#include <asm/oprofile_impl.h>
-#include <asm/reg.h>
-
-#define dbg(args...)
-#define OPROFILE_PM_PMCSEL_MSK 0xffULL
-#define OPROFILE_PM_UNIT_SHIFT 60
-#define OPROFILE_PM_UNIT_MSK 0xfULL
-#define OPROFILE_MAX_PMC_NUM 3
-#define OPROFILE_PMSEL_FIELD_WIDTH 8
-#define OPROFILE_UNIT_FIELD_WIDTH 4
-#define MMCRA_SIAR_VALID_MASK 0x10000000ULL
-
-static unsigned long reset_value[OP_MAX_COUNTER];
-
-static int oprofile_running;
-static int use_slot_nums;
-
-/* mmcr values are set in power4_reg_setup, used in power4_cpu_setup */
-static u32 mmcr0_val;
-static u64 mmcr1_val;
-static u64 mmcra_val;
-static u32 cntr_marked_events;
-
-static int power7_marked_instr_event(u64 mmcr1)
-{
- u64 psel, unit;
- int pmc, cntr_marked_events = 0;
-
- /* Given the MMCR1 value, look at the field for each counter to
- * determine if it is a marked event. Code based on the function
- * power7_marked_instr_event() in file arch/powerpc/perf/power7-pmu.c.
- */
- for (pmc = 0; pmc < 4; pmc++) {
- psel = mmcr1 & (OPROFILE_PM_PMCSEL_MSK
- << (OPROFILE_MAX_PMC_NUM - pmc)
- * OPROFILE_PMSEL_FIELD_WIDTH);
- psel = (psel >> ((OPROFILE_MAX_PMC_NUM - pmc)
- * OPROFILE_PMSEL_FIELD_WIDTH)) & ~1ULL;
- unit = mmcr1 & (OPROFILE_PM_UNIT_MSK
- << (OPROFILE_PM_UNIT_SHIFT
- - (pmc * OPROFILE_PMSEL_FIELD_WIDTH )));
- unit = unit >> (OPROFILE_PM_UNIT_SHIFT
- - (pmc * OPROFILE_PMSEL_FIELD_WIDTH));
-
- switch (psel >> 4) {
- case 2:
- cntr_marked_events |= (pmc == 1 || pmc == 3) << pmc;
- break;
- case 3:
- if (psel == 0x3c) {
- cntr_marked_events |= (pmc == 0) << pmc;
- break;
- }
-
- if (psel == 0x3e) {
- cntr_marked_events |= (pmc != 1) << pmc;
- break;
- }
-
- cntr_marked_events |= 1 << pmc;
- break;
- case 4:
- case 5:
- cntr_marked_events |= (unit == 0xd) << pmc;
- break;
- case 6:
- if (psel == 0x64)
- cntr_marked_events |= (pmc >= 2) << pmc;
- break;
- case 8:
- cntr_marked_events |= (unit == 0xd) << pmc;
- break;
- }
- }
- return cntr_marked_events;
-}
-
-static int power4_reg_setup(struct op_counter_config *ctr,
- struct op_system_config *sys,
- int num_ctrs)
-{
- int i;
-
- /*
- * The performance counter event settings are given in the mmcr0,
- * mmcr1 and mmcra values passed from the user in the
- * op_system_config structure (sys variable).
- */
- mmcr0_val = sys->mmcr0;
- mmcr1_val = sys->mmcr1;
- mmcra_val = sys->mmcra;
-
- /* Power 7+ and newer architectures:
- * Determine which counter events in the group (the group of events is
- * specified by the bit settings in the MMCR1 register) are marked
- * events for use in the interrupt handler. Do the calculation once
- * before OProfile starts. Information is used in the interrupt
- * handler. Starting with Power 7+ we only record the sample for
- * marked events if the SIAR valid bit is set. For non marked events
- * the sample is always recorded.
- */
- if (pvr_version_is(PVR_POWER7p))
- cntr_marked_events = power7_marked_instr_event(mmcr1_val);
- else
- cntr_marked_events = 0; /* For older processors, set the bit map
- * to zero so the sample will always be
- * be recorded.
- */
-
- for (i = 0; i < cur_cpu_spec->num_pmcs; ++i)
- reset_value[i] = 0x80000000UL - ctr[i].count;
-
- /* setup user and kernel profiling */
- if (sys->enable_kernel)
- mmcr0_val &= ~MMCR0_KERNEL_DISABLE;
- else
- mmcr0_val |= MMCR0_KERNEL_DISABLE;
-
- if (sys->enable_user)
- mmcr0_val &= ~MMCR0_PROBLEM_DISABLE;
- else
- mmcr0_val |= MMCR0_PROBLEM_DISABLE;
-
- if (pvr_version_is(PVR_POWER4) || pvr_version_is(PVR_POWER4p) ||
- pvr_version_is(PVR_970) || pvr_version_is(PVR_970FX) ||
- pvr_version_is(PVR_970MP) || pvr_version_is(PVR_970GX) ||
- pvr_version_is(PVR_POWER5) || pvr_version_is(PVR_POWER5p))
- use_slot_nums = 1;
-
- return 0;
-}
-
-extern void ppc_enable_pmcs(void);
-
-/*
- * Older CPUs require the MMCRA sample bit to be always set, but newer
- * CPUs only want it set for some groups. Eventually we will remove all
- * knowledge of this bit in the kernel, oprofile userspace should be
- * setting it when required.
- *
- * In order to keep current installations working we force the bit for
- * those older CPUs. Once everyone has updated their oprofile userspace we
- * can remove this hack.
- */
-static inline int mmcra_must_set_sample(void)
-{
- if (pvr_version_is(PVR_POWER4) || pvr_version_is(PVR_POWER4p) ||
- pvr_version_is(PVR_970) || pvr_version_is(PVR_970FX) ||
- pvr_version_is(PVR_970MP) || pvr_version_is(PVR_970GX))
- return 1;
-
- return 0;
-}
-
-static int power4_cpu_setup(struct op_counter_config *ctr)
-{
- unsigned int mmcr0 = mmcr0_val;
- unsigned long mmcra = mmcra_val;
-
- ppc_enable_pmcs();
-
- /* set the freeze bit */
- mmcr0 |= MMCR0_FC;
- mtspr(SPRN_MMCR0, mmcr0);
-
- mmcr0 |= MMCR0_FCM1|MMCR0_PMXE|MMCR0_FCECE;
- mmcr0 |= MMCR0_PMC1CE|MMCR0_PMCjCE;
- mtspr(SPRN_MMCR0, mmcr0);
-
- mtspr(SPRN_MMCR1, mmcr1_val);
-
- if (mmcra_must_set_sample())
- mmcra |= MMCRA_SAMPLE_ENABLE;
- mtspr(SPRN_MMCRA, mmcra);
-
- dbg("setup on cpu %d, mmcr0 %lx\n", smp_processor_id(),
- mfspr(SPRN_MMCR0));
- dbg("setup on cpu %d, mmcr1 %lx\n", smp_processor_id(),
- mfspr(SPRN_MMCR1));
- dbg("setup on cpu %d, mmcra %lx\n", smp_processor_id(),
- mfspr(SPRN_MMCRA));
-
- return 0;
-}
-
-static int power4_start(struct op_counter_config *ctr)
-{
- int i;
- unsigned int mmcr0;
-
- /* set the PMM bit (see comment below) */
- mtmsr(mfmsr() | MSR_PMM);
-
- for (i = 0; i < cur_cpu_spec->num_pmcs; ++i) {
- if (ctr[i].enabled) {
- classic_ctr_write(i, reset_value[i]);
- } else {
- classic_ctr_write(i, 0);
- }
- }
-
- mmcr0 = mfspr(SPRN_MMCR0);
-
- /*
- * We must clear the PMAO bit on some (GQ) chips. Just do it
- * all the time
- */
- mmcr0 &= ~MMCR0_PMAO;
-
- /*
- * now clear the freeze bit, counting will not start until we
- * rfid from this excetion, because only at that point will
- * the PMM bit be cleared
- */
- mmcr0 &= ~MMCR0_FC;
- mtspr(SPRN_MMCR0, mmcr0);
-
- oprofile_running = 1;
-
- dbg("start on cpu %d, mmcr0 %x\n", smp_processor_id(), mmcr0);
- return 0;
-}
-
-static void power4_stop(void)
-{
- unsigned int mmcr0;
-
- /* freeze counters */
- mmcr0 = mfspr(SPRN_MMCR0);
- mmcr0 |= MMCR0_FC;
- mtspr(SPRN_MMCR0, mmcr0);
-
- oprofile_running = 0;
-
- dbg("stop on cpu %d, mmcr0 %x\n", smp_processor_id(), mmcr0);
-
- mb();
-}
-
-/* Fake functions used by canonicalize_pc */
-static void __used hypervisor_bucket(void)
-{
-}
-
-static void __used rtas_bucket(void)
-{
-}
-
-static void __used kernel_unknown_bucket(void)
-{
-}
-
-/*
- * On GQ and newer the MMCRA stores the HV and PR bits at the time
- * the SIAR was sampled. We use that to work out if the SIAR was sampled in
- * the hypervisor, our exception vectors or RTAS.
- * If the MMCRA_SAMPLE_ENABLE bit is set, we can use the MMCRA[slot] bits
- * to more accurately identify the address of the sampled instruction. The
- * mmcra[slot] bits represent the slot number of a sampled instruction
- * within an instruction group. The slot will contain a value between 1
- * and 5 if MMCRA_SAMPLE_ENABLE is set, otherwise 0.
- */
-static unsigned long get_pc(struct pt_regs *regs)
-{
- unsigned long pc = mfspr(SPRN_SIAR);
- unsigned long mmcra;
- unsigned long slot;
-
- /* Can't do much about it */
- if (!cur_cpu_spec->oprofile_mmcra_sihv)
- return pc;
-
- mmcra = mfspr(SPRN_MMCRA);
-
- if (use_slot_nums && (mmcra & MMCRA_SAMPLE_ENABLE)) {
- slot = ((mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT);
- if (slot > 1)
- pc += 4 * (slot - 1);
- }
-
- /* Were we in the hypervisor? */
- if (firmware_has_feature(FW_FEATURE_LPAR) &&
- (mmcra & cur_cpu_spec->oprofile_mmcra_sihv))
- /* function descriptor madness */
- return *((unsigned long *)hypervisor_bucket);
-
- /* We were in userspace, nothing to do */
- if (mmcra & cur_cpu_spec->oprofile_mmcra_sipr)
- return pc;
-
-#ifdef CONFIG_PPC_RTAS
- /* Were we in RTAS? */
- if (pc >= rtas.base && pc < (rtas.base + rtas.size))
- /* function descriptor madness */
- return *((unsigned long *)rtas_bucket);
-#endif
-
- /* Were we in our exception vectors or SLB real mode miss handler? */
- if (pc < 0x1000000UL)
- return (unsigned long)__va(pc);
-
- /* Not sure where we were */
- if (!is_kernel_addr(pc))
- /* function descriptor madness */
- return *((unsigned long *)kernel_unknown_bucket);
-
- return pc;
-}
-
-static int get_kernel(unsigned long pc, unsigned long mmcra)
-{
- int is_kernel;
-
- if (!cur_cpu_spec->oprofile_mmcra_sihv) {
- is_kernel = is_kernel_addr(pc);
- } else {
- is_kernel = ((mmcra & cur_cpu_spec->oprofile_mmcra_sipr) == 0);
- }
-
- return is_kernel;
-}
-
-static bool pmc_overflow(unsigned long val)
-{
- if ((int)val < 0)
- return true;
-
- /*
- * Events on POWER7 can roll back if a speculative event doesn't
- * eventually complete. Unfortunately in some rare cases they will
- * raise a performance monitor exception. We need to catch this to
- * ensure we reset the PMC. In all cases the PMC will be 256 or less
- * cycles from overflow.
- *
- * We only do this if the first pass fails to find any overflowing
- * PMCs because a user might set a period of less than 256 and we
- * don't want to mistakenly reset them.
- */
- if (pvr_version_is(PVR_POWER7) && ((0x80000000 - val) <= 256))
- return true;
-
- return false;
-}
-
-static void power4_handle_interrupt(struct pt_regs *regs,
- struct op_counter_config *ctr)
-{
- unsigned long pc;
- int is_kernel;
- int val;
- int i;
- unsigned int mmcr0;
- unsigned long mmcra;
- bool siar_valid = false;
-
- mmcra = mfspr(SPRN_MMCRA);
-
- pc = get_pc(regs);
- is_kernel = get_kernel(pc, mmcra);
-
- /* set the PMM bit (see comment below) */
- mtmsr(mfmsr() | MSR_PMM);
-
- /* Check that the SIAR valid bit in MMCRA is set to 1. */
- if ((mmcra & MMCRA_SIAR_VALID_MASK) == MMCRA_SIAR_VALID_MASK)
- siar_valid = true;
-
- for (i = 0; i < cur_cpu_spec->num_pmcs; ++i) {
- val = classic_ctr_read(i);
- if (pmc_overflow(val)) {
- if (oprofile_running && ctr[i].enabled) {
- /* Power 7+ and newer architectures:
- * If the event is a marked event, then only
- * save the sample if the SIAR valid bit is
- * set. If the event is not marked, then
- * always save the sample.
- * Note, the Sample enable bit in the MMCRA
- * register must be set to 1 if the group
- * contains a marked event.
- */
- if ((siar_valid &&
- (cntr_marked_events & (1 << i)))
- || !(cntr_marked_events & (1 << i)))
- oprofile_add_ext_sample(pc, regs, i,
- is_kernel);
-
- classic_ctr_write(i, reset_value[i]);
- } else {
- classic_ctr_write(i, 0);
- }
- }
- }
-
- mmcr0 = mfspr(SPRN_MMCR0);
-
- /* reset the perfmon trigger */
- mmcr0 |= MMCR0_PMXE;
-
- /*
- * We must clear the PMAO bit on some (GQ) chips. Just do it
- * all the time
- */
- mmcr0 &= ~MMCR0_PMAO;
-
- /* Clear the appropriate bits in the MMCRA */
- mmcra &= ~cur_cpu_spec->oprofile_mmcra_clear;
- mtspr(SPRN_MMCRA, mmcra);
-
- /*
- * now clear the freeze bit, counting will not start until we
- * rfid from this exception, because only at that point will
- * the PMM bit be cleared
- */
- mmcr0 &= ~MMCR0_FC;
- mtspr(SPRN_MMCR0, mmcr0);
-}
-
-struct op_powerpc_model op_model_power4 = {
- .reg_setup = power4_reg_setup,
- .cpu_setup = power4_cpu_setup,
- .start = power4_start,
- .stop = power4_stop,
- .handle_interrupt = power4_handle_interrupt,
-};