diff options
Diffstat (limited to 'arch/x86/kvm/x86.c')
-rw-r--r-- | arch/x86/kvm/x86.c | 248 |
1 files changed, 192 insertions, 56 deletions
diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c index 41cce5031126..2c924075f6f1 100644 --- a/arch/x86/kvm/x86.c +++ b/arch/x86/kvm/x86.c @@ -145,21 +145,21 @@ EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); static bool __read_mostly ignore_msrs = 0; -module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); +module_param(ignore_msrs, bool, 0644); bool __read_mostly report_ignored_msrs = true; -module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); +module_param(report_ignored_msrs, bool, 0644); EXPORT_SYMBOL_GPL(report_ignored_msrs); unsigned int min_timer_period_us = 200; -module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); +module_param(min_timer_period_us, uint, 0644); static bool __read_mostly kvmclock_periodic_sync = true; -module_param(kvmclock_periodic_sync, bool, S_IRUGO); +module_param(kvmclock_periodic_sync, bool, 0444); /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ static u32 __read_mostly tsc_tolerance_ppm = 250; -module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); +module_param(tsc_tolerance_ppm, uint, 0644); /* * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables @@ -168,13 +168,13 @@ module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); * tuning, i.e. allows privileged userspace to set an exact advancement time. */ static int __read_mostly lapic_timer_advance_ns = -1; -module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); +module_param(lapic_timer_advance_ns, int, 0644); static bool __read_mostly vector_hashing = true; -module_param(vector_hashing, bool, S_IRUGO); +module_param(vector_hashing, bool, 0444); bool __read_mostly enable_vmware_backdoor = false; -module_param(enable_vmware_backdoor, bool, S_IRUGO); +module_param(enable_vmware_backdoor, bool, 0444); EXPORT_SYMBOL_GPL(enable_vmware_backdoor); /* @@ -186,7 +186,7 @@ static int __read_mostly force_emulation_prefix; module_param(force_emulation_prefix, int, 0644); int __read_mostly pi_inject_timer = -1; -module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); +module_param(pi_inject_timer, bint, 0644); /* Enable/disable PMU virtualization */ bool __read_mostly enable_pmu = true; @@ -962,7 +962,7 @@ void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned lon kvm_mmu_reset_context(vcpu); if (((cr0 ^ old_cr0) & X86_CR0_CD) && - kvm_arch_has_noncoherent_dma(vcpu->kvm) && + kvm_mmu_honors_guest_mtrrs(vcpu->kvm) && !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); } @@ -2331,14 +2331,9 @@ static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_o if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) return; - /* - * The guest calculates current wall clock time by adding - * system time (updated by kvm_guest_time_update below) to the - * wall clock specified here. We do the reverse here. - */ - wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); + wall_nsec = kvm_get_wall_clock_epoch(kvm); - wc.nsec = do_div(wall_nsec, 1000000000); + wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ wc.version = version; @@ -2714,8 +2709,9 @@ static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, kvm_track_tsc_matching(vcpu); } -static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) +static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) { + u64 data = user_value ? *user_value : 0; struct kvm *kvm = vcpu->kvm; u64 offset, ns, elapsed; unsigned long flags; @@ -2730,25 +2726,37 @@ static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) if (vcpu->arch.virtual_tsc_khz) { if (data == 0) { /* - * detection of vcpu initialization -- need to sync - * with other vCPUs. This particularly helps to keep - * kvm_clock stable after CPU hotplug + * Force synchronization when creating a vCPU, or when + * userspace explicitly writes a zero value. */ synchronizing = true; - } else { + } else if (kvm->arch.user_set_tsc) { u64 tsc_exp = kvm->arch.last_tsc_write + nsec_to_cycles(vcpu, elapsed); u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; /* - * Special case: TSC write with a small delta (1 second) - * of virtual cycle time against real time is - * interpreted as an attempt to synchronize the CPU. + * Here lies UAPI baggage: when a user-initiated TSC write has + * a small delta (1 second) of virtual cycle time against the + * previously set vCPU, we assume that they were intended to be + * in sync and the delta was only due to the racy nature of the + * legacy API. + * + * This trick falls down when restoring a guest which genuinely + * has been running for less time than the 1 second of imprecision + * which we allow for in the legacy API. In this case, the first + * value written by userspace (on any vCPU) should not be subject + * to this 'correction' to make it sync up with values that only + * come from the kernel's default vCPU creation. Make the 1-second + * slop hack only trigger if the user_set_tsc flag is already set. */ synchronizing = data < tsc_exp + tsc_hz && data + tsc_hz > tsc_exp; } } + if (user_value) + kvm->arch.user_set_tsc = true; + /* * For a reliable TSC, we can match TSC offsets, and for an unstable * TSC, we add elapsed time in this computation. We could let the @@ -3232,16 +3240,94 @@ static int kvm_guest_time_update(struct kvm_vcpu *v) if (vcpu->pv_time.active) kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); +#ifdef CONFIG_KVM_XEN if (vcpu->xen.vcpu_info_cache.active) kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, offsetof(struct compat_vcpu_info, time)); if (vcpu->xen.vcpu_time_info_cache.active) kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); +#endif kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); return 0; } /* + * The pvclock_wall_clock ABI tells the guest the wall clock time at + * which it started (i.e. its epoch, when its kvmclock was zero). + * + * In fact those clocks are subtly different; wall clock frequency is + * adjusted by NTP and has leap seconds, while the kvmclock is a + * simple function of the TSC without any such adjustment. + * + * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between + * that and kvmclock, but even that would be subject to change over + * time. + * + * Attempt to calculate the epoch at a given moment using the *same* + * TSC reading via kvm_get_walltime_and_clockread() to obtain both + * wallclock and kvmclock times, and subtracting one from the other. + * + * Fall back to using their values at slightly different moments by + * calling ktime_get_real_ns() and get_kvmclock_ns() separately. + */ +uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) +{ +#ifdef CONFIG_X86_64 + struct pvclock_vcpu_time_info hv_clock; + struct kvm_arch *ka = &kvm->arch; + unsigned long seq, local_tsc_khz; + struct timespec64 ts; + uint64_t host_tsc; + + do { + seq = read_seqcount_begin(&ka->pvclock_sc); + + local_tsc_khz = 0; + if (!ka->use_master_clock) + break; + + /* + * The TSC read and the call to get_cpu_tsc_khz() must happen + * on the same CPU. + */ + get_cpu(); + + local_tsc_khz = get_cpu_tsc_khz(); + + if (local_tsc_khz && + !kvm_get_walltime_and_clockread(&ts, &host_tsc)) + local_tsc_khz = 0; /* Fall back to old method */ + + put_cpu(); + + /* + * These values must be snapshotted within the seqcount loop. + * After that, it's just mathematics which can happen on any + * CPU at any time. + */ + hv_clock.tsc_timestamp = ka->master_cycle_now; + hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; + + } while (read_seqcount_retry(&ka->pvclock_sc, seq)); + + /* + * If the conditions were right, and obtaining the wallclock+TSC was + * successful, calculate the KVM clock at the corresponding time and + * subtract one from the other to get the guest's epoch in nanoseconds + * since 1970-01-01. + */ + if (local_tsc_khz) { + kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, + &hv_clock.tsc_shift, + &hv_clock.tsc_to_system_mul); + return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - + __pvclock_read_cycles(&hv_clock, host_tsc); + } +#endif + return ktime_get_real_ns() - get_kvmclock_ns(kvm); +} + +/* * kvmclock updates which are isolated to a given vcpu, such as * vcpu->cpu migration, should not allow system_timestamp from * the rest of the vcpus to remain static. Otherwise ntp frequency @@ -3290,9 +3376,6 @@ static void kvmclock_sync_fn(struct work_struct *work) kvmclock_sync_work); struct kvm *kvm = container_of(ka, struct kvm, arch); - if (!kvmclock_periodic_sync) - return; - schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); schedule_delayed_work(&kvm->arch.kvmclock_sync_work, KVMCLOCK_SYNC_PERIOD); @@ -3641,6 +3724,7 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) case MSR_AMD64_PATCH_LOADER: case MSR_AMD64_BU_CFG2: case MSR_AMD64_DC_CFG: + case MSR_AMD64_TW_CFG: case MSR_F15H_EX_CFG: break; @@ -3670,17 +3754,36 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) vcpu->arch.perf_capabilities = data; kvm_pmu_refresh(vcpu); break; - case MSR_IA32_PRED_CMD: - if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu)) - return 1; + case MSR_IA32_PRED_CMD: { + u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); + + if (!msr_info->host_initiated) { + if ((!guest_has_pred_cmd_msr(vcpu))) + return 1; + + if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && + !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) + reserved_bits |= PRED_CMD_IBPB; + + if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB)) + reserved_bits |= PRED_CMD_SBPB; + } + + if (!boot_cpu_has(X86_FEATURE_IBPB)) + reserved_bits |= PRED_CMD_IBPB; - if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB)) + if (!boot_cpu_has(X86_FEATURE_SBPB)) + reserved_bits |= PRED_CMD_SBPB; + + if (data & reserved_bits) return 1; + if (!data) break; - wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); + wrmsrl(MSR_IA32_PRED_CMD, data); break; + } case MSR_IA32_FLUSH_CMD: if (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) @@ -3700,13 +3803,16 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) data &= ~(u64)0x100; /* ignore ignne emulation enable */ data &= ~(u64)0x8; /* ignore TLB cache disable */ - /* Handle McStatusWrEn */ - if (data == BIT_ULL(18)) { - vcpu->arch.msr_hwcr = data; - } else if (data != 0) { + /* + * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 + * through at least v6.6 whine if TscFreqSel is clear, + * depending on F/M/S. + */ + if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { kvm_pr_unimpl_wrmsr(vcpu, msr, data); return 1; } + vcpu->arch.msr_hwcr = data; break; case MSR_FAM10H_MMIO_CONF_BASE: if (data != 0) { @@ -3777,7 +3883,7 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) break; case MSR_IA32_TSC: if (msr_info->host_initiated) { - kvm_synchronize_tsc(vcpu, data); + kvm_synchronize_tsc(vcpu, &data); } else { u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; adjust_tsc_offset_guest(vcpu, adj); @@ -4065,6 +4171,7 @@ int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) case MSR_AMD64_BU_CFG2: case MSR_IA32_PERF_CTL: case MSR_AMD64_DC_CFG: + case MSR_AMD64_TW_CFG: case MSR_F15H_EX_CFG: /* * Intel Sandy Bridge CPUs must support the RAPL (running average power @@ -5547,6 +5654,7 @@ static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; ns = get_kvmclock_base_ns(); + kvm->arch.user_set_tsc = true; __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); @@ -6259,6 +6367,9 @@ void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) struct kvm_vcpu *vcpu; unsigned long i; + if (!kvm_x86_ops.cpu_dirty_log_size) + return; + kvm_for_each_vcpu(i, vcpu, kvm) kvm_vcpu_kick(vcpu); } @@ -7485,11 +7596,11 @@ int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, } EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); -static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, - void *insn, int insn_len) +static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, + void *insn, int insn_len) { - return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, - insn, insn_len); + return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type, + insn, insn_len); } int handle_ud(struct kvm_vcpu *vcpu) @@ -7499,8 +7610,10 @@ int handle_ud(struct kvm_vcpu *vcpu) int emul_type = EMULTYPE_TRAP_UD; char sig[5]; /* ud2; .ascii "kvm" */ struct x86_exception e; + int r; - if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) + r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); + if (r != X86EMUL_CONTINUE) return 1; if (fep_flags && @@ -8882,8 +8995,14 @@ int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; bool writeback = true; - if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) - return 1; + r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); + if (r != X86EMUL_CONTINUE) { + if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) + return 1; + + WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); + return handle_emulation_failure(vcpu, emulation_type); + } vcpu->arch.l1tf_flush_l1d = true; @@ -10587,16 +10706,16 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu) } if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) record_steal_time(vcpu); + if (kvm_check_request(KVM_REQ_PMU, vcpu)) + kvm_pmu_handle_event(vcpu); + if (kvm_check_request(KVM_REQ_PMI, vcpu)) + kvm_pmu_deliver_pmi(vcpu); #ifdef CONFIG_KVM_SMM if (kvm_check_request(KVM_REQ_SMI, vcpu)) process_smi(vcpu); #endif if (kvm_check_request(KVM_REQ_NMI, vcpu)) process_nmi(vcpu); - if (kvm_check_request(KVM_REQ_PMU, vcpu)) - kvm_pmu_handle_event(vcpu); - if (kvm_check_request(KVM_REQ_PMI, vcpu)) - kvm_pmu_deliver_pmi(vcpu); if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); if (test_bit(vcpu->arch.pending_ioapic_eoi, @@ -11532,7 +11651,6 @@ static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); - vcpu->arch.cr0 = sregs->cr0; *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); @@ -11576,8 +11694,10 @@ static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) if (ret) return ret; - if (mmu_reset_needed) + if (mmu_reset_needed) { kvm_mmu_reset_context(vcpu); + kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); + } max_bits = KVM_NR_INTERRUPTS; pending_vec = find_first_bit( @@ -11618,8 +11738,10 @@ static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) mmu_reset_needed = 1; vcpu->arch.pdptrs_from_userspace = true; } - if (mmu_reset_needed) + if (mmu_reset_needed) { kvm_mmu_reset_context(vcpu); + kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); + } return 0; } @@ -11970,7 +12092,7 @@ void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) if (mutex_lock_killable(&vcpu->mutex)) return; vcpu_load(vcpu); - kvm_synchronize_tsc(vcpu, 0); + kvm_synchronize_tsc(vcpu, NULL); vcpu_put(vcpu); /* poll control enabled by default */ @@ -12326,7 +12448,6 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) goto out_uninit_mmu; INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); - INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); atomic_set(&kvm->arch.noncoherent_dma_count, 0); /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ @@ -13202,15 +13323,30 @@ bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) } EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); +static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) +{ + /* + * Non-coherent DMA assignment and de-assignment will affect + * whether KVM honors guest MTRRs and cause changes in memtypes + * in TDP. + * So, pass %true unconditionally to indicate non-coherent DMA was, + * or will be involved, and that zapping SPTEs might be necessary. + */ + if (__kvm_mmu_honors_guest_mtrrs(true)) + kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); +} + void kvm_arch_register_noncoherent_dma(struct kvm *kvm) { - atomic_inc(&kvm->arch.noncoherent_dma_count); + if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) + kvm_noncoherent_dma_assignment_start_or_stop(kvm); } EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) { - atomic_dec(&kvm->arch.noncoherent_dma_count); + if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) + kvm_noncoherent_dma_assignment_start_or_stop(kvm); } EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); |